Вред ионизирующего излучения. В чем состоит вредное влияние на человека ионизирующих излучений

Вред ионизирующего излучения. В чем состоит вредное влияние на человека ионизирующих излучений

30.09.2019

Основную часть ионизирующего облучения человек получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения попадают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении
. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним .

Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения, - как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

В то время как идентификация быстро проявляющихся («острых») последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты, требуется еще и доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако, в то же время, никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность или риск наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

Острое поражение организма человека происходит при больших дозах облучения. Вообще говоря, радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения.

Реакция тканей и органов человека на облучение неодинакова, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу или в несколько приемов. Большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

Воздействие ионизирующего излучения на живые клетки

Заряженные частицы . Проникающие в ткани организма a- и b-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (g-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям.)

Электрические взаимодействия . За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения . И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционноспособные, как «свободные радикалы».

Химические изменения . В течение следующих миллионных долей секунды, образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты . Биохимические изменения могут произойти как через несколько секунд, так и чрез десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к раку.

Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывают настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от 10 до 50 Гр при облучении всего тела поражение центральной нервной системы может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек, скорее всего, все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочного тракта или организм с ними справится, и тем не менее, смерть может наступить через один-два месяца, с момента облучения главным образом из-за разрушения клеток красного костного мозга - главного компонента кроветворной системы организма: от дозы 3-5 Гр при облучении всего тела умирает примерно половина всех облученных. Таким образом, в этом диапазоне доз облучения большие дозы отличаются от меньших лишь тем, что смерть в первом случае наступает раньше, а во втором - позже.

В организме человека ионизирующие воздействия вызывают цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н и ОН, которые образуются в результате радиолиза воды (в организме человека содержится до 70 % воды). Обладая высокой активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, что приводит к нарушению биохимических процессов в организме. В процесс вовлекаются сотни и тысячи молекул, не затронутых излучением. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению жизнедеятельности отдельных функций органов и систем организма. Под влиянием ионизирующих излучений в организме происходит нарушение функции кроветворных органов, увеличение проницаемости и хрупкости сосудов, расстройство желудочно-кишечного тракта, снижение сопротивляемости организма, его истощение, перерождение нормальных клеток в злокачественные и др. Эффекты развиваются в течение разных промежутков времени: от долей секунд до многих часов, дней, лет.

Радиационные эффекты принято делить на соматические и генетические. Соматические эффекты проявляются в форме острой и хронической лучевой болезни, локальных лучевых повреждений, например, ожогов, а также в виде отдаленных реакций организма, таких как лейкоз, злокачественные опухоли, раннее старение организма. Генетические эффекты могут проявиться в последующих поколениях.

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе свыше 0,25 Гр. При дозе 0,25…0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5… 1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5…2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительным снижением числа лимфоцитов в крови (лимфопенией), возможна рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5…4,0 Гр. Почти у всех в первые сутки - тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2…6 недель после облучения.

При дозе 4,0…6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превышающих 6,0…9,0 Гр, почти в 100 % случаев крайне тяжелая форма лучевой болезни заканчивается смертью из-за кровоизлияния или инфекционных заболеваний-.

Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика, снижение иммунитета организма.

Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, кальций, радий, стронций накапливаются в костях, изотопы иода вызывают повреждение щитовидной железы, редкоземельные элементы - преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, повреждение семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония.

Гигиеническая регламентация ионизирующего излучения осуществляется Нормами радиационной безопасности НРБ-99 (Санитарными правилами СП 2.6.1.758-99).

Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц:

Персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

Все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Для категорий облучаемых лиц устанавливают три класса нормативов: основные пределы доз, (табл. 1) и допустимые уровни, соответствующие основным пределам доз и контрольные уровни.

Доза эквивалентная Н- поглощенная доза в органе или ткани D, умноженная на соответствующий взвешивающий коэффициент для данного излучения W:

H =W*D

Единицей измерения эквивалентной дозы является Дж/кг, имеющий специальное наименование зиверт (Зв).

Таблица 1

Основные пределы доз (извлечение из НРБ-99)

Нормируемые величины

Пределы доз, мЗв

Персонал

(группа А)*

Население

Эффективная доза

20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год

1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год

Эквивалентная доза за год в:

хрусталике глаза ***

коже****

Кистях и стопах

* Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.

** Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте все нормативные значения для категории персонал приводятся только для группы А.

*** Относится к дозе на глубине 300 мг/см 2 .

**** Относится к среднему по площади в 1 см 2 значению в базальном слое кожи толщиной 5 мг/см 2 под покровным слоем толщиной 5 мг/см 2 . На ладонях толщина покровного слоя 40 мг/см. Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает непревышение предела дозы на хрусталик от бета-частиц.

Значения для фотонов, электронов и ионов любых энергий составляет 1, для а - частиц, осколков деления, тяжелых ядер - 20.

Доза эффективная - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе (ткани) на соответствующий взвешивающий коэффициент для данного органа или ткани:

Основные пределы доз облучения не включают в себя дозы от природных и медицинских источников ионизирующего излучения, а также дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Таблица 2

Допустимые уровни общего радиоактивного загрязенния рабочих поверхностей кожи (в течение рабочей смены) (извлечение из НРБ-96), спецодежды и средств индивидуальной защиты, частиц /(см 2 *мин)

Объект загрязнения

b -Активные нуклилы

b -Активные

нуклиды

Отдельные

прочие

Неповрежденная кожа, полотенца, спецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

2

2

200

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

5

20

2000

Наружная поверхность дополнительных средств индивидуальной зашиты, снимаемой в саншлюзах

50

200

10000

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

5

20

2000

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

50

200

10000

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, а для населения за период жизни (70 лет) - 70 мЗв. Кроме этого задаются допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи (в течение рабочей смены), спецодежды и средств индивидуальной защиты. В табл. 2 приведены числовые значения допустимых уровней общего радиоактивного загрязнения.

2. Обеспечение безопасности при работе с ионизирующими излучениями

Все работы с радионуклидами правила подразделяют на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом. Главные из них следующие:

1. Доза внешнего облучения пропорциональна интенсивности излучения времени действия.

2. Интенсивность излучения от точечного источника пропорциональна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорционально квадрату расстояния.

3. Интенсивность излучения может быть уменьшена с помощью экранов.

Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности: уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (зашита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (зашита экранами).

Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е. пропорционально сокращает мощность излучения. Однако требования технологического процесса часто не позволяют сократить, количество радиоактивного вещества в источнике, что ограничивает на практике применение этого метода зашиты.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

Защита расстоянием -достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов Применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений являются материалы с большим 2, например свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

По своему назначению защитные экраны условно разделяются на пять групп:

1. Защитные экраны-контейнеры, в которые помещаются радиоактивные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

2. Защитные Экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации.

3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

4; Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для зашиты помещений, в которых постоянно находится персонал, и прилегающей территории.

5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

Зашита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками ионизирующих излучений разделены на 3 класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.

Способы защиты персонала при этом следующие:

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размешаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных специально выделенных комнатах.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.

6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей; зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности.
Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы-службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

Службы выполняют все виды контроля на основании действующих методик, которые постоянно совершенствуются по мере выпуска новых видов приборов радиационного контроля.

Важной системой профилактических мероприятий при работе с источниками ионизирующих излучений является проведение радиационного контроля.

Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

Контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нитронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

Контроле за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

Контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

Контроль за величиной выброса радиоактивных веществ в атмосферу;

Контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

Контроль за сбором, удалением и обезвреживанием радиоактивных твердых и жидких отходов;

Контроль уровня загрязнения объектов внешней среды за пределами предприятия.

«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».

Настоящий материал - обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.

Опасность РАДИАЦИИ реальная и мнимая

«Один из первых открытых природных радиоактивных элементов был назван «радием»
- в переводе с латинского-испускающий лучи, излучающий».

Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.

Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.

Однако, в природе существует явление, на которое человек из-за отсутствия необходимых органов чувств не может мгновенно реагировать - это радиоактивность. Радиоактивность - не новое явление; радиоактивность и сопутствующие ей излучения (т.н. ионизирующие) существовали во Вселенной всегда. Радиоактивные материалы входят в состав Земли и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества.

Самое неприятное свойство радиоактивного (ионизирующего) излучения - его воздействие на ткани живого организма, поэтому необходимы соответствующие измерительные приборы, которые предоставляли бы оперативную информацию для принятия полезных решений до того, когда пройдет продолжительное время и проявятся нежелательные или даже губительные последствия.что его воздействие человек начнет ощущать не сразу, а лишь по прошествии некоторого времени. Поэтому информацию о наличии излучения и его мощности необходимо получить как можно раньше.
Однако, хватит загадок. Поговорим о том, что же такое радиация и ионизирующее (т. е. радиоактивное) излучение.

Ионизирующее излучение

Любая среда состоит из мельчайших нейтральных частиц-атомов , которые состоят из положительно заряженных ядер и окружающих их отрицательно заряженных электронов. Каждый атом похож на солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты» - электроны .
Ядро атома состоит из нескольких элементарных частиц-протонов и нейтронов, удерживаемых ядерными силами.

Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.

Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.

Число присутствующих в ядре нейтральных частиц (нейтронов) может быть разным при одинаковом числе протонов. Такие атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разновидностям одного и того же химического элемента, называемым «изотопами» данного элемента. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так уран-238 содержит 92 протона и 146 нейтронов; в уране 235 тоже 92 протона, но 143 нейтрона. Все изотопы химического элемента образуют группу «нуклидов». Некоторые нуклиды стабильны, т.е. не претерпевают никаких превращений, другие же, испускающие частицы нестабильны и превращаются в другие нуклиды. В качестве примера возьмем атом урана - 238. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов -«альфа-частица (альфа)». Уран-238 превращается, таким образом, в элемент, в ядре которого содержится 90 протонов и 144 нейтрона - торий-234. Но торий-234 тоже нестабилен: один из его нейтронов превращается в протон, и торий-234 превращается в элемент, в ядре которого содержится 91 протон и 143 нейтрона. Это превращение сказывается и на движущихся по своим орбитам электронах (бета): один из них становится как бы лишним, не имеющим пары (протона), поэтому он покидает атом. Цепочка многочисленных превращений, сопровождающаяся альфа- или бета- излучениями, завершается стабильным нуклидом свинца. Разумеется, существует много подобных цепочек самопроизвольных превращений (распадов) разных нуклидов. Период полураспада, есть отрезок времени, за который исходное число радиоактивных ядер в среднем уменьшается в два раза.
При каждом акте распада высвобождается энергия, которая и передается в виде излучения. Часто нестабильный нуклид оказывается в возбужденном состоянии и при этом испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию энергии в виде гамма-излучения (гамма-кванта). Как и в случае рентгеновских лучей (отличающихся от гамма-излучения только частотой) при этом не происходит испускания каких-либо частиц. Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам нуклид радионуклидом.

Различные виды излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью; поэтому они оказывают неодинаковое воздействие на ткани живого организма. Альфа-излучение, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа - частицы, не попадут внутрь организма через открытую рану, с пищей, водой или с вдыхаемым воздухом или паром, например, в бане; тогда они становятся чрезвычайно опасными. Бета - частица обладает большей проникающей способностью: она проходит в ткани организма на глубину один-два сантиметра и более, в зависимости от величины энергии. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. Ионизирующее излучение характеризуется рядом измеряемых физических величин. К ним следует отнести энергетические величины. На первый взгляд может показаться, что их бывает достаточно для регистрации и оценки воздействия ионизирующего излучения на живые организмы и человека. Однако, эти энергетические величины не отражают физиологического воздействия ионизирующего излучения на человеческий организм и другие живые ткани, субъективны, и для разных людей различны. Поэтому используются усредненные величины.

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон -тяжелый газ без вкуса, запаха и при этом невидимый; со своими дочерними продуктами.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для различных точек земного шара. Как ни парадоксально это может показаться на первый взгляд, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из стройматериалов, радон накапливается в помещении. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения. Проблема радона особенно важна для малоэтажных домов с тщательной герметизацией помещений (с целью сохранения тепла) и использованием глинозема в качестве добавки к строительным материалам (т.н. «шведская проблема»). Самые распространенные стройматериалы - дерево, кирпич и бетон - выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья, фосфогипса.

Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.

Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).

В природный газ радон проникает под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона в помещении может заметно возрасти, если кухонные плиты и другие нагревательные газовые приборы не снабжены вытяжкой. При наличии же приточно - вытяжной вентиляции, которая сообщается с наружным воздухом, концентрации радона в этих случаях не происходит. Это относится и к дому в целом -ориентируясь на показания детекторов радона можно установить режим вентиляции помещений, полностью исключающий угрозу здоровью. Однако, учитывая, что выделение радона из грунта имеет сезонный характер, нужно контролировать эффективность вентиляции три-четыре раза в год, не допуская превышения норм концентрации радона.

Другие источники радиации, к сожалению обладающие потенциальной опасностью, созданы самим человеком. Источники искусственной радиации - это созданные с помощью ядерных реакторов и ускорителей искусственные радионуклиды, пучки нейтронов и заряженных частиц. Они получили название техногенных источников ионизирующего излучения. Оказалось, что наряду с опасным для человека характером, радиацию можно поставить на службу человеку. Вот далеко не полный перечень областей применения радиации: медицина, промышленность, сельское хозяйство, химия, наука и т.д. Успокаивающим фактором является контролируемый характер всех мероприятий, связанных с получением и применением искусственной радиации.

Особняком по своему воздействию на человека стоят испытания ядерного оружия в атмосфере, аварии на АЭС и ядерных реакторах и результаты их работы, проявляющиеся в радиоактивных осадках и радиоактивных отходах. Однако только чрезвычайные ситуации, типа Чернобыльской аварии, могут оказать неконтролируемое воздействие на человека.
Остальные работы легко контролируются на профессиональном уровне.

При выпадении радиоактивных осадков в некоторых местностях Земли радиация может попадать внутрь организма человека непосредственно через с/х продукцию и питание. Обезопасить себя и своих близких от этой опасности очень просто. При покупке молока, овощей, фруктов, зелени, да и любых других продуктов совсем не лишним будет включить дозиметр и поднести его к покупаемой продукции. Радиации не видно - но прибор мгновенно определит наличие радиоактивного загрязнения. Такова наша жизнь в третьем тысячелетии - дозиметр становится атрибутом повседневной жизни, как носовой платок, зубная щетка, мыло.

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.

Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.

Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.

Заряженные частицы.

Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).

Электрические взаимодействия.

За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения.

И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как "свободные радикалы".

Химические изменения.

В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты.

Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Беккерель (Бк, Вq);
Кюри (Ки, Си)

1 Бк = 1 распад в сек.
1 Ки = 3,7 х 10 10 Бк

Единицы активности радионуклида.
Представляют собой число распадов в единицу времени.

Грей (Гр, Gу);
Рад (рад, rad)

1 Гр = 1 Дж/кг
1 рад = 0.01 Гр

Единицы поглощённой дозы.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.

Зиверт (Зв, Sv)
Бэр (бер, rem) - "биологический эквивалент рентгена"

1 Зв = 1 Гр = 1 Дж/кг (для бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.
Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.

Грей в час (Гр/ч);

Зиверт в час (Зв/ч);

Рентген в час (Р/ч)

1 Гр/ч = 1 Зв/ч = 100 Р/ч (для бета и гамма)

1 мк Зв/ч = 1 мкГр/ч = 100 мкР/ч

1 мкР/ч = 1/1000000 Р/ч

Единицы мощности дозы.
Представляют собой дозу полученную организмом за единицу времени.

Для информации, а не для запугивания, особенно людей, решивших посвятить себя работе с ионизирующим излучением, следует знать предельно допустимые дозы. Единицы измерения радиоактивности приведены в таблице 1. По заключению Международной комиссии по радиационной защите на 1990 г. вредные эффекты могут наступать при эквивалентных дозах не менее 1,5 Зв (150 бэр) полученных в течение года, а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. Различают хроническую и острую (при однократном массивном воздействии) формы этой болезни. Острую лучевую болезнь по тяжести подразделяют на четыре степени, начиная от дозы 1-2 Зв (100-200 бэр, 1-я степень) до дозы более 6 Зв (600 бэр, 4-я степень). Четвертая степень может закончиться летальным исходом.

Дозы, получаемые в обычных условиях, ничтожны по сравнению с указанными. Мощность эквивалентной дозы, создаваемой естественным излучением, колеблется от 0,05 до 0,2 мкЗв/ч, т.е. от 0,44 до 1,75 мЗв/год (44-175 мбэр/год).
При медицинских диагностических процедурах - рентгеновских снимках и т.п. - человек получает еще примерно 1,4 мЗв/год.

Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).

Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.

Согласно гигиеническим нормативам НРБ-96 (1996 г.) допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников для помещения постоянного пребывания лиц из персонала - 10 мкГр/ч, для жилых помещений и территории, где постоянно находятся лица из населения - 0,1 мкГр/ч (0,1 мкЗв/ч, 10 мкР/ч).

ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ

Несколько слов о регистрации и дозиметрии ионизирующего излучения. Существуют различные методы регистрации и дозиметрии: ионизационный (связанный с прохождением ионизирующего излучения в газах), полупроводниковый (в котором газ заменен твердым телом), сцинтиляционный, люминесцентный, фотографический. Эти методы положены в основу работы дозиметров радиации. Среди газонаполненных датчиков ионизирующего излучения можно отметить ионизационные камеры, камеры деления, пропорциональные счетчики и счетчики Гейгера-Мюллера . Последние относительно просты, наиболее дешевы, не критичны к условиям работы, что и обусловило их широкое применение в профессиональной дозиметрической аппаратуре, предназначенной для обнаружения и оценки бета- и гамма-излучения. Когда датчиком служит счетчик Гейгера-Мюллера, любая вызывающая ионизацию частица, попадающая в чувствительный объем счетчика, становится причиной самостоятельного разряда. Именно попадающая в чувствительный объем! Поэтому не регистрируются альфа -частицы, т.к. они туда не могут проникнуть. Даже при регистрации бета - частиц необходимо приблизить детектор к объекту, чтобы убедиться в отсутствии излучения, т.к. в воздухе энергия этих частиц может быть ослаблена, они могут не преодолеть корпус прибора, не попадут в чувствительный элемент и не будут обнаружены.

Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании "Кварта-Рад"

Влияние ионизирующих излучений на организм

Основное действие всех ионизирующих излучений на организм сводится к ионизации тканей тех органов и систем, которые подвергаются их облучению. Приобретенные в результате этого заряды являются причиной возникновения несвойственных для нормального состояния окислительных реакций в клетках, которые, в свою очередь, вызывают ряд ответных реакций. Таким образом, в облучаемых тканях живого организма происходит серия цепных реакций, нарушающих нормальное функциональное состояние отдельных органов, систем и организма в целом. Есть предположение, что в результате таких реакций в тканях организма образуются вредные для здоровья продукты - токсины, которые и оказывают неблагоприятное влияние.

При работе с продуктами, обладающими ионизирующими излучениями, пути воздействия последних могут быть двоякими: посредством внешнего и внутреннего облучения. Внешнее облучение может иметь место при работах на ускорителях, рентгеновских аппаратах и других установках, излучающих нейтроны и рентгеновские лучи, а также при работах с закрытыми радиоактивными источниками, то есть радиоактивными элементами, запаянными в стеклянные или другие глухие ампулы, если последние остаются неповрежденными. Источники бетта- и гамма-излучений могут представлять опасность как внешнего, так и внутреннего облучения. aльфа-излучения практически представляют опасность лишь при внутреннем облучении, так как вследствие весьма малой проникающей способности и малого пробега альфа-частиц в воздушной среде незначительное удаление от источника излучения или небольшое экранирование устраняют опасность внешнего облучения.

При внешнем облучении лучами со значительной проникающей способностью ионизация происходит не только на облучаемой поверхности кожных и других покровов, но и в более глубоких тканях, органах и системах. Период непосредственного внешнего воздействия ионизирующих излучений - экспозиция - определяется временем облучения.


Внутреннее облучение происходит при попадании радиоактивных веществ внутрь организма, что может произойти при вдыхании паров, газов и аэрозолей радиоактивных веществ, занесении.их в пищеварительный тракт или попадании в ток крови (в случаях загрязнения ими поврежденных кожи и слизистых). Внутреннее облучение более опасно, так как, во-первых, при непосредственном контакте с тканями даже излучения незначительных энергий и с минимальной проникающей способностью все же оказывают действие на эти ткани; во-вторых, при нахождении радиоактивного вещества в организме продолжительность его воздействия (экспозиция), не ограничивается временем непосредственной работы с источниками, а продолжается непрерывна до его полного распада или выведения из организма. Кроме того, при попадании внутрь некоторые радиоактивные вещества, обладая определенными токсическими свойствами, кроме ионизации, оказывают местное или общее токсическое действие (см. «Вредные химические вещества») .

В организме радиоактивные вещества, как и все остальные продукты, разносятся кровотоком по всем органам и системам, после чего частично выводятся из организма через выделительные системы (желудочно-кишечный тракт, почки, потовые и молочные железы и др.), а некоторая их часть отлагается в определенных органах и системах, оказывая на них преимущественное, более выраженное действие. Некоторые же радиоактивные ве- щества (например, натрий - Na 24) распределяются по всему организму относительно равномерно. Преимущественное отложение различных веществ в тех или иных органах и системах определяется их физико-химическими свойствами и функциями этих органов и систем.

Комплекс стойких изменений в организме под воздействием ионизирующих излучений называется лучевой болезнью. Лучевая болезнь может развиться как вследствие хронического воздействия ионизирующих излучений, так и при кратковременном облучении значительными дозами. Она характеризуется главным образом изменениями со стороны центральной нервной системы (подавленное состояние, головокружение, тошнота, общая слабость и др.), крови и кроветворных органов, кровеносных сосудов (кровоподтеки вследствие ломкости сосудов), желез внутренней секреции.

Ионизирующее излучение - это любое излучение, вызывающее ионизацию среды, т.е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.

Источники ионизирующих излучений

Источниками ионизирующих излученийявляются радиоактивные элементы и их изотопы , ядерные реакторы , ускорители заряженных частиц и др. Рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения . Здесь следует отметить, что при нормальном режиме их эксплуатации радиационная опасность незначительна. Она наступает при возникновении аварийного режима и может долго проявлять себя при радиоактивном заражении местности.

Существенную часть облучения население получает от естественных источников радиации: из космоса и от радиоактивных веществ, находящихся в земной коре. Наиболее весомым из этой группы является радиоактивный газ радон, залегающий практически во всех грунтах и постоянно выделяющийся на поверхность, а главное, проникающий в производственные и жилые помещения. Он почти не проявляет себя, так как не имеет запаха и бесцветен, что затрудняет его обнаружение.

Ионизирующие излучения разделяются на два вида: электромагнитное (гамма-излучение и рентгеновское излучение) и корпускулярное, представляющее собой a- и β-частицы, нейтроны и др.

Виды ионизирующих излучений

Ионизирующими называют излучения, взаимодействие которых со средой приводит к образованию ионов различных знаков. Источники этих излучений широко используются в атомной энергетике, технике, химии, медицине, сельском хозяйстве и т. п. Работа с радиоактивными веществами и источниками ионизирующих излучений представляет потенциальную угрозу здоровью и жизни людей, которые участвуют в их использовании.

К ионизирующим относятся два вида излучений:

1) корпускулярное (α- и β-излучения, нейтронное излучение);

2) электромагнитное (γ-излучение и рентгеновское).

Альфа-излучение - это поток ядер атомов гелия, испускаемых веществом при радиоактивном распаде вещества или при ядерных реакциях. Значительная масса α-частиц ограничивает их скорость и увеличивает число столкновений в веществе, поэтому α-частицы обладают высокой ионизирующей способностью и малой проникающей способностью. Пробег α-частиц в воздухе достигает 8÷9 см, а в живой ткани - несколько десятков микрометров. Это излучение не представляет опасности до тех пор, пока радиоактивные вещества, испускающие a- частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.


Бета -излучение - это поток электронов или позитронов, возникающих при радиоактивном распаде ядер. По сравнению с α-частицами β-частицы обладают значительно меньшей массой и меньшим зарядом, поэтому у β-частиц выше проникающая способность, чем у α-частиц, а ионизирующая способность ниже. Пробег β-частиц в воздухе составляет 18 м, в живой ткани - 2,5 см.

Нейтронное излучение - это поток ядерных частиц, не имеющих заряда, вылетающих из ядер атомов при некоторых ядерных реакциях, в частности при делении ядер урана и плутония. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 кЭВ), нейтроны промежуточных энергий (от 1 до 500 кЭВ) и быстрые нейтроны (от 500 кэВ до 20 МэВ). При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее как из заряженных частиц, так и из γ-квантов. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у α-частиц или β-частиц. Для быстрых нейтронов длина пробега в воздухе составляет до 120 м, а в биологической ткани - 10 см.

Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц (10 20 ÷10 22 Гц). Гамма-излучение обладает малым ионизирующим действием, но большой проникающей способностью и распространяется со скоростью света. Оно свободно проходит через тело человека и другие материалы. Это излучение может задержать лишь толстая свинцовая или бетонная плита.

Рентгеновское излучение также представляет собой электромагнитное излучение, возникающее при торможении быстрых электронов в веществе (10 17 ÷10 20 Гц).

Понятие о нуклидах и радионуклидах

Ядра всех изотопов химических элементов образуют группу «нуклидов». Большинство нуклидов нестабильны, т.е. они все время превращаются в другие нуклиды. Например, атом урана-238 время от времени испускает два протона и два нейтрона (a-частицы). Уран превращается в торий-234, но торий также нестабилен. В конечном итоге эта цепочка превращений оканчивается стабильным нуклидом свинца.

Самопроизвольный распад нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом.

При каждом распаде высвобождается энергия, которая и передается дальше в виде излучения. Поэтому можно сказать, что в определенной степени испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - это a-излучение, испускание электрона - β-излучение, и, в некоторых случаях, возникает g-излучение.

Образование и рассеивание радионуклидов приводит к радиоактивному заражению воздуха, почвы, воды, что требует постоянного контроля их содержания и принятия мер по нейтрализации.

  • 12. Работоспособность человека и ее динамика
  • 13. Надежность работы человека-оператора. Критерии оценки
  • 14.Анализаторы и органы чувств человека.Строение анализатора.Виды анализаторов.
  • 15. Характеристика анализаторов человека.
  • 16.Строение и характеристики зрительного анализатора.
  • 17.Строение и характеристики слухового анализатора
  • 18.Строение и характеристики тактильного, обонятельного и вкусового анализатора.
  • 19. Основные психофизические законы восприятия
  • 20.Энергетические затраты человека при различных видах деятельности. Методы оценки тяжести труда.
  • 21. Параметры микроклимата производственных помещений.
  • 22. Нормирование параметров микроклимата.
  • 23. Инфракрасное излучение. Воздействие на организм человека. Нормирование. Защита
  • 24. Вентиляция производственных помещений.
  • 25.Кондиционирование воздуха
  • 26. Потребный воздухообмен в производственных помещениях. Методы расчета.
  • 27. Вредные вещества, их классификации. Виды комбинированного действия вредных веществ.
  • 28. Нормирование содержания вредных веществ в воздухе.
  • 29. Производственное освещение. Основные характеристики. Требования к системе освещения.
  • 31. Методы расчета искусственного освещения. Контроль производственного освещения.
  • 32.Понятие шума. Характеристика шума как физического явления.
  • 33. Громкость звука. Кривые равной громкости.
  • 34. Воздействие шума на организм человека
  • 35.Классификации шума
  • 2 Классификация по характеру спектра и временным характеристикам
  • 36.Гигиеническое нормирование шума
  • 37. Методы и средства защиты от шума
  • 40.Вибрация.Классификация вибрации по способу создания, по способу передачи человеку, по характеру спектра.
  • 41.Вибрация. Классификация вибрации по месту возникновения, по частотному составу, по временным хар-м
  • 3) По временным характеристикам:
  • 42. Характеристики вибрации. Действие вибрации на организм человека
  • 43.Методы нормир-я вибрации и нормируемые параметры.
  • 44.Методы и средства защиты от вибрации
  • 46. Зоны эл.Магнитного излучения. Возд-ие эмп на чел-ка.
  • 49. Методы и средства зашиты от неионизирующих электромагнитных излучений.
  • 50 Особенности воздействия лазерного излучения на организм человека. Нормирование. Зашита.
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.
  • 52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.
  • 55. Виды воздействия эл. Тока на человека. Факторы, влияющие на исход поражения человека эл. Током.
  • 56. Основные схемы линий электропередач. Схемы прикосновения человека к линиям эл/передач.
  • 57. Пороговые значения постоянного и переменного эл. Тока. Виды эл/травм.
  • 58. Напряжение прикосновения. Напряжение шага. 1 помощь пострадавшим от воздействия эл. Тока.
  • 59. Защитное заземление, виды защитного заземления.
  • 60. Зануление, защитное отключение и др. Средства защиты в эл/установках.
  • 62. Пожаробезопасность. Опасные факторы пожара.
  • 63.Виды горения.Виды процесса возникновения.
  • 64.Характеристики пожароопасности веществ
  • 65. Классификация веществ и материалов по пожарной опасности. Классификация производств и зон по пожароопасности
  • 66. Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности.
  • 67. Пожарная профилактика в производственных зданиях
  • 68. Методы и средства тушения пожаров
  • 69.Нпа по охране труда
  • 70. Обязанности работодателя в области охраны труда на предприятии
  • 72.Расследование нс на производстве
  • 73.Управление охраной окружающей среды(оос)
  • 74.Эколог-е нормирование.Виды экологических нормативов
  • 75 Экологическое лицензирование
  • 76. Инженерная защита окружающей среды. Основные процессы, лежащие в основе средозащитных технологий
  • 77. Методы и основные аппараты для очистки от пылевоздушных примесей
  • 78.Методы и основные аппараты для очистки газовоздушных примесей
  • 1. Абсорбсер
  • 2.Адсорбер
  • 3.Хемосорбция
  • 4.Аппарат термической нейтрализации
  • 79. Методы и основные аппараты очистки сточных вод.
  • 80. Отходы и их виды. Методы переработки и утилизации отходов.
  • 81. Чрезвычайные ситуации: основные определения и классификация
  • 82. Чс природного, техногенного и экологического характера
  • 83. Причины возникновения и стадии развития чс
  • 84. Поражающие факторы техногенных катастроф: понятие, классификация.
  • 85. Поражающие факторы физического действия и их параметры. «Эффект домино»
  • 86.Прогнозирование химической обстановки при авариях на хоо
  • 87. Цели, задачи и структура рсчс
  • 88. Устойчивость функционирования промышленных объектов и систем
  • 89. Мероприятия по ликвидации последствий чс
  • 90. Оценка риска технических систем. Концепция «удельной смертности»
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.

    ИИ делятся на 2 вида:

      Корпускулярное излучение

    - 𝛼-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде или при ядерных реакциях;

    - 𝛽-излучение – поток электронов или позитронов, возникающих при радиоактивном распаде;

    Нейтронное излучение (При упругих взаимодействиях происходит обычная ионизация вещества. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и -квантов).

    2. Электромагнитное излучение

    - 𝛾-излучение – это электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц;

    Рентгеновское излучение – возникает в среде, окружающей источ-ник -излучения, в рентгеновских трубках.

    Характеристики ИИ: энергия (МэВ); скорость (км/с); пробег (в воздухе, в живой ткани); ионизирующая способность (пар ионов на 1 см пути в воздухе).

    Самая низкая ионизирующая способность у α-излучения.

    Заряженные частицы приводят к прямой, сильной ионизации.

    Активность (А) радиоактивного в-ва – число спонтанных ядерных превращений (dN) в этом веществе за малый промежуток времени (dt):

    1 Бк (беккерель) равен одному ядерному превращению в секунду.

    52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.

    Ионизирующее излучение (ИИ) – это излучение, взаимодействие которой со средой приводит к образованию зарядов противоположных знаков. Возникает ионизирующее излучение при радиоактивном распаде, ядерных превращениях, а также при взаимодействии заряженных частиц, нейтронов, фотонного (электромагнитного) излучения с веществом.

    Доза излучения – величина, используемая для оценки воздействия ионизирующего излучения.

    Экспозиционная доза (характеризует источник излучения по эффекту ионизации):

    Экспозиционная доза на рабочем месте при работе с радиоактивными веществами:

    где А–активность источника [мКи], К–гамма-постоянная изотопа [Рсм2/(чмКи)], t – время облучения, r – расстояние от источника до рабочего места [см ].

    Мощность дозы (интенсивность облучения) – приращение соответствующей дозы под воздействием данного излучения за ед. времени.

    Мощность экспозиционной дозы [рч -1 ].

    Поглощённая доза показывает, какое кол-во энергии ИИ поглощено ед. массы облучаемого в-ва:

    Д погл. = Д эксп. К 1

    где К 1 – коэффициент, учитывающий вид облучаемого вещества

    Поглащ. доза, Грей, [Дж/кг]=1Грей

    Эквивалентная доза хар-ет хроническое облучение излучением произвольного состава

    Н = Д Q [Зв] 1 Зв = 100 бэр.

    Q – безразмерный взвешивающий коэффициент для данного вида излучения. Для рентгеновского и -излучения Q=1, для альфа-, бета-частиц и нейтронов Q=20.

    Эффективная эквивалентная доза хар-ет чувствительность разл. органов и тканей излучению.

    Облучение неживых объектов – Поглащ. доза

    Облучение живых объектов – Эквив. доза

    53. Действие ионизирующих излучений (ИИ) на организм. Внешнее и внутреннее облучение.

    Биологический эффект ИИ основан на ионизации живой ткани, что приводит к разрыву молекулярных связей и изменению химической структуры различных соединений, что приводит к изменению ДНК клеток и их последующей гибели.

    Нарушение процессов жизнедеятельности организма выражается в таких расстройствах как

    Торможение функций кроветворных органов,

    Нарушение нормальной свертываемости крови и повышение хрупкос- ти кровеносных сосудов,

    Расстройство деятельности желудочно-кишечного тракта,

    Снижение сопротивляемости инфекциям,

    Истощение организма.

    Внешнее облучение происходит тогда, когда источник радиации нах-ся вне организма человека и отсутствуют пути их попадания внутрь.

    Внутреннее облучение происх. тогда, когда источник ИИ нах-ся внутри человека; при этом внутр. облучение также опасно близостью источника ИИ к органам и тканям.

    Пороговые эффекты (Н > 0,1 Зв/год) зависят от дозы ИИ, возникают при дозах облучения в течении всей жизни

    Лучевая болезнь – это заболевание, которое хар-ся симптомами, возникающими при воздействии ИИ, такими, как снижение кроветворной способности, расстройство желудочно-кишечного тракта, снижение иммунитета.

    Степень лучевой болезни зависит от дозы излучения. Самой тяжелой явл-ся 4-ая степень, которая возникает при воздействии ИИ дозой более 10 Грей. Хронические лучевые поражения, как правило, вызываются внутренним облучением.

    Беспороговые (стахастические) эффекты проявляются при дозах Н<0,1 Зв/год, вероятность возникновения которых не зависит от дозы излучения.

    К стахастическим эф-там относят:

    Изменения соматические

    Изменения иммунные

    Изменения генетические

    Принцип нормирования – т.е. непревышение допустимых пределов индивид. Доз облучения от всех ист-ков ИИ.

    Принцип обоснования – т.е. запрещение всех видов деятельности по исп-ю ист-ков ИИ, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительно к естественному радиац. факту.

    Принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономич. и соц. факторов индивид. доз облуч-я и числа облучаемых лиц при использовании источника ИИ.

    СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности».

    В соответствии с данным документом выделяют 3 гр. лиц:

    гр.А – это лица, непоср. работающие с техногенными источниками ИИ

    гр – это лица, усл-ия работы кот нах-ся в непоср. бризости от ист-ка ИИ, но деят. данных лиц непоср. с ист-ком не связано.

    гр – это всё остальное население, вкл. лиц гр. А и Б вне их производственной деятельности.

    Основной дозовый предел уст. по эффективной дозе:

    Для лиц гр.А: 20мЗв в год в ср. за последоват. 5 лет, но не более 50мЗв в год.

    Для лиц гр.Б: 1мЗв в год в ср. за последоват. 5 лет, но не более 5мЗв в год.

    Для лиц гр.В: не должны превышать ¼ значений для персонала гр.А.

    На случай ЧС, вызванной радиац.аварией сущ-ет т.н. пиковое повышенное облучение, кот. разрешается только в тех случаях, когда нет возм-ти принять меры исключающие вред организму.

    Применение таких доз м.б. оправдано только спасением жизни людей и предотвращением аварий, доп-ся только для мужчин старше 30 лет при добровольном письменном соглашении.

    М/ды защиты от ИИ:

    Защита кол-вом

    Защита временем

    Защита расст-ем

    Зонирование

    Дистанционное управление

    Экранирование

    Для защиты от γ -излучения: металлич. экраны, выполненные с большим атомным весом (W,Fe), а также из бетона, чугуна.

    Для защиты от β-излучения: исп-ют материалы с малой атомной массой (алюминий, плексиглаз).

    Для защиты от α-излучений: исп-ют металлы, содержащие Н2 (вода, парафин, и т.д.)

    Толщина экрана К=Ро/Рдоп, Ро – мощн. дозы, измеренная на рад. месте; Рдоп – предельно допустимая доза.

    Зонирование – деление территории на 3 зоны: 1) укрытие; 2) объекты и помещения, в которых могут нах-ся люди; 3) зона пост. пребывания людей.

    Дозиметрический контроль основывается на исп-ии след. методов: 1.Ионизационный 2.Фонографический 3.Химический 4.Калориметрический 5.Сцинтиляционный.

    Основные приборы , исп-ые для дозиметрич. контроля:

      Рентгенометр (для измер-я мощн. эксп. дозы)

      Радиометр (для измерения плотности потоков ИИ)

      Индивид. дозиметры (для измер-я экспозиц. или поглощённой дозы).

    © 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины