Что такое период полураспада радиоактивного вещества. Как рассчитать период полураспада

Что такое период полураспада радиоактивного вещества. Как рассчитать период полураспада

09.10.2019

>> Закон радиоактивного распада. Период полураспада

§ 101 ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ПЕРИОД ПОЛУРАСПАДА

Радиоактивный распад подчиняется статистическому закону. Резерфорд , исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Об этом говорилось в предыдущем параграфе. Так, активность радона убывает в 2 раза уже через 1 мин. Активность таких элементов, как уран, торий и радий, тоже убывает со временем, но гораздо медленнее. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в 2 раза. Этот интервал носит название период полураспада. Период полураспада Т - это время, в течение которого распадается половина начального числа радиоактивных атомов.

Спад активности, т. е. числа распадов в секунду, в зависимости от времени для одного из радиоактивных препаратов изображен на рисунке 13.8. Период полураспада этого вещества равен 5 сут.

Выведем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t= 0) равно N 0 . Тогда по истечении периода полураспада это число будет равно

Спустя еще один такой же интервал времени это число станет равным:

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Определение периода полураспада радиоактивного долгоживущего изотопа калия

Цель работы: Изучение явления радиоактивности. Определение периода полураспада Т 1/2 ядер радиоактивного изотопа К-40 (калий-40).

Оборудование:

Измерительная установка;

Мерный образец, содержащий известную массу хлористого калия (KCl);

Эталонный препарат (мера активности) с известной активностью К-40.

Теоретическая часть

В настоящее время известно большое количество изотопов всех химических элементов, ядра которых могут самопроизвольно превращаться друг в друга. В процессе превращений ядро испускает один или несколько видов так называемых ионизирующих частиц - альфа-(α), бета-(β) и других, а также гамма-квантов (γ). Такое явление называется радиоактивным распадом ядра.

Радиоактивный распад носит вероятностный характер и зависит только от характеристик распадающегося и образующегося ядер. Внешние факторы (нагревание, давление, влажность и др.) на скорость радиоактивного распада воздействия не оказывают. Радиоактивность изотопов практически не зависит также от того, находятся они в чистом виде или входят в состав каких-либо химических соединений. Радиоактивный распад является процессом стохастическим. Каждое ядро распадается независимо от других ядер. Нельзя сказать, когда конкретно распадется данное радиоактивное ядро, но для отдельного ядра можно указать вероятность его распада за определенное время.

Самопроизвольный распад радиоактивных ядер происходит в соответствии с законом кинетики радиоактивного распада, согласно которому число ядер dN(t), распадающихся за бесконечно малый промежуток времени dt , пропорционально числу нестабильных ядер, имеющихся в момент времени t в данном источнике излучения (мерном образце):

В формуле (1) коэффициент пропорциональности λ называется постоянной распада ядра. Ее физический смысл – вероятность распада отдельно взятого нестабильного ядра в единицу времени. Другими словами - для источника излучения, содержащего в рассматриваемый момент большое количество нестабильных ядер N(t) , постоянная распада показывает долю ядер, распадающихся в данном источнике за малый промежуток времени dt . Постоянная распада – размерная величина. Ее размерность в системе СИ – с -1 .

Величина А(t ) в формуле (1) сама по себе имеет важное значение. Она является основной количественной характеристикой данного образца как источника излучения и называется его активностью . Физический смысл активности источника – количество нестабильных ядер, распадающихся в данном источнике излучения в единицу времени. Единица измерения активности в системе СИ – Беккерель(Бк) – соответствует распаду одного ядра в секунду. В специализированной литературе встречается внесистемная единица измерения активности – Кюри (Ки) . 1 Ки ≈ 3.7·10 10 Бк.

Выражение (1) – это запись закона кинетики радиоактивного распада в дифференциальной форме. На практике иногда удобнее применять другой (интегральный) вид закона радиоактивного распада. Решая дифференциальное уравнение (1), получим:

, (2)

где N (0) – количество нестабильных ядер в образце в начальный момент времени (t = 0); N (t ) – среднее количество нестабильных ядер в любой момент времени t >0.

Таким образом, число нестабильных ядер в любом источнике излучения уменьшается со временем, в среднем, по экспоненциальному закону. На рисунке 1 представлена кривая изменения среднего числа ядер во времени, происходящего по закону радиоактивного распада. Этот закон может быть применен только к большому числу радиоактивных ядер. При небольшом числе распадающихся ядер наблюдаются значительные статистические колебания около среднего значения N (t ).

Рисунок 1. – Кривая распада радионуклида.

Умножив обе части (2) на константу λ и учитывая, что N (t )· λ = A (t ), получим закон изменения активности источника излучения с течением времени

. (3)

В качестве интегральной временной характеристики радионуклида часто применяют величину, называемую его периодом полураспада T 1/2 . Период полураспада - это интервал времени, на протяжении которого число ядер данного радионуклида в источнике уменьшается, в среднем, в два раза (см. рисунок 1). Из выражения (2) находим:

откуда получаем соотношение между периодом полураспада радионуклида T 1/2 и его постоянной распада

Подставив в формулу (4) значение λ , выраженное и формулы (1) получаем выражение, связывающее период полураспада с активностью мерного образца A и количеством нестабильных ядер N К-40 радионуклида
, входящего в состав этого образца

. (5)

Выражение (5) является основной рабочей формулой данного задания. Из нее следует, что, посчитав количество ядер радионуклида
в рабочем мерном образце и определив активность К-40 в образце, можно будет найти период полураспада долгоживущего радионуклида К-40, выполнив тем самым задание лабораторной работы.

Отметим важный момент. Учтем, что по условиям задания заранее известно, что период полураспада T 1/2 радионуклида
намного больше времени наблюденияΔ T за мерным образцом в рамках данной лабораторной работы T / T 1/2 <<1) . Следовательно, при выполнении данного задания, можно не учитывать изменение активности образца и количества ядер К-40 в образце за счет радиоактивного распада и считать их постоянными величинами:

Определение количества ядер К-40 в мерном образце.

Известно, что природный химический элемент калий состоит из трех изотопов – К-39, К-40 и К-41. Один из этих изотопов, а именно радионуклид
, массовая доля которого в природном калии составляет 0,0119 %(относительная распространенность η =0,000119) , является нестабильным.

Число атомов N К-40 (соответственно, и ядер) радионуклида
в мерной пробе определяется следующим образом.

Полное число N K атомов природного калия в мерной пробе, содержащей m граммов (указывается преподавателем) хлористого калия, находится из соотношения

,

где М KCl = 74,5 г/моль – молярная масса KCl;

N A = 6,02·10 23 моль -1 - постоянная Авогадро.

Следовательно, с учетом относительной распространенности, число атомов (ядер) радионуклида
в мерной пробе будет определяться соотношением

. (6)

Определение активности радионуклида
в мерном образце.

Известно, что ядра радионуклида К-40 могут испытывать два вида ядерных превращений:

С вероятностью ν β = 0,89 ядро К-40 превращается в ядро Ca-40, испуская при этом -частицу и антинейтрино (бета-распад):

С вероятностью ν γ =0,11 ядро захватывает электрон с ближайшей К-оболочки, превращаясь в ядро Ar-40 и испуская при этом нейтрино (электронный захват или К-захват):

Рожденное ядро аргона находится в возбужденном состоянии и практически мгновенно переходит в основное состояние, испуская при этом переходе γ – квант с энергией 1461 кэВ:

.

Вероятности выхода ν β и ν γ называются относительным выходом β-частиц и γ – квантов на один распад ядра , соответственно. На рисунке 2 приведена схема распада К-40, иллюстрирующая вышеизложенное.

Рисунок 2. – Схема распада радионуклида К-40.

Возникающие при радиоактивном распаде ядер ионизирующие частицы могут быть зарегистрированы специальной аппаратурой. В настоящей работе применяется измерительная установка, регистрирующая β-частицы, сопровождающие распад ядер радионуклида К-40, входящих в состав мерного образца.

Блок-схема измерительной установки приведена на рисунке 3.

Рисунок 3. – Блок-схема измерительной установки.

1 – кювета с мерным образцом KCl ;

2 – счетчик Гейгера-Мюллера;

3 – высоковольтный блок;

4 – формирователь импульсов;

5 – счетчик импульсов;

6 – таймер.

Рассмотрим процесс регистрации бета-частиц, образующихся в мерном образце (источнике излучения), измерительной установкой.

Неизвестную активность радионуклида К-40 в мерном образце обозначим A x . Это означает, что каждую секунду в образце распадается, в среднем, A x ядер радионуклида К-40;

Регистрация излучения проводится в течение некоторого времени работы установки t изм . Очевидно, что за это время в образце распадутся, в среднем, A x ·t изм ядер;

С учетом относительного выхода бета-частиц на один распад ядра, количество бета-частиц, рожденных в образце за время работы установки, будет равно A x ·t изм ·ν β ;

Поскольку источник имеет конечные размеры, часть бета-частиц поглотится материалом самого источника. Вероятность Q поглощения бета-частицы, рожденной в источнике, материалом самого источника называют коэффициентом самопоглощения излучения. Отсюда следует, что из источника за все время измерения во всех направлениях (в телесный угол 4π) вылетит, в среднем, A x ·t изм ·ν β ·(1- Q ) бета-частиц;

Через детектор (счетчик Гейгера – Мюллера) пролетает только малая доля G всех вышедших из источника бета-частиц, зависящая от размеров и взаимного расположения образца и детектора. Остальные частицы пролетят мимо детектора. Поправка G называется геометрическим фактором системы «детектор – образец». Следовательно, полное количество бета-частиц, попавших за время работы установки из образца в рабочий объем детектора будет равно A x ·t изм ·ν β ·(1- Q G ;

Вследствие особенности работы детекторов ионизирующего излучения любых типов (в том числе и детекторов Гейгера-Мюллера), лишь некоторая доля ε (называемая эффективностью регистрации детектора) частиц, пролетевших через детектор, инициирует электрический импульс на его выходе. Остальные частицы детектор «не замечает». Данные электрические импульсы обрабатываются электронной схемой измерительной установки и регистрируются ее счетным устройством. Таким образом, за время работы установки счетное устройство зарегистрирует «полезных» событий (импульсов), обусловленных распадом ядер К-40 в мерной пробе;

Одновременно с бета-частицами из мерного образца -
- измерительная установка зарегистрирует и определенное количество -- так называемых фоновых частиц, обусловленных естественной радиоактивностью окружающих строительных конструкций, конструкционных материалов, космического излучения и т.д.

Таким образом, полное количество событий n X , зарегистрированных пересчетным устройством измерительной установки при измерении мерного образца с неизвестной активностью А Х в течение времени t изм , можно представить в виде

Точный учет поправок Q , G и ε , входящих в формулу (7), в общем случае весьма сложен. Поэтому на практике часто пользуются относительным методом измерения активности . Реализация такого метода возможна при наличии эталонного источника радиоактивного излучения (образцовой меры активности) с известной активностью А Э , имеющего такую же форму и размеры, содержащего тот же радионуклид, что и исследуемый образец. В этом случае все поправочные коэффициенты - ν β , Q , G , ε - будут одинаковы для исследуемого и эталонного препаратов.

Для образцовой меры активности можно записать выражение, аналогичное выражению (7) для исследуемого образца

Если выбрать время измерения исследуемого и эталонного образцов одинаковым, то, выразив произведение
из формулы (8) и подставив это выражение в формулу (7), получим выражение для практического определения активности исследуемого образца А Х

, Бк , (9)

где А Э – активность образцовой меры, Бк;

n X – количество событий, зарегистрированных при измерении исследуемого образца;

n Э – количество событий, зарегистрированных при измерении образцовой меры;

n Ф – количество событий, зарегистрированных при измерении фона.

Порядок выполнения лабораторной работы

1. Включите установку, установите время измерения (не менее 3 мин) и дайте ей «прогреться» в течение 15 -20 минут.

2. Проведите измерение фона не менее 5 раз. Результаты каждого (i – го) измерения -

3. Получите у преподавателя мерный образец. Уточните у преподавателя количество хлористого калия в мерном образце. По формуле (6) рассчитайте количество ядер радионуклида К-40 в мерном образце.

4. Установите мерный образец под рабочее окно детектора и проведите измерение образца не менее 5 раз. Результаты каждого измерения - -занесите в рабочую таблицу.

5. Получите у преподавателя образцовую меру, уточните значение в ней активности радионуклида К-40.

6. Установите образцовую меру под рабочее окно детектора и проведите ее измерение не менее 5 раз. Результаты каждого измерения -- занесите в рабочую таблицу 1.

7. По формуле (9) для каждой i-й строки рассчитайте величину активности мерной пробы. Результаты расчетов - - занесите в рабочую таблицу 1.

8. По формуле (5) для каждой i-й строки рабочей таблицы рассчитайте значение периода полураспада -
- радионуклида К-40.

9. Определите среднеарифметическое значение периода полураспада

и оценку среднеквадратического отклонения

,

где L - размер выборки (число измерений, например, L = 5).

Полученное в результате выполнения лабораторной работы значение периода полураспада радионуклида К-40 записать в виде:

, лет,

где t p , L -1 – соответствующий коэффициент Стьюдента (см. таблицу 2), а

- среднеквадратичная погрешность среднеарифметического.

10. Используя полученное значение периода полураспада
оцените значения величин постоянной распадаλ и среднего времени жизни ядра τ = 1/λ радионуклида
.

11. Сравните полученные результаты со справочными значениями.

Таблица 1. Рабочая таблица результатов.

Таблица 2. Значения коэффициента Стьюдента для различной доверительной вероятности p и числа степеней свободы (L -1):

L-1

P

Контрольные вопросы

1. Что такое изотопы химического элемента?

2. Запишите закон радиоактивного распада в дифференциальной и интегральной формах.

3. Что такое активность радионуклидного источника ионизирующего излучения? Какие имеются единицы измерения активности?

4. По какому закону активность источника изменяется с течением времени?

5. Что такое постоянная распада, период полураспада и среднее время жизни ядра радионуклида? Единицы их измерения. Запишите выражения, связывающие эти величины.

6. Определите периоды полураспада радионуклидов Rn-222 и Ra-226, если их постоянные распада, соответственно, равны 2,110 -6 с -1 и 1,3510 -11 с -1 .

7. При измерении образца, содержащего короткоживущий радионуклид, в течение 1 мин было зарегистрировано 250 импульсов, а спустя 1 час после начала первого измерения 90 импульсов за 1 мин. Определите постоянную распада и период полураспада радионуклида, если фоном измерительной установки можно пренебречь.

8. Объясните схему распада радионуклида К-40. Что такое относительный выход ионизирующих частиц?

9. Объясните физический смысл понятий: эффективность регистрации ядерных частиц детектором; геометрический фактор измерительной установки; коэффициент самопоглощения излучения.

10. Изложите суть относительного метода определения активности источника ионизирующего излучения.

11. Каково значение периода полураспада радионуклида, если за 5 часов активность его препарата уменьшилась в 16 раз?

12. Можно ли определить активность образца, содержащего К-40, измеряя интенсивность только гамма-излучения?

13. Какой вид имеет энергетический спектр β + - излучения и β - - излучения?

14. Можно ли определить активность образца, измеряя интенсивность его нейтринного (антинейтринного) излучения?

15. Какой характер имеет энергетический спектр гамма-излучения К-40?

16. От каких факторов зависит среднеквадратическая погрешность определения периода полураспада К-40 в данной работе?

Пример решения задачи

Условие. Определите значение постоянной радиоактивного распада λ и период полураспада Т 1/2 радионуклида 239 Pu, если в препарате 239 Pu 3 O 8 массой m = 3,16 микрограмма за время t = 100 с происходит Q = 6,78·10 5 распадов ядер.

Решение.

    Активность препарата A = Q/t = 6,78·10 5 /100 = 6,78·10 3 , расп/с (Бк).

    Масса 239 Pu в препарате

где A моль – соответствующие молярные массы.

    Число ядер Pu-239 в препарате

где N A – число Авогадро.

    Постоянная распада λ = A / N 239 = 6,78·10 3 /6,75·10 15 = 1,005·10 -12 , с -1 .

    Период полураспада

T 1/2 = ln2/λ = 6,91·10 11 c.

Рекомедуемая литература.

1. Абрамов, Александр Иванович. Основы экспериментальных методов ядерной физики: учебное пособие для студ. вузов / А.И. Абрамов, Ю.А, Казанский, Е.С. Матусевич.- 3-е изд., перераб. и доп. - М. : Энергоатомиздат, 1985 .- 487 с.

2. Алиев, Рамиз Автандилович. Радиоактивность: [учебное пособие для студ. вузов, обуч. по направлению ВПО 020100 (магистр химии) и специальности ВПО 020201 - "Фундамент. и приклад. химия"] / Р.А. Алиев, С.Н. Калмыков.- Санкт-Петербург; Москва; Краснодар: Лань, 2013 .- 301 с.

3. Мухин, Константин Никтфорович. Экспериментальная ядерная физика: учебник: [в 3 т.] / К.Н. Мухин.- Санкт-Петербург; Москва; Краснодар: Лань, 2009.

4. Коробков, Виктор Иванович. Методы приготовления препаратов и обработка результатов измерений радиоактивности / В.И. Коробков, В.Б. Лукьянов.- М. : Атомиздат, 1973 .- 216 с.

Диапазон значений периода полураспада радиоактивных веществ чрезвычайно широк, он простирается от миллиардов лет до малых долей секунды. Поэтому методы измерений величины T 1/2 должны сильно отличаться друг от друга. Рассмотрим некоторые из них.

1) Пусть, например, требуется определить период полураспада долгоживущего вещества. В этом случае, получив химическим путем радиоактивный изотоп, свободный от посторонних примесей или с известным количеством примесей, можно взвесить образец и, используя число Авогадро, определить число атомов радиоактивного вещества, которые в нём находятся. Поместив образец перед детектором радиоактивных излучений и вычислив телесный угол , под которым виден детектор из образца, определим долю излучения, регистрируемого детектором. При измерениях интенсивности излучения следует учитывать возможное поглощение его на пути между образцом и детектором, а также поглощение его в образце и эффективность регистрации. Таким образом, в эксперименте определяется число ядер n , распадающихся в единицу времени:

где N - число радиоактивных ядер, находящихся в радиоактивном образце. Тогда и .

2) Если определяется величина Т 1/2 для веществ, распадающихся с периодом полураспада в несколько минут, часов или дней, то удобно использовать метод наблюдения изменения интенсивности ядерного излучения со временем. В данном случае регистрация излучения производится либо с помощью газонаполненного счетчика, либо сцинтилляционного детектора. Радиоактивный источник помещается вблизи счетчика так, чтобы их взаимное расположение в течение всего эксперимента не изменялось. Кроме того, необходимо создать такие условия, при которых исключались бы возможные просчеты как самого счетчика, так и регистрирующей системы. Измерения производятся следующим образом. Отсчитывается число импульсов N 0 за некоторый промежуток времени t (например, за одну минуту). Через промежуток времени t 1 производится снова отсчет импульсов N 1 .Через промежуток времени t 2 получается новое число N 2 и т. д.

Фактически в этом эксперименте производятся относительные измерения активности изотопа в различные моменты времени. В результате получается набор чисел , , ..., , который и используется для определения периода полураспада Т 1/2 .

Полученные экспериментальные значения после вычета фона наносятся на график (рис. 3.3), где по оси абсцисс откладывается время, прошедшее от начала измерений, а по оси ординат логарифм числа . По нанесенным экспериментальным точкам с помощью метода наименьших квадратов проводится линия. Если в измеряемом препарате присутствует только один радиоактивный изотоп, то линия будет прямой. Если же в нем имеется два или несколько радиоактивных изотопов, распадающихся с различными периодами полураспада, то линия будет кривой.


С помощью одиночного счетчика (или камеры) трудно производить измерения сравнительно больших периодов полураспада (несколько месяцев или несколько лет). Действительно, пусть в начале измерений скорость счета составляла N 1 , а в конце - N 2 . Тогда ошибка будет обратно пропорциональна величине ln(N 1 /N 2 ). Значит, если за время измерений активность источника изменится незначительно, то N 1 и N 2 будут близки друг к другу и ln(N 1 /N 2 ) будет много меньше единицы и погрешность в определении Т 1/2 будет велика.

Таким образом, ясно, что измерения периода полураспада с помощью одиночного счетчика необходимо производить в такое время, чтобы ln(N 1 /N 2) был больше единицы. Практически, наблюдения необходимо производить в течение не более 5Т 1/2.

3) Измерения Т 1/2 в несколько месяцев или лет удобно производить с помощью дифференциальной ионизационной камеры. Она представляет собой две ионизационные камеры, включенные так, чтобы токи в них шли в противоположном направлении и компенсировали друг друга (рис. 3.4).

Процесс измерения периода полураспада производится следующим образом. В одну из камер (например, К 1 )помещается радиоактивный изотоп с заведомо большим T 1/2 , (например, 226 Ra, у которого Т 1/2 =1600 лет); за относительно короткое время измерений (несколько часов или дней) величина ионизационного тока в этой камере практически не изменится. В другую камеру (К 2 ) помещается изучаемый радиоактивный нуклид. С помощью приблизительного подбора величин активностей обоих препаратов, а также подходящего размещения их в камерах можно добиться того, что в начальный момент времени ионизационные токи в камерах будут одинаковы: I 1 =I 2 =I 0 , т. е. разностный ток =0. Если измеряемый период полураспада относительно невелик и равен, например, нескольким месяцам или годам, то через несколько часов ток в камере К 2 уменьшится, появится разностный ток: . Изменение ионизационных токов будет происходить в соответствии с периодами полураспада:

Следовательно,

Для измеряемых периодов полураспада величина и после разложения в ряд получим

В эксперименте измеряются , I 0 и t. По ним уже определяется и

Измеряемые величины могут быть определены с удовлетворительной точностью, а следовательно, с достаточной точностью может быть вычислено и значение Т 1/2.

4) При измерениях малых периодов полураспада (доли секунды) обычно используется метод задержанных совпадений. Сущность его можно показать на примере определения времени жизни возбужденного состояния ядра.

Пусть ядро А в результате -распада превращается в ядро Б, которое находится в возбужденном состоянии и свою энергию возбуждения испускает в виде двух -квантов, идущих последовательно друг за другом. Сначала испускается квант затем квант (см. рис. 3.5).

Как правило, возбужденное ядро испускает избыточную энергию не мгновенно, а через некоторое (пусть даже и очень малое) время, т. е. возбужденные состояния ядра имеют некоторое конечное время жизни . В данном случае можно определить время жизни первого возбужденного состояния ядра. Для этого препарат, содержащий радиоактивные ядра А , помещается между двумя счетчиками (лучше для этого использовать сцинтилляционные счетчики) (рис. 3.6). Можно создать такие условия, что левый канал схемы будет регистрировать только кванты , а правый . Квант всегда испускается раньше, чем квант . Время испускания второго кванта относительно первого не будет всегда одним и тем же для различных ядер Б . Разрядка возбужденных состояний ядер носит статистический характер и подчиняется закону радиоактивного распада.

Таким образом, для определения времени жизни уровня , надо проследить за его разрядкой во времени. Для этого в левый канал схемы совпадений 1включим переменную линию задержки 2, которая будет в каждом конкретном случае задерживать импульс, возникающий в левом детекторе от кванта на некоторое время t 3 . Импульс, возникающий в правом детекторе от кванта , непосредственно поступает в блок совпадений. Число совпадающих импульсов регистрируется счетной схемой 3. Измеряя число совпадений в зависимости от времени задержки, мы получим кривую разрядки уровня I, аналогичную кривой на рис. 3.3. Из нее и определяется время жизни уровня I. Методом задержанных совпадений можно определить время жизни в диапазоне 10 -11 -10 -6 с.

Для характеристики скорости распада радиоактивных элементов используют особую величину - период полураспада. Для каждого радиоактивного изотопа существует определенный интервал времени, в течение которого активность снижается в два раза. Этот интервал времени и носит название период полураспада.


Период полураспада (Т½) - это время, в течении которого распадается половина исходного количества радиоактивных ядер. Период полураспада - величина строго индивидуальная для каждого радиоизотопа. У одного и того же элемента могут быть с разными периодами полураспада. Имеются с периодом полураспада от долей секунды до миллиардов лет (от 3х10-7 с до 5х1015 лет). Так для полония-214 Т½ равен 1,6·10-4 с, для кадмия-113 - 9,3х1015 лет. Радиоактивные элементы подразделяются на короткоживущие (период полураспада исчисляется часами и днями) - родон-220 - 54,5 с, висмут-214 - 19,7 мин, иттрий-90 - 64 часа, стронций - 89 - 50,5 дня и долгоживущие (период полураспада исчисляется годами) - радий - 226 - 1600 лет, плутоний-239 - 24390 лет, рений-187 - 5х1010 лет, калий-40 - 1,32х109 лет.


Из элементов, выброшенных при аварии на ЧАЭС, отметим периоды полураспада следующих элементов: йод-131 - 8,05 дня, цезий-137 - 30 лет, стронций-90 - 29,12 лет, плутоний -241 - 14,4 года, америций-241 -
432 года.


Для каждого радиоактивного изотопа средняя скорость распада его ядер постоянная, неизменная и характерная только для данного изотопа. Количество радиоактивных атомов какого-либо элемента, распадающихся за промежуток времени пропорционально общему количеству имеющихся радиоактивных атомов.



где dN - количество распадающихся ядер,


dt - промежуток времени,


N - количество имеющихся ядер,


L - коэффициент пропорциональности (постоянная радиоактивного распада).


Постоянная радиоактивного распада показывает вероятность распада атомов радиоактивного вещества в единицу времени, характеризует долю атомов данного радионуклида, распадающихся в единицу времени, т.е. постоянная радиоактивного распада характеризует относительную скорость распада ядер данного радионуклида. Знак минус (-l) показывает, что количество радиоактивных ядер убывает со временем. Постоянную распада выражают в обратных единицах времени: с-1, мин-1 и т.д. Величину, обратную постоянной распада (r=1/l), называют средней продолжительностью жизни ядра.


Таким образом, закон радиоактивного распада устанавливает, что за единицу времени распадается всегда одна и та же доля нераспавшихся ядер данного радионуклида. Математический закон радиоактивного распада можно показать в виде формулы: λt


Nt = No х е-λt,


где Nt - количество радиоактивных ядер, остающихся по окончании времени t;


No - исходное количество радиоактивных ядер в момент времени t;


е - основание натуральных логорифмов (=2,72);


L - постоянная радиоактивного распада;


t - промежуток времени (равен t-to).


Т.е. число нераспавшихся ядер убывает со временем по экспоненте. По этой формуле можно рассчитать число нераспавшихся атомов в данный момент времени. Для характеристики скорости распада радиоактивных элементов на практике вместо постоянной распада пользуются периодом полураспада.


Особенность радиоактивного распада в том, что ядра одного и того же элемента распадаются не все сразу, а постепенно, в различное время. Момент распада каждого ядра не может быть предсказан заранее. Поэтому распад любого радиоактивного элемента подчиняется статистическим закономерностям, носит вероятностный характер и может быть математически определен для большого количества радиоактивных атомов. Иными словами, распад ядер происходит неравномерно - то большими, то меньшими порциями. Из этого следует практический вывод, что при одном и том же времени измерения числа импульсов от радиоактивного препарата мы можем получить разные значения. Следовательно, для получения верных данных необходимо измерения одной и той же пробы проводить не один, а несколько раз, и чем больше, тем точнее будут результаты.

Период полураспада (T 1/2) - время, в течение которого квантовомеханическая система (ядро атома, элементарная частица, энергетический уровень и т.п.) распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество частиц, оставшихся уменьшается в среднем вдвое.

Иногда период полураспада называют также полупериодом распада. Но не следует считать, что за два периода полураспада распадутся все частицы, имеющиеся в начальный момент времени. Поскольку в течение каждого периода полураспада число частиц уменьшается вдвое, то после двух периодов останется четверть от начального числа частиц, за 3 T 1/2 - одна восьмая и т.д. Вообще, доля частиц, остающихся (или, точнее, вероятность "выживания" p для одной частицы), зависит от времени t следующим образом:

Если для заданного момента времени обозначить число частиц, способных к распаду через N, а промежуток времени через t 2 - t 1, где t 1 и t 2 - достаточно близкие моменты времени (t 1 2), то количество частиц, распадутся течение этого времени составит n = λN (t 2 - t 1), где коэффициент пропорциональности λ носит название константы распада. Если считать интервал времени наблюдения (t 2 - t 1) равным единице, то λ = n / N и, следовательно, константа распада показывает долю от имеющегося числа частиц, распадающихся в единицу времени.

Период полураспада, средний время жизни τ и константа распада λ связаны следующими соотношениями:

Поскольку ln2 = 0,693 ..., период полураспада примерно на 30% короче, чем средний (вероятный) время жизни.

Чаще всего термин используют как характеристику нестабильных изотопов химических элементов . Величины периодов полураспада для различных изотопов разные, для одних изотопов быстро распадаются, период полураспада может быть равным миллионным долям секунды, а для других изотопов, таких как 238 или 232 , он равен 4,5 млрд. лет и 14 млрд. лет соответственно.


Пример

Можно подсчитать число ядер урана-238, которые распадаются в течение секунды, в заданном количестве урана, например, в одном килограмме. Количество любого элемента в граммах, численно равная атомной массе (моль), содержит, как известно, 6 ? 23 октября атомов. Поэтому согласно приведенной выше формуле n = λN (t 2 - t 1) найдем количество ядер, распадающихся ежесекундно (в одном году 365 ? 24 ? 60 ? 60 секунд):

Вычисления показывают, что в одном килограмме урана в течение одной секунды распадается около двенадцати миллионов ядер. Несмотря на такое огромное число, все же скорость превращения ничтожно мала. Действительно, в секунду распадается доля:

Таким образом, из имеющегося количества урана в одну секунду распадается доля, равная

Обращаясь вновь к основному закону радиоактивного распада λN (t 2 - t 1), т.е. к тому факту, что из имеющегося числа атомных ядер в единицу времени распадается одна и та же их доля и, несмотря на полную независимость атомных ядер в веществе, можно сказать, что этот закон является статистическим в том смысле, что он не указывает, какие именно атомные ядра распадутся в данный отрезок времени, а говорит лишь об их число. Некоторые из атомных ядер распадутся в ближайший момент, тогда как другие ядра испытывать преобразования значительно позже. Несомненно, этот закон действует только в случае, когда имеющееся число ядер достаточно велико. Но когда имеющееся число радиоактивных атомных ядер сравнительно небольшое закон радиоактивного распада может и не выполняться во всей строгости.


Парциальное период полураспада

Некоторые системы могут распадаться по нескольким каналам, например ядро ​​урана может распадаться как путем деления, так и путем излучения альфа-частиц. Для каждого из каналов можно определить парциальное период полураспада . Он имеет смысл периода полураспада, который был бы в данной системе, если "выключить" все каналы распада, кроме i-го.

Пусть вероятность распада за i-м каналом (коэффициент разветвления) равна p i. Тогда парциальное период полураспада по i-му каналу равен

.

Поскольку, по определению, , То для любого канала распада.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины