Городские очистные сооружения. Очистка сточных вод городов

Городские очистные сооружения. Очистка сточных вод городов

26.09.2019

→ Решения комплексов очистных сооружений


Примеры очистных сооружений крупнейших городов


Прежде чем рассматривать конкретные примеры очистных сооружений, необходимо определить, что означают понятия крупнейший, крупный, средний и малый город.

С определённой долей условности можно классифицировать города по числу жителей или с учётом профессиональной специализации по количеству сточных вод, поступающих на очистные сооружения. Так для крупнейших городов с населением более 1 млн. чел количество сточных вод превышает 0,4 млн. м3/сут, для крупных городов с населением от 100 тыс. до 1 млн. чел количество сточных вод составляет 25-400 тыс. м3/сут. В средних городах проживает 50-100 тыс. человек, а количество сточных вод 10-25 тыс. м3/сут. В малых городах и посёлках городского типа число жителей от 3-50 тыс. человек (с возможной градацией 3-10 тыс. чел; 10-20 тыс. чел; 25-50 тыс. чел.). При этом расчётное количество сточных вод изменяется в достаточно широком диапазоне: от 0,5 до 10-15 тыс. м3/сут.

Доля малых городов в Российской Федерации составляет 90% от общего числа городов. Необходимо также учитывать, что система водоот-ведения в городах может быть децентрализованной и иметь несколько очистных сооружений.

Рассмотрим наиболее показательные примеры крупных очистных сооружений в городах Российской Федерации: Москва, Санкт-Петербург и Нижний Новгород.

Курьяновская станция аэрации (КСА) г. Москва. Курьяновская станция аэрация – старейшая и крупнейшая станция аэрации в России, на её примере можно достаточно наглядно изучить историю развития техники и технологии очистки сточных вод в нашей стране.

Площадь, занимаемая станцией, составляет 380 га; проектная производительность – 3,125 млн. м3 в сутки; из них почти 2/3 составляют хозяйственно-бытовые и 1/3 промышленные сточные воды. В составе станции имеются четыре самостоятельных блока сооружений.

Развитие Курьяновской станции аэрации началось в 1950 г. после введения в эксплуатацию комплекса сооружений пропускной способностью 250 тыс. м3 в сутки. На этом блоке была заложена промышленно-экспериментальная технологическая и конструктивная база, которая явилась основанием для разработок практически всех станций аэрации в стране, а также была использована при расширении самой Курьяновской станции.

На рис. 19.3 и 19.4 приведены технологические схемы очистки сточных вод и обработки осадков Курьяновской станции аэрации.

Технология очистки сточных вод включает следующие основные сооружения: решетки, песколовки, первичные отстойники, аэротенки, вторичные отстойники, сооружения для обеззараживания сточных вод. Часть биологически очищенных сточных вод проходит доочистку на зернистых фильтрах.

Рис. 19.3. Технологическая схема очистки сточных вод Курьяновской станции аэрации:
1 – решётка; 2 – песколовка; 3 – первичный отстойник; 4 – аэротенк; 5 – вторичный отстойник; 6 – плоское щелевое сито; 7 – скорый фильтр; 8 – регенератор; 9 – главное машинное здание ЦБО; 10 – илоуплотнитель; 11 – гравитационный ленточный сгуститель; 12 – узел приготовления раствора флокулянта; 13 – сооружения промводопровода; 14 – цех обработки песка; 75 – поступающая сточная вода; 16 – промывная вода со скорых фильтров; 17 – песковая пульпа; 18 – вода из цеха песка; 19 – плавающие вещества; 20 – воздух; 21 – осадок первичных отстойников на сооружения по обработке осадка; 22 -циркуляционный активный ил; 23 – фильтрат; 24 – обеззараженная техническая вода; 25 – техническая вода; 26 – воздух; 27 – сгущенный активный ил на сооружения обработки осадка; 28 – обеззараженная техническая вода в город; 29 – очищенная вода в р. Москва; 30 – доочищенная сточная вода в р. Москва

На КСА установлены механизированные решетки с прозорами 6 мм с непрерывно двигающимися скребковыми механизмами.

На КСА эксплуатируются песколовки трех типов – вертикальные, горизонтальные и аэрируемые. После обезвоживания и обработки в специальном цехе, песок можно использовать при строительстве дорог и для других целей.

В качестве первичных отстойников на КСА используют отстойники радиального типа диаметрами 33, 40 и 54 м. Проектная продолжительность отстаивания составляет 2 ч. Первичные отстойники в центральной части имеют встроенные преаэраторы.

Биологическая очистка сточных вод осуществляется в четырехко-ридорных аэротенках-вытеснителях, процент регенерации составляет от 25 до 50%.

Воздух для аэрации в аэротенки подаётся через фильтросные пластины. В настоящее время для выбора оптимальной системы аэрации в ряде секций аэротенков проходят испытания трубчатые полиэтиленовые аэраторы фирмы «Экополимер», тарельчатые аэраторы фирм «Грин-фрог» и «Патфил».

Рис. 19.4. Технологическая схема обработки осадков Курьяновской станции аэрации:
1 – загрузочная камера метантенка; 2 – метантенк; 3 – выгрузочная камера метантенков; 4 – газгольдер; 5 – теплообменник; 6 – камера смешения; 7 – промывной резервуар; 8 – уплотнитель сброженного осадка; 9 – фильтр-пресс; 10 – узел приготовления раствора флокулянта; 11 – иловая площадка; 12 – осадок первичных отстойников; 13 – избыточный активный ил; 14 – газ на свечу; 15 – газ брожения в котельную станции аэрации; 16 – техническая вода; 17 – песок на песковые площадки; 18 – воздух; 19 – фильтрат; 20 – сливная вода; 21 – иловая вода в городскую канализацию

Одна из секций аэротенков реконструирована для работы по одно-иловой системе нитри-денитрификации, в которой также предусмотрена система удаления фосфатов.

Вторичные отстойники, так же как первичные, приняты радиального типа, диаметрами 33, 40 и 54 м.

Доочистке подвергается около 30% биологически очищенных сточных вод, которые сначала проходят очистку на плоских щелевых ситах и далее на зернистых фильтрах.

Для сбраживания осадка на КСА используются заглубленные ме-тантенки диаметром 24 м из монолитного железобетона с земляной обсыпкой, наземные диаметром 18 м с термоизоляцией стен. Все метантенки работают по проточной схеме, в термофильном режиме. Выделяющийся газ отводится в местную котельную. После метантенков сброженная смесь сырого осадка и избыточного активного ила подвергается уплотнению. Из общего количества смеси 40-45% направляется на иловые площадки, а 55 -60% направляется в цех механического обезвоживания. Общая площадь иловых площадок составляет 380 га.

Механическое обезвоживание осадков осуществляется на восьми фильтр-прессах.

Люберецкая станция аэрации (ЛбСА) г. Москва. Более 40% сточных вод г. Москвы и крупных городов Московской области очищаются на Люберецкой станции аэрации (ЛбСА), расположенной в п. Некрасовка Московской области (рис. 19.5).

ЛбСА была построена в довоенные годы. Технологический про-цесс очистки заключался в механической очистке сточных вод и после-дующей очистке на полях орошения. В 1959 г. по решению правительства на месте Люберецких полей орошения было начато строительство станции аэрации.

Рис. 19.5. План очистных сооружений Люберецкой и Новолюберецкой станций аэрации:
1 – подача сточных вод на ЛбСА; 2 – подача сточных вод на НЛбСА; 3 – ЛбСА; 4 – НЛбСА; 5 – сооружения по обработке осадка; б – выпуски очищенных сточных вод

Технологическая схема очистки сточных вод на ЛбСА практически не отличается от принятой схемы на КСА и включает следующие сооружения: решетки; песколовки; первичные отстойники с преаэраторами; аэротенки-вытеснители; вторичные отстойники; сооружения по обработке осадка и обеззараживания сточных вод (рис. 19.6).

В отличие от сооружений КСА, большинство которых было построено из монолитного железобетона, на ЛбСА широко использовались сборные железобетонные конструкции.

После строительства и пуска в 1984 г. первого блока, а впоследствии и второго блока очистных сооружений Новолюберецкой станции аэрации (НЛбСА) проектная пропускная способность ЛбСА составляет 3,125 млн. м /сут. Технологическая схема очистки сточных вод и обработки осадка на ЛбСА практически ничем не отличается от классической схемы, принятой на КСА.

Однако в последние годы на Люберецкой станции проводят большие работы по модернизации и реконструкции очистных сооружений сточных вод.

На станции установлены новые зарубежные и отечественные мелкопрозорные механизированные решётки (4-6 мм), а также проведена модернизация существующих механизированных решёток по разработанной в МГП «Мосводоканал» технологии с уменьшением величины прозо-ров до 4-5 мм.

Рис. 19.6. Технологическая схема очистки сточных вод Люберецкой станции аэрации:
1 – сточная вода; 2 – решётки; 3 – песколовки; 4 – преаэраторы; 5 – первичные отстойники; 6 – воздух; 7 – аэротенки; 8 – вторичные отстойники; 9 – йлоуплотнители; 10 – фильтр-прессы; 11 – площадки хранения обезвоженного осадка; 12 – реагентное хозяйство; 13 – уплотнители сброженного осадка перед фильтр-прессами; 14 – узел подготовки осадка; 15 – метантенки; 16 – бункер песка; 17 – классификатор песка; 18 – гидроциклон; 19 – газгольдер; 20 – котельная; 21 – гидропрессы для обезвоживания отбросов; 22 – аварийный выпуск

Наибольший интерес вызывает технологическая схема II блока НЛбСа, которая представляет собой современную одноиловую схему нит-ри-денитрификации с двумя ступенями нитрификации. Наряду с глубоким окислением углеродсодержащих органических веществ происходит более глубокий процесс окисления азота аммонийных солей с образованием нитратов и снижением фосфатов. Внедрение данной технологии позволяет в ближайшее время получить на Люберецкой станции аэрации очищенную сточную воду, которая бы отвечала современным нормативным требованиям для сброса в водоёмы рыбохозяйственного назначения (рис. 19.7). Впервые, около 1 млн. м3/в сут сточных вод на ЛбСА подвергается глубокой биологической очистке с удалением биогенных элементов из очищенных сточных вод.

Практически весь сырой осадок из первичных отстойников, перед сбраживанием в метантенках, проходит предварительную обработку на решётках. Основными технологическими процессами обработки осадков сточных вод на ЛбСА являются: гравитационное уплотнение избыточного активного ила и сырого осадка; термофильное сбраживание; промывка и уплотнение сброженного осадка; полимерное кондиционирование; механическое обезвреживание; депонирование; естественная сушка (аварийные иловые площадки).

Рис. 19.7. Технологическая схема очистки сточных вод на ЛбСА по одноиловой схеме нитри-денитрификации:
1 – исходная сточная вода; 2 – первичный отстойник; 3 – осветлённая сточная вода; 4 – аэротенк-денитрификатор; 5 – воздух; 6 – вторичный отстойник; 7 – очищенная сточная вода; 8 – рециркуляционный активный ил; 9 – сырой осадок

Для обезвоживания осадка установлены новые рамные фильтр-прессы, позволяющие получать кек с влажностью 70-75%.

Центральная станция аэрации, г. Санкт-Петербург. Очистные сооружения Центральной станции аэрации г. Санкт-Петербург находятся в устье р. Невы на искусственно намытом острове Белом. Станция введена в эксплуатацию в 1978 г.; проектная пропускная способность – 1,5 млн. м в сутки была достигнута в 1985 г. Площадь застройки составляет 57 га.

Центральная станция аэрации г. Санкт-Петербург принимает и обрабатывает около 60% бытовых и 40% промышленных сточных вод города. Санкт-Петербург – самый большой город в бассейне Балтийского моря, это возлагает особую ответственность за обеспечение его экологической безопасности.

Технологическая схема очистки сточных вод и обработки осадков Центральной станции аэрации г. Санкт-Петербург представлена на рис. 19.8.

Максимальный расход сточной воды, перекачиваемой насосной станцией в сухую погоду, составляет 20 м3/с и в дождливую – 30 м /с. Сточные воды, поступающие из входного коллектора городской водоотводящей сети, перекачиваются в приемную камеру механической очистки.

В состав сооружений механической очистки входят: приемная камера, здание решеток, первичные отстойники с жиросборниками. Первоначально сточная вода проходит очистку на 14 механизированных решетках грабельного и ступенчатого типа. После решеток сточная вода поступает на песколовки (12 шт.) и далее через распределительный канал отводится к трем группам первичных отстойников. Первичные отстойники радиального типа, в количестве 12 штук. Диаметр каждого отстойника 54 м при глубине 5 м.

Рис. 19.8. Технологическая схема очистки сточных вод и обработки осадков Центральной станции г. Санкт-Петербург:
1 – сточные воды из города; 2 – главная насосная станция; 3 – подводящий канал; 4 – механизированные решётки; 5 – песколовки; 6 – отбросы; 7 – песок; 8 – песковые; площадки; 9 – первичные отстойники; 10 – резервуар сырого осадка; 11 – аэротенки; 12 – воздух; 13 – нагнетатели; 14 – возвратный активный ил; 15 – иловая насосная, станция; 16 – вторичные отстойники; 17 – камера выпусков; 18 – река Нева; 19 – активный ил; 20 – илоуплотнители; 21 – приёмный резервуар;
22 – центрипрессы; 23 – кек на сжигание; 24 – сжигание осадка; 25 – печь; 26 – зола; 27 – флокулянт; 28 – сливная вода илоуплотнителей; 29 – вода; 30 – раствор
флокулянта; 31 – фугат

В состав сооружений биологической очистки входят аэротенки, радиальные отстойники и главное машинное здание, включающее в себя блок воздуходувных агрегатов и иловые насосы. Аэротенки состоят из двух групп, каждая из которых представляет собой шесть параллельных трехко-ридорных аэротенков длиной 192 м с общим верхним и нижним каналами, ширина и глубина коридоров соответственно 8 и 5,5 м. Подача воздуха в аэротенки осуществляется через мелкопузырчатые аэраторы. Регенерация активного ила составляет 33%, при этом возвратный активный ил из вторичных отстойников подается в один из коридоров аэротенка, служащий регенератором.

Из аэротенков очищенная вода направляется в 12 вторичных отстойников для выделения активного ила из биологически очищенной сточной воды. Вторичные отстойники, также как и первичные, приняты радиального типа диаметром 54 м при глубине зоны отстаивания 5 м. Из вторичных отстойников активный ил поступает под гидростатическим давлением в иловую насосную станцию. После вторичных отстойников через камеру выпусков очищенная вода сбрасывается в р. Неву.

В цехе механического обезвоживания осадков обрабатывается сырой осадок из первичных отстойников и уплотненный активный ил из вторичных отстойников. Основным оборудованием этого цеха является десять центрипрессов, оборудованных системами предварительного подогрева смеси сырого осадка и активного ила. Для повышения степени влагоотдачи смеси в центрипрессы подаётся раствор флокулянта. После обработки в центрипрессах влажность кека достигает 76,5%.

В цехе сжигания осадка установлены 4 печи с псевдоожиженным слоем (французской фирмы OTV ).

Отличительной особенностью этих очистных сооружений является, что в цикле обработки осадка отсутствует предварительное сбраживание в метантенках. Обезвоживание смеси осадков и избыточного активного ила происходит непосредственно в центрипрессах. Сочетание центрипрессов и сжигание уплотненных осадков резко снижает объем конечного продукта -золы. По сравнению с традиционной механической обработкой осадков, образующейся золы в 10 раз меньше, чем обезвоженного кека. Использование метода сжигания смеси осадка и избыточного активного ила в печах с псевдоожиженным слоем гарантирует безопасность в санитарном отношении.

Станция аэрации г. Нижний Новгород. Нижегородская станция аэрации – комплекс сооружений, предназначенный для полной биологической очистки бытовых и производственных сточных вод г. Нижний Новгород и г. Бор. В технологическую схему включены следующие сооружения: блок механической очистки – решетки, песколовки, первичные отстойники; блок биологической очистки – аэротенки и вторичные отстойники; доочистка; сооружения по обработке осадков (рис. 19.9).

Рис. 19.9. Технологическая схема обработки сточных вод на Нижегородской станции аэрации:
1 – приёмная камера сточных вод; 2 – решётки; 3 – песколовки; 4 – песковые площадки; 5 – первичные отстойники; 6 – аэротенки; 7 – вторичные отстойники; 8 – насосная станция избыточного активного ила; 9 – эрлифтная камера; 10 – биологические пруды; 11 – контактные резервуары; 12 – выпуск в р. Волга; 13 – илоуплотнители; 14 – насосная станция сырого осадка (из первичных отстойников); 75 – метантенки; 16 – иловая насосная станция; 17 -флокулянт; 18 – фильтр-пресс; 19 – иловые площадки

Проектная пропускная способность сооружений составляет 1,2 млн. м3/сут. В здании установлены 4 механизированные решетки производительностью – 400 тыс. м3/сут каждая. Отбросы с решеток перемещаются с помощью транспортеров, сбрасываются в бункеры, хлорируются и выводятся на полигон для компостирования.

Песколовки включают два блока: первый состоит из 7 горизонтальных аэрируемых песколовок производительностью 600 м7ч каждая, второй – из 2 горизонтальных щелевых песколовок производительностью 600 м3/ч каждая.

На станции построены 8 первичных радиальных отстойников, диаметром 54 м. Для удаления плавающих загрязнений отстойники оборудованы жиросборниками.
В качестве сооружений биологической очистки используются 4-коридорные аэротенки-смесители. Рассредоточенный впуск сточных вод в аэротенки позволяет изменять объем регенераторов от 25 до 50%, обеспечивать хорошее смешение поступающей воды с активным илом и равномерное потребление кислорода по всей длине коридоров. Длина каждого аэротенка составляет 120 м, общая ширина – 36 м, глубина – 5,2 м.

Конструкция вторичных отстойников и их размеры аналогичны первичным, всего на станции построено 10 вторичных отстойников.

После вторичных отстойников вода направляется на доочистку в два биологических пруда с естественной аэрацией. Биологические пруды построены на естественном основании и обвалованы земляными дамбами; площадь зеркала воды каждого пруда – 20 га. Время пребывания в биологических прудах составляет 18-20 ч.

После биопрудов очищенная сточная вода обеззараживается в контактных резервуарах с использованием хлора.

Очищенная и обеззараженная вода через лотки Паршаля поступает в водоотводящие каналы и после насыщения кислородом в водосбросном перепадном устройстве поступает в р. Волга.

Смесь сырого осадка из первичных отстойников и уплотненного избыточного активного ила направляется в метантенки. В метантенках поддерживается термофильный режим.

Сброженный осадок частично подаётся на иловые площадки, а частично на ленточный фильтр-пресс.

Для обработки сточных вод применяют механическую, физико-химическую и биологическую очистку. Очищенную сточную жид­кость перед спуском в водоем подвергают дезинфекции для уничто­жения болезнетворных бактерий.

Технология очистки сточных вод в настоящее время развивается в направлении интенсификации процессов биологической очистки, проведения последовательно процессов биологической и физико-химической очистки в целях возможности повторного использова­ния глубоко очищенных сточных вод на промышленных предприя­тиях.

В результате механической очистки из сточной жид­кости удаляются нерастворенные и частично коллоидные загрязне­ния. Крупные загрязнения (тряпки, бумага, остатки овощей и фрук­тов) задерживаются решетками. Загрязнения минерального про­исхождения (песок, шлак и др.) улавливаются песколовками. Основ­ная масса нерастворенных загрязнений органического происхожде­ния задерживается в отстойниках. При этом частицы с удельным весом больше удельного веса сточной жидкости выпадают на дно, а частицы с меньшим удельным весом (жиры, масла, нефть) всплывают зависимо­сти от их характера применяют жироловки., нефтеловушки, маслоот­делители и пр. С помощью этих сооружений осуществляют очистку производственных сточных вед.

Для обработки производственных сточных вод применяют также флотацию вводя в сточную жидкость воздух. и пенообразующие ве­щества (поверхностно-активные вещества, глинозем, животный клей и пр.). Всплывающие пузырьки воздуха и частицы пенообразующих веществ сорбируют загрязнения и поднимают их на поверхность жидкости в виде пены, которая непрерывно удаляется.

К сооружениям механической очистки относятся также септики, двухъярусные отстойники и осветлители-перегниватели, в которых осветляется жидкость и обрабатывается выпавший осадок.

Для удаления из производственных сточных вод взвешенных ве­ществ большого удельного веса используют гидроциклоны.

Физико-химическую очистку применяют глав­ным образом для обработки некоторых видов производственных сточных вод. К физико-химическим методам очистки относятся сорбция, экстракция, эвапорация, электролиз, ионный обмен и др.

Сущность б и о л огической очистки состоит в окис­лении органических веществ микроорганизмами. Различают био­логическую очистку сточных вод в искусственно созданных усло­виях (биологические фильтры и аэротенки) и в условиях, близких к естественным {поля фильтрации и биологические пруды}.

Для дезинфекции очищенных сточных вод чаше всего применяют хлорирование.

В настоящее время требования к степени очистки сточных вод повышаются, в связи с чем их подвергают доочистке. Для этого применяют песчаные фильтры, контактные осветлители, мик­рофильтры, биологические пруды.

Для снижения концентрации органических загрязнений биологи­чески очищенных сточных вод можно применять сорбцию на акти­вированных углях или химическое окисление озоном.

Иногда возникает задача удаления из сточных вод биогенных эле­ментов- азота и фосфора, которые, попадая в водоем, способст­вуют усиленному развитию водной растительности. Азот удаляют физико-химическими и биологическими методами, фосфор обычно удаляют химическим осаждением с применением солей железа и алюминия или извести.

Накапливаемые в очистных сооружениях большие массы осадка обрабатывают не только в септиках, двухъярусных отстойниках и осветлителях -перегнивателях, но и в метантенках. Септики, двухъ­ярусные отстойники и осветлители-перегниватели предназначены для осветления сточной жидкости и сбраживания осадка. Метантенки служат только для сбраживания осадка.

Рис. 111.24. Схемы станции с механической очисткой сточных вод а - вариант без метантенка; 6 - вариант с метантенком

Обработка осадка заключается в разложении (сбраживании) его органической части с помощью анаэробных, т. е. живущих без кислорода, микроорганизмов. В последние годы наряду с анаэроб­ным сбраживанием осадка применяют аэробную стабилизацию его, сущность которой состоит в продувке осадка в течение длитель­ного времени воздухом в сооружениях, устраиваемых по типу аэротенков.

На большинстве очистных станций осадок образуется в первич­ных и вторичных отстойниках (см. далее рис. III). Этот осадок обладает высокой влажностью, плохо отдает воду и опасен в сани­тарном отношении. Для его обработки используют, как правило, метантенки. Сброженный в метантенках осадок хорошо отдает воду, менее опасен в санитарном отношении и содержит в значительных количествах азот, фосфор и калий, т. е. является хорошим удобре­нием. Для обезвоживания его используют иловые площадки, ваку­ум-фильтры, центрифуги, фильтр-прессы. Нередко осадок, обезво­женный на вакуум-фильтрах, подвергают термической сушке.

Некоторые виды осадков производственных сточных вод, содержа­щие вредные загрязнения, после предварительной подсушки сжига­ют. При сжигании полностью окисляются органические вещества осадков и образуется стерильный остаток - зола.

Сточные воды обычно очищают на сооружениях механической и биологической очистки, располагаемых последовательно. Соору­жения механической очистки (решетки, песколовки и отстойники) предназначены для задержания основной массы нерастворенных за­грязнений. В сооружениях биологической очистки окисляются ос­тавшиеся нерастворенные и растворенные органические загрязне­ния. Метод очистки и состав очистных сооружений выбирают в за­висимости от требуемой степени очистки, состава загрязнений сточ­ной жидкости, производительности очистной станции, грунтовых условий и мощности водоема с соответствующим технико-экономи­ческим обоснованием.

На рис. II 1.24 приведены схемы станции с механической очист­кой сточных вод. Сточная жидкость проходит через решетку, пред­назначенную для задержания крупных загрязнений, песколовку, служащую для задержания загрязнений минерального происхожде­ния (песок, шлак и пр.), отстойник, в котором осаждается основная масса органических загрязнений, смеситель, где происходит сме­шивание сточной жидкости с хлором, контактный резервуар, кото­рый служит для взаимодействия хлора со сточной жидкостью g целью ее дезинфекции, и затем сбрасывается в водоем. Осадок из отстойника направляется на обезвоживающие установки или в метантенк (см. рис. III.24, б) для сбраживания. Сброженный осадок подсушивается на иловых площадках.

Для станций большой производительности целесообразна схема, приведенная на рис. II 1.25. Механическая очистка сточных вод про­изводится на решетках, в песколовках, преаэраторах и отстойниках. Преаэраторы служат для предварительной аэрации сточной жидко­сти с целью улучшения условий последующего осветления ее в от­стойниках. Биологическая очистка осуществляется в аэротенках. Во вторичных отстойниках происходит выпадение активного ила. Часть активного ила из вторичных отстойников перекачивается в аэротенки (циркулирующий активный ил), а часть его (избыточный активный ил) передается в илоуплотнители. После илоуплотнителей ил поступает в метантенки, где сбраживается вместе с осадком из первичных отстойников. Сточные воды после дезинфекции сбрасывают в водоем.

Городские очистные сооружения

1. Назначение.
Водоочистное оборудование предназначено для очистки городских сточных вод (смесь бытовых и производственных стоков объектов коммунального хозяйства) до нормативов сброса в водоем рыбо-хозяйственного назначения.

2.Область применения.
Производительность очистных сооружений составляет от 2500 до 10000 куб.м/сут, что эквивалентно расходу сточных вод от города (поселка) с населением от 12 до 45 тысяч человек.

Расчетный состав и концентрация загрязняющих веществ в исходной воде:

  • ХПК – до 300 – 350 мг/л
  • БПКполн – до 250 -300 мг/л
  • Взвешенные вещества – 200 -250 мг/л
  • Азот общий – до 25мг/л
  • Азот аммонийный – до 15мг/л
  • Фосфаты – до 6 мг/л
  • Нефтепродукты – до 5мг/л
  • ПАВ – до 10мг/л

Нормативное качество очистки:

  • БПКполн – до 3,0 мг/л
  • Взвешенные вещества – до 3,0 мг/л
  • Азот аммонийный – до 0,39 мг/л
  • Азот нитритов – до 0,02 мг/л
  • Азот нитратов – до 9,1 мг/л
  • Фосфаты – до 0,2 мг/л
  • Нефтепродукты – до 0,05 мг/л
  • ПАВ – до 0,1мг/л

3. Состав очистных сооружений.

В состав технологической схемы очистки сточных вод входит четыре основных блока:

  • блок механической очистки – для удаления крупных отбросов и песка;
  • блок полной биологической очистки – для удаления основной части органических загрязнений и соединений азота;
  • блок глубокой доочистки и обеззараживания;
  • блок обработки осадков.

Механическая очистка сточных вод.

Для удаления грубодисперсных примесей используются механические процеживатели, обеспечивающие эффективное удаление загрязнений с размером более 2 мм. Удаление песка осуществляется на песколовках.
Удаление отбросов и песка полностью механизировано.

Биологическая очистка.

На стадии биологической очистки применяются аэротенки нитри-денитрификаторы, что обеспечивает параллельное удаление органических веществ и соединений азота.
Нитри-денитрификация необходима для обеспечения нормативов на сброс по соединениям азота, в частности, его окисленным формам (нитритам и нитратам).
Принцип работы такой схемы основан на рециркуляции части иловой смеси между аэробной и аноксичными зонами. При этом окисление органического субстрата, окисление и восстановление соединений азота происходит не последовательно (как в традиционных схемах), а циклически, небольшими порциями. В результате процессы нитри-денитрификации протекают практически одновременно, что позволяет удалять соединения азота без использования дополнительного источника органического субстрата.
Эта схема реализуется в аэротенках с организацией аноксичных и аэробных зон и с рециркуляцией иловой смеси между ними. Рециркуляция иловой смеси осуществляется из аэробной зоны в зону денитрификации эрлифтами.
В аноксичной зоне аэротенка нитри-денитрификатора предусмотрено механическое (погружными мешалками) перемешивание иловой смеси.

На рис.1 представлена принципиальная схема аэротенка нитри-денитрификатора, когда возврат иловой смеси из аэробной зоны в аноксичную осуществляется под гидростатическим давлением по самотечному каналу, подача иловой смеси из конца аноксичной зоны в начало аэробной производится эрлифтами или погружными насосами.
Исходная сточная вода и возвратный ил из вторичных отстойников подаются в зону дефосфатации (бескислородную), где происходит гидролиз высокомолекулярных органических загрязнений и аммонификация азотсодержащих органических соединений в отсутствии какого-либо кислорода.

Принципиальная схема аэротенка нитри-денитрификатора с зоной дефосфатации
I – зона дефосфатации; II – зона денитрификации; III – зона нитрификации, IV- зона отстаивания
1- сточная вода;

2- возвратный ил;

4- эрлифт;

6- иловая смесь;

7- канал циркуляционной иловой смеси,

8- очищенная вода.

Далее иловая смесь поступает в аноксичную зону аэротенка, где также происходит изъятие и деструкция органических загрязнений, аммонификация азотсодержащих органических загрязнений факультативными микроорганизмами активного ила в присутствии связанного кислорода (кислорода нитритов и нитратов, образующихся на последующей стадии очистки) с одновременной денитрификацией. Далее иловая смесь направляется в аэробную зону аэротенка, где происходит окончательное окисление органических веществ и нитрификация азота аммонийного с образованием нитритов и нитратов.

Процессы, протекающие в этой зоне, обуславливают необходимость интенсивной аэрации очищаемых сточных вод.
Часть иловой смеси из аэробной зоны поступает во вторичные отстойники, а другая – вновь возвращается в аноксичную зону аэротенка для денитрификации окисленных форм азота.
Эта схема в отличие от традиционных позволяет наряду с эффективным удалением соединений азота повысить эффективность изъятия соединений фосфора. За счет оптимального чередования аэробных и анаэробных условий при рециркуляции способность активного ила аккумулировать соединения фосфора возрастает в 5 -6 раз. Соответственно возрастает и эффективность его удаления с избыточным илом.
Однако в случае повышенного содержания фосфатов в исходной воде, для удаления фосфатов до величины ниже 0,5-1,0 мг/л, потребуется проведение обработки очищенной воды железо- или алюминий содержащим (например, оксихлорид алюминием) реагентом. Ввод реагента наиболее целесообразно производить перед сооружениями доочистки.
Осветленная во вторичных отстойниках сточная вода направляется на доочистку, затем на обеззараживание и далее в водоем.
Принципиальный вид комбинированного сооружения – аэротенка нитри-денитрификатора представлен на рис. 2.

Сооружения доочистки.

БИОСОРБЕР – установка для глубокой доочистки сточных вод. Более подробно описание и общие виды установок.
БИОСОРБЕР – см. в предыдущем разделе.
Применение биосорбера позволяет получить воду, очищенную до норм ПДК рыбохозяйственного водоема.
Высокое качество очистки воды на биосорберах позволяет использовать для обеззараживания стоков УФ установки.

Сооружения по обработке осадков.

Учитывая значительный объем осадков образующихся в процессе очистки стоков (до 1200 куб.м/сут), для уменьшения их объема необходимо использовать сооружения обеспечивающие их стабилизацию, уплотнение и механическое обезвоживание.
Для аэробной стабилизации осадков используются сооружения аналогичные аэротенкам со встроенным илоуплотнителем. Подобное технологическое решение позволяет исключить последующее загнивание образующихся осадков, а так же приблизительно в два раза уменьшить их объем.
Дальнейшее уменьшение объема происходит на ступени механического обезвоживания, предусматривающее предварительное сгущение осадков, их реагентную обработку, а затем обезвоживание на фильтр-прессах. Объем обезвоженного осадка для станции производительностью 7000 куб.м/сут составит приблизительно 5-10 куб.м/сут.
Стабилизированный и обезвоженный осадок направляется на хранение на иловых площадках. Площадь иловых площадок в этом случае составит приблизительно 2000 кв.м (производительность очистных сооружений 7000 куб.м/сут).

4.Конструктивное оформление очистных сооружений.

Конструктивно очистные сооружения механической и полной биологической очистки выполнены в виде комбинированных сооружений на базе нефтяных резервуаров диаметром 22 и высотой 11 м, закрытых сверху крышей и оборудованных системами вентиляции, внутреннего освещения и отопления (расход теплоносителя минимален, поскольку основной объем сооружения занимает исходная вода, имеющая температуру в пределах не ниже 12-16 град.).
Производительность одного подобного сооружения – 2500 куб.м/сут.
Аналогично выполнен аэробный стабилизатор со встроенным илоуплотнителем. Диаметр аэробного стабилизатора – 16 м для станций производительностью до 7,5 тыс куб.м/сут и 22 м – для станции производительностью 10 тыс. куб.м/сут.
Для размещения ступени доочистки – на базе установок БИОСОРБЕР БСД 0,6 , установок обеззараживания очищенных стоков, воздуходувной станции, лаборатории, бытовых и подсобных помещений требуется здание шириной 18 м, высотой 12 м и длинной для станции производительностью 2500 кубм/сут – 12 м, 5000 куб.м/сут – 18, 7500 – 24 и 10000 куб,м/сут – 30 м.

Спецификация зданий и сооружений:

  1. комбинированные сооружения – аэротенки нитри-денитрификаторы диаметром 22м – 4 шт.;
  2. производственно- бытовое здание 18х30 м с блоком доочистки, воздуходувной станцией, лабораторией и бытовыми помещениями;
  3. комбинированное сооружение аэробный стабилизатор со встроенным илоуплотнителем диаметром 22м – 1 шт.;
  4. галерея шириной 12 м;
  5. иловые площадки 5 тыс. кв.м.

The Village продолжается рассказывать, как устроено то, чем горожане пользуются каждый день. В этом выпуске - система канализации. После того как мы нажимаем кнопку смыва на унитазе, закрываем кран и отправляемся по своим делам, водопроводная вода превращается в сточную и начинает свой путь. Чтобы снова попасть в Москву-реку, ей нужно пройти километры канализационных сетей и несколько этапов очистки. Как это происходит, The Village узнал, побывав на городских очистных сооружениях.

По трубам

В самом начале вода попадает во внутренние трубы дома диаметром всего 50–100 миллиметров. Дальше идет по сети чуть шире - дворовые, а оттуда - в уличные. На границе каждой дворовой сети и в месте перехода ее в уличную установлен смотровой колодец, через который можно следить за работой сети и прочищать при необходимости.

Протяженность городских канализационных труб в Москве больше 8 тысяч километров. Вся территория, по которой проходят трубы, делится на части–бассейны. Участок сети, который собирает сточную воду из бассейна, называют коллектором. Его диаметр достигает трех метров, это вдвое больше, чем труба в аквапарке.

В основном в силу глубины заложения и естественного рельефа территории вода течет по трубам сама, но в некоторых местах требуются насосные станции, всего в Москве их 156.

Сточная вода поступает на один из четырех очистных сооружений. Процесс очистки непрерывен, а пики гидравлической нагрузки приходятся на 12 часов дня и 12 часов ночи. Курьяновские очистные сооружения, которые находятся около Марьина и считаются одними из самых крупных в Европе, принимают воду с южной, юго-восточной и юго-западной частей города. Стоки из северной и восточной частей города поступают на очистные в Люберцы.

Очистные

Курьяновские очистные сооружения рассчитаны на 3 миллиона кубометров сточных вод в сутки, но поступает сюда только полтора. 1,5 миллиона кубометров - это 600 олимпийских бассейнов.

Раньше это место называлось станцией аэрации, она была запущена в декабре 1950 года. Сейчас очистным 66 лет, и 36 из них здесь проработал Вадим Гелиевич Исаков. Он пришел сюда мастером одного из цехов и стал начальником технологического отдела. На вопрос, рассчитывал ли провести на таком месте всю жизнь, Вадим Гелиевич отвечает, что уже и не помнит, так давно это было.

Исаков рассказывает, что станция состоит из трех блоков по очистке. Кроме того, здесь есть целый комплекс сооружений по обработке осадков, которые образуются в процессе.

Механическая очистка

Мутная и зловонная сточная вода приходит на очистные теплой. Даже в самое холодное время года ее температура не опускается ниже плюс 18 градусов. Сточные воды встречает приемно-распределительная камера. Но что происходит там, мы не увидим: камеру полностью закрыли, чтобы не распространялся запах. Кстати, пахнет на огромной (почти 160 гектаров) территории очистных вполне сносно.

После этого начинается этап механической очистки. Здесь на специальных решетках задерживается мусор, который приплыл вместе с водой. Чаще всего это тряпье, бумага, средства личной гигиены (салфетки, памперсы), а еще пищевые отходы - например, картофельные очистки и куриные кости. «Чего только не встретишь. Бывало, что приплывали кости и шкуры с мясоперерабатывающих производств», - с содроганием говорят на очистных. Из приятного - только золотые украшения, хотя очевидцев такого улова мы не нашли. Лицезреть сорозадерживающую решетку - самая ужасная часть экскурсии. Помимо всякой гадости, в ней застряло много-много кружочков лимонов: «По содержимому можно время года угадывать», - отмечают сотрудники.

Со сточными водами приходит много песка, и, чтобы он не оседал на сооружениях и не забивал трубопроводы, его удаляют в песколовках. Песок в жидком виде поступает на специальный участок, где отмывается технической водой и становится обычным, то есть пригодным для благоустройства. Очистные используют песок для собственных нужд.

Завершается этап механической очистки в первичных отстойниках. Это большие резервуары, в которых из воды удаляется мелкая взвесь. Сюда вода приходит мутной, а уходит осветленной.

Биологическая очистка

Начинается биологическая очистка. Она происходит в сооружениях, которые называются аэротенками. В них искусственно поддерживается жизнедеятельность сообщества микроорганизмов, которые называют активным илом. Органические загрязнения в воде - самая желанная пища для микроорганизмов. В аэротенки подается воздух, который не дает илу осесть, чтобы тот контактировал со сточной водой как можно больше. Так продолжается восемь-десять часов. «В любом естественном водоеме происходят аналогичные процессы. Концентрация микроорганизмов там в сотни раз ниже, чем создаем мы. В естественных условиях это бы длилось недели и месяцы», - говорит Исаков.

Аэротенк представляет собой прямоугольный резервуар, разделенный на секции, в которых сточная вода вьется змейкой. «Если посмотреть в микроскоп, то там все ползает, шевелится, движется, плавает. Заставляем их работать на наше благо», - говорит наш проводник.

На выходе из аэротенков получается смесь очищенной воды и активного ила, которые теперь нужно отделить друг от друга. Эта задача решается во вторичных отстойниках. Там ил оседает на дне, собирается илососами, после чего 90 % возвращается в аэротенки для непрерывного процесса очистки, а 10 % считается избыточным и утилизируется.

Возвращение в реку

Биологически очищенная вода проходит третичную очистку. Для проверки она процеживается через очень мелкое сито, а после сбрасывается в выводной канал станции, на котором стоит блок ультрафиолетового обеззараживания. Обеззараживание ультрафиолетом - четвертый и последний этап очистки. На станции вода делится на 17 каналов, каждый из которых просвечивается лампой: вода в этом месте приобретает кислотный оттенок. Это современный и самый большой в мире подобный блок. Хотя по старому проекту его не было, раньше воду хотели обеззараживать жидким хлором. «Хорошо, что до этого не дошло. Мы бы все живое в Москве-реке погубили. Водоем был бы стерильный, но мертвый», - говорит Вадим Гелиевич.

Параллельно с очисткой воды на станции разбираются с осадком. Осадок из первичных отстойников и избыточный активный ил проходят совместную обработку. Они поступают в метантенки, где при температуре плюс 50–55 градусов почти неделю идет процесс сбраживания. В результате осадок теряет способность загнивать и не выделяет неприятного запаха. Затем этот осадок перекачивается на обезвоживающие комплексы за пределами МКАД. «30–40 лет назад осадок сушился на иловых площадках в естественных условиях. Процесс этот длился от трех до пяти лет, сейчас же обезвоживание мгновенное. Сам по себе осадок - это ценное минеральное удобрение, в советские времена он пользовался популярностью, совхозы с удовольствием его брали. Но сейчас он стал никому не нужен, а за утилизацию станция платит до 30 % от общих затрат на очистку», - говорит Вадим Гелиевич.

Треть осадка распадается, превращаясь в воду и биогаз, что позволяет экономить на утилизации. Часть биогаза сжигается в котельной, а часть направляется на комбинированную теплоэлектростанцию. Теплоэлектростанция - не рядовой элемент очистных сооружений, а скорее полезное дополнение, которое дает очистным относительную энергонезависимость.

Рыбы в канализации

Раньше на территории Курьяновских очистных находился инженерный центр со своей производственной базой. Сотрудники ставили необычные эксперименты, например разводили стерлядь и карпа. Часть рыб жила в водопроводной воде, а часть в канализационной, которая прошла очистку. Сейчас же рыба водится только в сбросном канале, там даже висят таблички «Лов рыбы запрещен».

После всех процессов очистки вода по сбросному каналу - небольшой речке длиной 650 метров - идет в Москву-реку. Здесь и везде, где процесс идет под открытым небом, на воде плавает много чаек. «Процессам они не мешают, но портят эстетический внешний вид», - уверен Исаков.

Качество очищенных сточных вод, выпускаемых в реку, намного лучше воды в реке по всем санитарным показателям. Но пить такую воду без кипячения не рекомендуется.

Объем очищенных сточных вод равен примерно трети всей воды в Москве-реке выше сброса. Если бы очистные вышли из строя, населенные пункты ниже по течению оказались бы на грани экологической катастрофы. Но такое практически невозможно.


НАЗНАЧЕНИЕ, ВИДЫ ОЧИСТНЫХ СООРУЖЕНИЙ И МЕТОДЫ ОЧИСТКИ

Человек в процессе своей жизнедеятельности, для различных своих нужд использует воду. При ее прямом использовании она загрязняется, изменяется ее состав и физические свойства. Для санитарного благополучия людей данные стоки отводятся с населенных пунктов. Для того, чтобы не загрязнять окружающую среду, они подвергаются обработке на специальных комплексах.



Рис.7 Очистные сооружения ОАО «Татспиртпром» Усадский спиртзавод Республика Татарстан 1500 м3/сут

Этапы очистки:

  • механическая;
  • биологическая;
  • глубокая;
  • УФ-обеззараживание стоков и дальнейший выпуск в водоем, обезвоживание и утилизация осадков.

Производство пива, соков, квасов, различных напитков






Этапы очистки:

  • механическая;
  • физико - химическая;
  • биологическая и дальнейший выпуск в горколлектор;
  • сбор, обезвоживание и утилизация осадков.

Так же по этой теме читайте статьи

ОЧИСТНЫЕ СООРУЖЕНИЯ ЛИВНЕВЫХ СТОКОВ

ЛОС - это комбинированная емкость, или несколько отдельных емкостей для очистки ливневых и талых стоков. Качественный состав ливневых стоков - это в основном нефтепродукты и взвешенные вещества от промышленных производств и селитебных территорий. Они, согласно законодательству, должны проходить очистку до НДС.

Устройство ливневых очистных сооружений с каждым годом модернизируется, в связи с увеличением количества автомобилей, торговых центров, промплощадок.

Стандартный набор оборудования очистных сооружений ливневых стоков - это цепочка из распределительного колодца, пескоотделителя, бензомаслоотделителя, сорбционного фильтра и колодца отбора проб.

Многие компании на данный период применяют комбинированную систему очистки сточных вод. Однокорпусные ЛОС - это емкость, разделенная внутри перегородками на секции пескоуловителя, нефтемаслоуловителя и сорбционного фильтра. При этом цепочка выглядит следующим образом: распредколодец, комбинированный песконефтемаслоуловитель и колодец отбора проб. Разница в занимаемой площади оборудования, в количестве емкостей и, соответственно, в цене. Отдельно стоящие модули выглядят громоздко и получаются дороже однокорпусных.

Принцип работы состоит в следующем:



После выпадения осадков или таяния снега, вода, содержащая взвеси, нефтепродукты и другие загрязнения с промплощадок, или селитебной (жилой) территории поступает к решеткам дождевых колодцев и далее по коллекторам собирается в усредняющем резервуаре, если представлены ЛОС накопительного типа, или сразу черед распределительный колодец подаются на очистные сооружения ливневой канализации.

Распределительный колодец служит для того, чтобы самый первый грязный сток направлять на очистку, а уже по прошествии времени, когда на поверхности уже не будет загрязнений, условно - чистый сток по байпасной линии будет отводиться на сброс в канализацию или в водоем. Ливневые стоки проходят первый этап очистки в песколоуловителе, в котором происходит гравитационное осаждение нерастворимых веществ и частичное всплытие свободноплавающих нефтепродуктов. Затем через перегородку перетекают в нефтемаслоуловитель, в котором установлены тонкослойные модули, благодаря которым по наклонной поверхности взвешенные вещества оседают на дно, а большая часть нефтяных частиц поднимается наверх. Последним этапом очистки служит сорбционный фильтр с активированным углем. За счет сорбционного поглощения улавливается оставшаяся часть нефтяных частиц и мелких механических примесей.

Данная цепочка позволяет обеспечить высокую степень очистки и сбрасывать очищенную воду в водоем.

Например, по нефтепродуктам до 0,05 мг/л, а по взвешенным веществам до 3 мг/л. Эти показатели полностью соответствуют действующим нормативам, регламентирующим сброс очищенных вод в рыбохозяйственные водоемы.

КАЛАЛИЗАЦИОННЫЕ ОЧИСТНЫЕ СООРУЖЕНИЯ КОС ДЛЯ ПОСЕЛКА

В настоящее время вблизи мегаполисов строится большое количество автономных поселков, которые позволяют жить в комфортных условиях «на природе», не отрываясь от привычной городской жизни. Такие населенные пункты, как правило, имеют отдельную систему водоснабжения и канализации, так как нет возможности подключиться к центральной канализации.Компактность и мобильность таких станций очистки позволяет избежать огромных затрат на монтаж и строительство.

Однако, несмотря на малые размеры, в модулях располагается все необходимое оборудование для полной биологической очистки и обеззараживания стоков с достижением показателей качества очищенных сточных вод, соответствующих требованиям СанПиН 2.1.5.980-00. Несомненным плюсом является полная заводская готовность блок-контейнеров, простота их установки и дальнейшей эксплуатации.

ОЧИСТНЫЕ СООРУЖЕНИЯ ДЛЯ ГОРОДА

Крупный город - крупные канализационные очистные сооружения КОС. Логично, ведь расход сточных вод, поступающих на обработку, напрямую зависит от количества жителей: норма водоотведения равна норме водопотребления. А для большого объема жидкости нужны соответствующие емкости и резервуары. Этот факт формирует интерес к устройству и функционированию таких КОС.

При проектировании канализационных сетей населенного пункта учитывается нагрузка на трубопроводы, которые подбирают из расчета на пропуск требуемого количества стока. Чтобы не закапывать трубы очень большого диаметра, по которым загрязненная жидкость переправлялась бы на необъятные площади очистных сооружений, в больших городах строятся несколько ОС.

Таким образом, мегаполис делится на несколько «городов» (районов), а уже для каждого из них проектируется станция очистки.

Наглядным примером являются очистные сооружения в столице России, среди которых есть Люберецкие производительностью 3 млн. м 3 /сут - крупнейшие в Европе. Основной блок - старые модернизированные ОС, обеспечивающие половину мощности станции, два других блока - 1 млн. м 3 /сут и 500тыс. м 3 /сут.

Особенностями устройства таких станций очистки сточных вод являются увеличенные размеры сооружений по сравнению с ОС других городов: отстойники диаметром 54 метра, а каналы сопоставимы с небольшими реками.

С точки зрения технологии все стандартно: механическая очистка, отстаивание, биологическая очистка, вторичное отстаивание, обеззараживание. Вы можете прочитать на нашем сайте.

Основная особенность лишь в том, какой вид имеют сооружения для данных этапов обработки. Например, Москва, как известно, строилась не сразу, но большим источником для очистных сооружений она была всегда. Строились железобетонные сооружения, которые сегодня претерпели несколько реконструкций и модернизаций. Из-за снижения количества разбавляемой чистой воды часть ранее построенных сооружений законсервирована или используется в других целях. В этом также заключается особенность устройства ОС: старые каналы песколовок становятся промежуточным резервуаром, коридор аэротенка преобразуется и немного по-другому работает.

Главное, что существенно отличает ОС крупных городов от их меньших братьев, - это закрытые конструкции.

Иными словами, на всех построенных в 60-70-е годы сооружениях монтируется крыша. Это делается для того, чтобы устранить запах, который может распространяться до новостроек, которые, в свою очередь, возникли по причине географического расширения мегаполиса. И если раньше станция очистки сточных вод была значительно удалена от города, то сейчас располагается вблизи новых жилых комплексов.

По той же причине, на подобных ОС устанавливаются распрыскиватели, которые выпускают специальные вещества, нейтрализующие запахи стоков.

Любые очистные сооружения - это сложная взаимосвязь процессов. Конечно, со своей задачей они справятся на 100%, но осложнять их работу не нужно. Отходы - в мусорку, сантехника - по назначению.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины