Обмен углеводов биохимия кратко. Биохимия, обмен углеводов: понятие и значение. Образование конечных безазотистых продуктов

Обмен углеводов биохимия кратко. Биохимия, обмен углеводов: понятие и значение. Образование конечных безазотистых продуктов

15.06.2019

Обмен углеводов


Углеводы, их классификация.
Углеводы – это органические соединения, содержащие альдегидную или кето- группы, и являющиеся производными многоатомных спиртов.
Термин «углеводы» предложен в 1844г. К. Шмидтом, т.к. в то время полагали, что их общая формула представляет собой: Сх(Н2О) n – т.е. углерод + вода. Дальнейшие исследования показали, что это не так. Например: формула дезоксирибозы С5Н1oО4. Поэтому позднее было предложено этот класс веществ называть глицидами. Углеводы широко распространены в природе. В растениях их соединения ~ 80%, в тканях животных всего ~ 2%. Для животных организмов их значение велико.

Функция углеводов.
- энергетическая: при окислении У выделяется энергия, используемая в биохимических реакциях (при распаде 1г У выделяется ~ 4,1% ккал).
- пластическая: продукты обмена У являются источниками для синтеза Ж, Б, НК, АК.
- опорная: целлюлоза оболочек растительных клеток образует опорные ткани растений.
- защитная: У учувствует в построении клеточных мембран.

Классификация углеводов

Моносахариды – это производные многоатомных спиртов, у которых одна гидрокси-группа (ОН) замещена на карбонильную С=О- (альдегидную или кето) группу. Если карбонильная группа находится в коне цепи, то моносахарид представляет собой альдегид и называется альдозой, при любом другом положении моносахарид является кетоном и наз-ся кетозой.

Номенклатура: наименования моносахарам дают в зависимости от числа атомов С + окончание – оза. З атома С - триоза, 4 - тетроза, 5 - пентоза, 6 - гексоза, 7 - гептоза, и т.д.
Н2С - ОН Н2С – ОН Н С = О
С = О  НС – ОН  НС¬¬¬¬¬* - ОН
Н2С – ОН Н2С – ОН СН2 ОН
дегидроксиацетон трехатомный спирт глицеральдегид
(кетотриоза) (глицерин) (альдотриоза).

Моносахара обладают оптической активностью и пространственной изомерией.
N=2n, где N – число изомеров, n - количество хиральных атомов.
Т.о. у альдотриозы м.б. 2¬1=2 изомера.
- Если ОН-гр. у последнего хирального атома С находится слева, то это L – ряд, а если справа, то это моносахара Д-ряда. У нас изображен Д – глицеральдегид.

, D- глюкопираноза
- Если раствор этого соединения вращает плоскость поляризованного луча вправо, то обозначает «+», а если влево, то знаком «-». Направление угла вращение заранее непредсказуемо: например природная глк (+), а фрк (-).
- Формулы моносахаридов м.б. линейными и циклическими. Их называют соответственно формулами Фишера и Хеуорса.

В зависимости от того, ОН-гр. какого из углеродов атомов участвует в образовании полуацетеля, могут образоваться пяти – или шестичленные циклы, которые по аналогии с органическими соединениями называются фуранозными или пиранозными структурами.
- В циклических молекулах пентоз и гексоз появляется еще один хиральный атом и новая пара изомеров (α- и ß- формы). Если Он-гр. у С1¬ располагается над плоскостью, то это ß- форма, а если под плоскостью, то это α -форма.

Олигосахариды – это сложные молекулы, содержащие в своем составе от 2-х до 10 мономеров звеньев.
Различают дисахариды, трисахариды и т.д.
Дисахариды – это сложные молекулы, которые при гидролизе распадаются на 2 молекулы моносахаридов.
Мальтоза – состоит из 2-х молекул α-глюкозы, соединенных 14 гликозидной связью
(мальтоза)
α -Д-глюкопиранозил (14) α –Д-глюкопираноза
Изомальтоза –состоят из 2-х молекул α -Д-глюкозы, (16) гликозидной связью
α -Д-глюкопиранозил (16) α –Д-глюкопираноза
Целлобиоза – состоит из 2-х молекул ß-глюкозы, соединненых 14 глик. связью
ß-целлобиоза (14)
Сахароза – состоит из α-глюкозы и ß-фруктозы, соединенных 12 гликозидной связью
(сахароза)
α -Д-глюкопиранозил (12) ß –Д-глюкофуранозаранозид

Трисахариды – раффиноза (фруктоза+глюкоза+галактоза)

Полисахариды – это глициды, содержащие от 10 до несколько тысяч мономеров.
По строению высшие полиозы делят на следующие группы:
I. Гомополисахариды, состоящие из остатков одного какого-либо моносахарида:
а) из остатков глюкозы - крахмал, гликоген, декстран, целлюлоза и др.;
б) из остатков маннозы, галактозы, ксилозы, L-арабинозы - маннаны, галактаны, ксиланы, арабаны;
в) из остатков галактуроновой кислоты - пектиновые вещества;
г) из остатков глюкозамина - хитин насекомых и грибов
II. Гетерополисахариды, состоящие из остатков различных моносахаридов и их производных:
а) гемицеллюлозы(в-ва крови);
б) камеди, слизи;
в) мукополисахариды или протеиногликаны (свободные и связанные с белками, например, в гликопротеинах: гепарин, хондроитинсульфаты, групповые вещества крови).
По биологическим функциям высшие полиозы делят на следующие группы:
I. Структурные полисахариды, играющие опорную роль в организмах растений и животных: целлюлоза и пектиновые вещества растений, хитин насекомых и грибов.
П. Резервные полисахариды, являющиеся источником энергии для живых организмов: крахмал, гликоген, инулин.

Крахмал n; Мr 105 – 107 Д. Это резервный гомополисахарид, состоит из 2-х гомополисахаридов; амилозы – линейной формы, и амилопектина – разветвленной формы. Доля амилозы ~10-30%, сод. до 1 тысяч остатков глк. в амилопектине (его доля в крахмале ~ 90-70%) глюк. остатков в 20-30 раз больше. Остатки глк в амилозе и линейных участках амилопектина соединяется 14 гликозидной связью; в ( ) разветвления 16 гликозидной связью.

Амилопектин амилоза
Гликоген – главный энергетический резерв человека и животных. Особенно много его в печени (до 10%) и мышцах (до 4% от сухой массы). Состоит также из амилопектина, только молекула более компактная, т.к. имеет более разветвленную структуру. n – формула аналогична формуле крахмала. Mr 105 – 108Да
Крахмал и гликоген при кислотном гидролизе распадаются сначала на декстрины, затем на дисахариды – мальтозу и изомальтозу, затем на две глк.
Целлюлоза (клетчатка) – это структурный полисахарид растительного происхождения, состоящий из ß - D – глюкопиранозных остатков, соединенных 14 гликолизидной связью. Mr=1-2млн Да. В организме человека и животных не переваривается; т.к. отсутствует фермент ß–глюкозидаза. В присутствии в пище оптимального количества целлюлозы формируются каловые массы.

Обмен углеводов
Складывается из
1) расщепления полисахаридов в ЖКТ до моносахаров, которые всасываются из кишечника в кровь;
2) синтеза и распада гликогена в тканях;
3) анаэробного и аэробного расщепления глк;
4) взаимопревращения гексоз;
5) аэробного метаболизма ПВК;
6) глюконеогенеза - синтеза глк из неуглеводных компонентов – ПВК, лактата глицерина, АК и др. источников.
Основной метаболит в обмене углеводов – это глюкоза.
Её источники: 1) углеводы пищи
2) гликоген
3) ПВК, АК, глц и т.д.

Переваривание углеводов (крахмала).

1. Ротовая полость. Слюна содержит ф-т амилазу α, ß, γ (различаются по конечным продуктам их ферментативного действия).
α–амилаза – это эндоамилаза, которая действует на 14 внутренние связи полисах.
ß- и γ-амилазы – это экзоамилазы – расщепляют концевые 14 связи
ß–амилаза – дисахарид мальтозу;
γ амилаза – один за другим концевые остатки глк.
Амилаза слюны представлена только α–амилазой, поэтому результатом ее действия являются крупные обломки гликогена и крахмала – декстрины и в небольшом количестве мальтоза.
2. Желудок. Далее пища, более или менее смоченная слюной, поступает в желудок. В результате кислой среды желудка (рН 1,5 – 2,5) α–амилаза слюны инактивируется. В глубоких слоях пищевого комка действие амилазы продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. В самом желудке распада У нет, т.к. здесь отсутствует специфические энзимы.
3. Основной этап расщепления У происходит в 12 перстной кишке.
В просвет кишечника выделяется панкриатическая α-амилаза (рН – 7). Панкреатическая амилаза расщепляет только 14 гликозидные связи. Но, как известно, молекула гликогена разветвленная. В точках ветвления 16 гликозидной связи, на нее воздействует специфические ф-ты: (глюкоза) олиго–1,6–глюкозидаза и (крахмал) амило-1,6–глюкозидаза. В кишечнике под действием этих 3-х ф-тов У расщепляются до дисахаридов (мальтоза и др.). На связи в дисахаридах эти ферменты не воздействуют. Для этих целей в кишечнике существует свои ферменты: их название – корень дисахарида + аза: мальтаза, сахараза и т.д. В результате суммарного воздействия этих Е образуется смесь моносахаридов – глк, галактоза, фруктоза. Основную массу составляет глюкоза.

4.Всасывание глк происходит за счет активного транспорта с Na+. Глк + Na+ образует комплекс, который поступает внутрь клетки, здесь комплекс распадается, Na+ выводится наружу. Другие моносахара всасываются диффузно (т.е. по градиенту концентрации). Поступающая из просвета кишечника глк большей частью (> 50%) с кровью воротной вены поступает в печень, остальная глк через общий кровоток транспортируется в другие ткани. Концентрация глк в крови в норме поддерживается на постоянном уровне и составляет 3,33 – 5,55 мкмоль/л, что соответствует 80-100 мг в 100 мл. крови. Транспорт глк в клетки носит характер облегченной диффузии, но в многих клетках регулируется гормоном поджелудочной железы инсулином (исключение – мозг и печень – здесь содержание глк. прямо пропорционально конц. глк в крови). Действие инсулина приводит к перемещению белков переносчиков из цитозоля в плазматическую мембрану. Затем с помощью этих белков глк транспортируется в клетку по град. концентрации. Инсулин т.о. повышает проницаемость клеточной мембраны для глк.

Влияние инсулина на перемещение транспортёров глюкозы из цитоплазмы в плазматическую мембрану.
1 - связывание инсулина с рецептором; 2 - участок инсулинового рецептора, обращённый внутрь клетки, стимулирует перемещение транспортёров глюкозы. 3,4-транспортёры в составе содержащих их везикул перемещаются к плазматической мембране клетки, включаются в её состав и переносят глюкозу в клетку.
.

Включает в себя катаболизм (расщепление углеводов пищи и выделение энергии) и анаболизм (синтез углеводов с затратой энергии). Катаболизм УВ включает в себя 3 стадии:

1 стадия : углеводы пищи (суточная потребность 400-500г, самая большая, т.к. глюкоза является основным источником энергии) расщепляется до моносахаридов: глюкозы, галактозы и фруктозы (до мономеров). Расщепление внеклеточное, происходит в ЖКТ.

2 стадия : внутриклеточное расщепление глюкозы протекает в процессе гликолиза с
образованием ПВК.

3 стадия : ОДПВК, ЦТК и ЦПЭ – внутримитохондриально.

Глюкоза расщепляется в ПФП (пентозофосфатный путь) – прямое расщепление глюкозы

– энергия не выделяется, функция не энергетическая.

Функции углеводов.

  1. энергетическая
  2. рецепторная
  3. защитная
  4. пластическая

Переваривание и всасывание углеводов.

Лишь малая часть углеводов растительной пищи доступна для питания человека, из-за отсутствия соответствующих ферментов. Не перевариваются гемицеллюлозы, целлюлозы, ксиланы, пектины и др. тем не менее они имеют биохимическую функцию и физиологическое значение. Некоторые пентозаны гидролизуются и преобразуются ферментами микрофлоры толстого кишечника с образованием CO 2 ,; С 2 Н 5 ОН и органических кислот, что стимулирует перистальтику. Кроме этого, растительные пектины и целлюлозы обладают сорбционно активными свойствами и способны выводить из организма различные токсины.

Основными углеводами растительной и животной пищи являются крахмал и гликоген, соответственно. Крахмал представляет собой смесь двух фракций полисахаридов: неразветвленной амилозы и разветвленного амилопектина.

В прямых цепях крахмала глюкозные остатки соединены между собой а-1,4-гликозидглюкозными связями (фермент а-амилаза).

В точках ветвления связи 1,6 – для гидролиза, которых нужны специальные ферменты. Гликоген имеет большую молекулярную массу, чем крахмал и разветвлен в значительно большей степени. (В его гидролизе принимают участие те же ферменты). Гидролиз данных полисахаридов начинается в ротовой полости под действием амилазы слюны. Значимость этого процесса во многом не ясна, многие млекопитающие этим свойством не обладают.

Основное значение имеют процессы расщепления гликогена и крахмала под действием панкреатической а-амилазы.

а-амилаза имеет абсолютную потребность к ионам С1. Стабилизируется катионами Са, имеет оптимум рН~7,1.

Фермент представляет собой одноцепочный полипептид, к которому присоединен олигосахарид.

Продукты гидролиза гликогена и крахмала – это смесь олигосахаридов и конечный продукт – мальтоза.

Процесс гидролиза дисахаридов пищи происходит в дистальном отрезке двенадцатиперстной кишки и происходит он не в просвете, а в клетках слизистой оболочки. Основные ферменты:

– мальтаза

– изомальтаза

– сахараза

– лактаза.

Установлено, что изомальтаза способна гидролизовать а-1,6-гликозидфруктозидные связи, пример соединения – палатиноза; сахараза также способна гидролизовать а-1,6-

гликозидные связи. Клеточный эпителий содержит три различных фермента, имеющих (3-галактазидную активность. Ферменты: р-галаксидаза (рН~4,5), гетерогалактозидаза, истинная лактаза.

Всасывание углеводов в кишечнике.

Химическая природа моносахаридов, а также их различная структурная форма (открытая цепь, пиранозный или фуранозный цикл) имеет влияние на скорость всасывания. Галактоза > глюкоза > фруктоза > манноза > ксилоза > арабиноза.

Для последних моносахаридов всасывание носит характер облегченной диффузии; для галакто- и глюкопиранозы – это активный транспорт, при этом всасывание может идти против десятикратного градиента. Для этого процесса есть специфические переносчики. Важная роль принадлежит Na- и К- зависимым АТФ-азам.

Метаболизм глюкозы.

Концентрация глюкозы в крови человека поддерживается близкой к 5 ммоль/л. Тогда как в цитоплазме большинства клеток концентрация глюкозы очень низкая. Ее поступление в клетку осуществляется в направлении падения градиента концентрации. Это не пассивная диффузия, а облегченный процесс, природа которого мало изучена. Минимальные потребности в глюкозе имеют все ткани, но у некоторых из них, например, у клеток мозга и эритроцитов эти потребности весьма значительны.

Гликолиз (дихотомический процесс).

Это главный путь утилизации глюкоза, протекающий во всех клетках. Гликолиз – это последовательность 10 ферментативных реакций в результате которых из глюкозы образуется 2 молекулы пирувата с одновременным (субстратным) генерированием АТФ. У аэробных организмов гликолиз предшествует ОДГТВК, ЦТК и ЦПЭ. Такой гликолиз называют аэробным.

В анаэробных условиях, например, при мышечном сокращении пируват восстанавливается до лактата – это так называемый анаэробный гликолиз.

Биомедицинское значение ферментативных реакций гликолиза.

  1. главный путь метаболизма глюкозы, а также фруктозы и галактозы с целью
    быстрого и последующего генерирования энергии.
  2. гликолиз – это путь образования строительных блоков для биосинтеза высших
    жирных кислот, некоторых аминокислот и других соединений.
  3. способность к образованию АТФ в анаэробных условиях, например, в интенсивно
    работающих мышцах или при кислородном голодании (в сердечной мышце
    возможности осуществления гликолиза ограничены, поскольку аэробные условия
    просто необходимы для клеток миокарда – недостаток (^приводит к ишемии).

Известно заболевания, связанные с нарушением активности ферментов в гликолизе,

например, незначительное ингибирование пируваткиназы вызывает гемолитическую

В быстро растущих раковых клетках активность гликолиза высока, возникает избыток

пирувата и лактата - рН в цитоплазме повышается.

Последовательность реакций гликолиза одинакова у микробов, растений, животных и

человека.

Суммарная реакция и выход энергии при гликолизе.

Глюкоза + 2АДФ + 2 Pi + 2 НАД* à 2 пирувата + 2 АТФ + 2 НАДН + 2Н + + 2 Н 2 О. При субстратном фосфорилировании суммарный выход энергии гликолиза составляет 2 молекулы АТФ на 1 моль глюкозы, также в этих реакциях образуется 2 молекулы НАДН на 1 молекулу глюкозы, которые в митохондриальном матриксе в реакции

окислительного фосфорилирования потенциально могут дать 6 молекул АТФ. Реакции гликолиза протекают в цитоплазме, а окислительное фосфорилирование в митохондриях. Протоны водорода не способны проникать через мембрану митохондрий и нуждаются в специальном переносчике. Существует 2 типа челночного механизма переноса протонов водорода:

  1. малатно-аспартатный, при котором потери АТФ не происходит; (8АТФ).
  2. глицерофосфатный – теряется 2 молекулы АТФ (6АТФ).

Нарушения гликолиза в эритроцитах приводит к изменению транспорта О 2 . Гликолиз в

эритроцитах и транспорт O 2 между собой.

Эритроциты характеризуются высокой концентрацией 2,3 – бифосфоглицерата =4

ммоль*л, тогда как концентрация его в других клетках низкая.

Присутствие и повышенный уровень 2,3 – БФГ в эритроцитах способствует диссоциации

Ог, из оксиНЬ и переход его в ткани.

ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007г

ЛЕКЦИЯ № 7

Тема: Переваривание и всасывание углеводов. Обмен гликогена

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Углеводы – это многоатомные спирты содержащие оксогруппу.

По количеству мономеров все углеводы делят на: моно-, ди-, олиго- и полисахариды.

Моносахариды по положению оксогруппы делятся альдозы и кетозы.

По количеству атомов углерода моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д.

Функции углеводов

Моносахариды – углеводы, которые не гидролизуются до более простых углеводов.

Моносахариды:

· выполняют энергетическую функцию (образование АТФ).

· выполняют пластическую функцию (участвуют в образовании ди-, олиго-, полисахаридов, аминокислот, липидов, нуклеотидов).

· выполняют детоксикационную функцию (произ­водные глюкозы, глюкурониды, участвуют в обезвреживании токсичных метаболитов и ксенобиотиков).

· являются фрагментами гликолипидов (цереброзиды).

Дисахариды – углеводы, которые гидролизуются на 2 моносахарида. У человека образуется только 1 дисахарид - лактоза. Лактоза синтезируется при лактации в молочных железах и содержится в молоке. Она:

· является источником глюкозы и галактозы для новорожденных;

· участвует в формировании нормальной микрофлоры у новорожденных.

Олигосахариды – углеводы, которые гидролизуются на 3 - 10 моносахаридов.

Олигосахариды являются фрагментами гликопротеинов (ферменты, белки-транспортёры, белки-рецепторы, гормоны), гликолипидов (глобозиды, ганглиозиды). Они образуют на поверхности клетки гликокаликс.

Полисахариды – углеводы, которые гидролизуются на 10 и более моносахаридов. Гомополисахариды выполняют запасающую функцию (гликоген – форма хранения глюкозы). Гетерополисахариды (ГАГ) являются структурным компонентом межклеточного вещества (хондроитинсульфаты, гиалуроновая кислота), участвуют в пролиферации и дифференцировке клеток, препятствуют свертыванию крови (гепарин).

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль. В пище человека в основном содержатся по­лисахариды - крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе - до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтоза есть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды - обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1). Внутриклеточное (в лизосомах); 2). Внеклеточное (в ЖКТ): а). полостное (дистантное); б). пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)

В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α-амилаза (α-1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов - декстринов и небольшого количества мальтозы и изомальтозы. Необходим ион Cl - .

Переваривание углеводов в желудке (полостное)

Действие амилазы слюны прекращается в кислой среде (рН <4) содержимого желудка, однако, внутри пищевого комка ак­тивность амилазы может некоторое время сохраняться. Желудочный сок не содержит фермен­тов, расщепляющих углеводы, в нем возможен лишь незначительный кислотный гидролиз гликозидных связей.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)

В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5-8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α-амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3-8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе - дисахариде грибов.Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.Всасывание углеводов Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na + . Через белок-переносчик Na + двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na + создаётся Nа + /К + -АТФ-азой.
При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза > другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии через белки-переносчики.

Нарушение переваривания и всасывания углеводов

Недостаточное переваривание и всасывание переваренных продуктов называют мальабсорбцией . В основе мальабсорбции углеводов могут быть причины двух типов:

1). Наследственные и приобретенные дефекты ферментов, участвующих в переваривании . Известны наследственные дефекты лактазы, α-амилазы, сахаразно-изомальтазного комплекса. Без лечения эти па­тологии сопровождаются хроническим дисбактериозом и нарушениями физического разви­тия ребёнка.

Приобретённые нарушения переваривания могут наблю­даться при кишечных заболеваниях, например гастритах, колитах, энтеритах, после операций на ЖКТ.

Дефицит лактазы у взрослых людей может быть связан со снижением экспрессии гена лактазы, что проявляться непе­реносимостью молока - наблюдается рвота, диарея, спазмы и боли в животе, метеоризм. Частота этой па­тологии составляет в Европе 7-12%, в Китае - 80%, в Африке - до 97%.

2). Нарушение всасывания моносахаридов в кишечнике.

Нарушения всасывания могут быть следствием дефекта какого-либо компонента, участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы.

Синдром мальабсорбции сопровождается осмотической диареей, усилением перистальтики, спазмами, болями, а также метеоризмом. Диарею вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды в дистальных отделах кишечника, а также органические кислоты, образованные микроорганизмами при неполном расщеплении углеводов.

В зависимости от строения углеводами делятся на моносахари-ды, олигосахариды и полисахариды.

Моносахариды (простые углеводы)

Наиболее простые представители углеводов, не расщепляются при гидролизе. Для человека наиболее важны глюкоза, фруктоза и галактоза.

Олигосахариды.

Более сложные соединения, построенные из нескольких остатков моносахаридов. Они делятся на дисахариды, трисахариды и т д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза.

Полисахариды.

Высокомолекулярные соединения-полимеры, образованные из большого числа остатков моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицеллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяются термином сложные углеводы. При переваривании сложные углеводы расщепляются до простых углеводов, в основном глюкозы и фруктозы. Моно- и дисахариды обладают сладким вкусом, поэтому их называют также сахарами. Полисахариды сладким вкусом не обладают. Сладость сахаров различна. Если сладость сахарозы (обычного сахара) принять за 100%, то сладость других сахаров составит: фруктозы - 173%, глюкозы - 81%, мальтозы и галактозы - 32% и лактозы - 16%.

Глюкоза.

Всасывается в желудочно-кишечном тракте и поступает в кровь, а затем в клетки различных органов и тканей, где она вовлекается в энергетический обмен. При этом образуется значительное количество АТФ (аденозин трифосфата) - высокоэнергетического вещества, которое используется организмом для реализации различных физиологических функций, в том числе при сокращении мышц. Глюкоза - наиболее легко утилизируемый источник энергии для человека. Роль глюкозы особенно велика для нормального функционирования центральной нервной системы. Глюкоза играет исключительно важную роль в выработке инсулина - основного анаболического и антикатаболического гормона организма человека. Как и гормон роста (соматотропин), инсулин увеличивает скорость проникновения аминокислот в клетки мышц, что приводит к положительному азотистому балансу и росту мышц. Глюкоза служит непосредственным предшественником гликогена (в основном мышечного) - запасного углевода организма. В то же время она легко превращается в триглицериды, причем этот процесс особенно усиливается при избыточном поступлении глюкозы с пищей.

Фруктоза.

Как и глюкоза служит быстро утилизируемым источником энергии. Часть фруктозы в печени превращается в глюкозу, которая затем используется для восстановления запасов гликогена в печени. Метаболизм оставшейся части фруктозы отличается от такового глюкозы. Ферменты, участвующие в превращениях фруктозы, не требуют для проявления своей активности инсулина. Этим обстоятельством, а также значительно более медленным всасыванием фруктозы (по сравнению с глюкозой), объясняется лучшая переносимость фруктозы больными сахарным диабетом. Фруктоза усиливает биологическую активность лейцина (аминокислоты с разветвленной цепью), а также нескольких других аминокислот, необходимых для синтеза белка мышц. Кроме того, фруктоза увеличивает всасываемость глюкозы и других питательных веществ.

Пищевые добавки, содержащие фруктозу:

Сахароза (обычный сахар). Расщепляется до глюкозы и фруктозы. Как и глюкоза, сахароза легко превращается в триглицериды (жирные кислоты), что способствует образованию значительных жировых отложений. Сахароза в пищевых добавках НЕ ИСПОЛЬЗУЕТСЯ.

Мальтоза (солодовый сахар). При помощи специального фермента мальтоза расщепляется в желудочно-кишечном тракте до двух остатков глюкозы.

Лактоза (молочный сахар). Является основным углеводом молока и молочных продуктов. Расщепляется в желудочно-кишечном тракте под влиянием фермента лактазы. Недостаточность этого фермента, по-видимому, лежит в основе непереносимости молока.

Мальтодекстрин. Представляет собой промежуточный продукт расщепления крахмала. Состоит из смеси мальтозы и декстринов (полимеров глюкозы, со средней длиной цепи). Имеет сравнительно небольшую скорость расщепления, обеспечивая тем самым длительное и равномерное поступление глюкозы.

Пищевые добавки, содержащие мальтодекстрин:

Таблица 5. Влияние различных углеводов на синтез структурных компонентов организма.

В пищевых добавках наиболее эффективным является применение так называемыхкомплексных углеводов, то есть сочетание полимеров глюкозы (в основном мальтодекстрина), глюкозы инебольшого количества фруктозы. Такое соотношение обеспечивает поступление легко- и медленно усвояемых углеводы в кишечник и равномерное всасывание углеводов. Потребление значительных количеств простых углеводов (особенно глюкозы) вызывает гипергликемию (скачкообразное повышение уровня сахара в крови), которая ведет к раздражению инсулярного аппарата поджелудочной железы и резкому выбросу гормона в кровь. А систематическое поступление в организм избыточного количества легкоусвояемых углеводов может вызвать истощение инсулярного аппарата и развитие сахарного диабета. Кроме того, поступающие значительные количества простых углеводов не могут полностью оставаться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, посколькув этом случае инсулин оказывает мощное стимулирующее действие на синтез жиров.

Углеводы, поступающие с пищей, превращаются в гликоген, который откладывается в тканях и образует склад углеводов, из которого при необходимости организм "черпает" глюкозу, используемую для обеспечения энергией различных физиологических функций. В связи с этим гликоген играет важную роль в регуляции уровня сахара в крови. Основными органами, в которых откладываются значительные количества гликогена, являются печень и скелетные мышцы. Общее количество гликогена и организме невелико и составляет около 500г, из которых 1/3 локализована в печени, а остальные 2/3 - в скелетных мышцах. Если углеводы с пищей не поступают, то запасы гликогена оказываются полностью исчерпанными через12-18 часов. Более того, исследования показывают, что мышечный гликоген может быть полностью исчерпан уже через 15-30 минут интенсивной тренировки с отягощениями.

Для полного восстановления после интенсивной тренировки необходимо восполнить запасы гликогена в печени и мышцах. Ресинтез гликогена довольно медленный процесс (всего 5% в час), который занимает около 20 часов и требует большого количества углеводов. Исключением являются первые 2 часа тренировки (так называемое белково-углеводное окно), во время которых скорость восстановления увеличивается до 7-8%.

Правила приема углеводов.

1. Ешьте продукты с высоким содержанием углеводов небольшими порциями в течении дня. Научные исследования показывают, что высоко-углеводная диета увеличивает запасы гликогена в печени и мышцах на 45%, по сравнению с обычной диетой.

2. Принимайте белково-углеводные смеси, содержащие комплексные углеводы за 1-2 часа до тренировки. Это позволит увеличить запасы гликогена и аминокислот перед тренировкой.

3. Принимайте энергетические продукты (с содержанием углеводов 5-10%) во время тренировки, в расчете 0,5-1 литр в на 1 час тренировки. Это позволит увеличить работоспособность на тренировке на 30-35% и значительно уменьшить катаболизм мышц - расщепление белка и использование его на энергетические нужды.

4. Принимайте белково-углеводные смеси, содержащие комплексные углеводы, сразу же после тренировки. Это позволит максимально восполнить запасы гликогена, истощенные за время тренировки, и ускорить восстановление мышц.

Таблица 6. Дневная потребность в углеводах (в граммах), в зависимости от веса тела и продолжительности тренировок.

Арендный блок

Углеводами называются альдегиды или кетоны многоатомных спиртов или их производных.

Углеводы классифицируются на:

1. моносахариды – не подвергаются гидролизу:

Триозы (глицеральдегид, диоксиацетон);

Тетрозы (эритроза);

Пентозы (рибоза, дезоксирибоза, рибулоза, ксилуоза);

Гексозы (глюкоза, фруктоза, галактоза).

2. олигосахариды – состоят из 2–12 моносахаридов, соединенных между собой гликозидными связями (мальтоза – 2 глюкозы, лактоза – галактоза и глюкоза, сахароза – глюкоза и фруктоза);

3. полисахариды:

Гомополисахариды (крахмал, гликоген, клетчатка);

Гетерополисахариды (сиаловая кислота, нейраминовая кислота, гиалуроновая кислота, хондроитинсерная кислота, гепарин).

Углеводы входят в состав клеток животных (до 2%) и растений (до 80%).

Биологическая роль:

1. энергитическая. На долю углеводов приходится около 70% всей калорийности. Суточная потребность для взрослого человека – 400-500 г. При окислении 1 г углеводов до воды и углекислого газа выделяется 4,1 ккал энергии;

2. структурная. Углеводы используются как пластический материал для образования структурно-функциональных компонентов клеток. К ним относятся пентозы нуклеиновых кислот, углеводы гликопротеинов, гетерополисахариды межклеточного вещества;

3. резервная. Могут откладываться про запас в печени, мышцах в виде гликогена;

4. защитная. Гликопротеины принимают участие в образовании антител. Гетерополисахариды участвуют в образовании вязких секретов (слизи), покрывающих слизистые оболочки ЖКТ, дыхательных и мочеполовых путей. Гиалуроновая кислота играет роль цементирующего вещества соединительной ткани, препятствующего проникновению чужеродных тел;

5. регуляторная. Некоторые гормоны – гликопротеины (гипофиза, щитовидной железы);

6. участвуют в процессах узнавания клеток (сиаловая и нейраминовая кислоты);

7. определяют группу крови, входя в состав оболочек эритроцитов;

8. участвуют в процессах свертываемости крови, входя в состав гликопротеинов крови, фибриногена и протромбина. Так же предупреждает свёртываемость крови, входя в состав гепарина.

Основным источником углеводов для организма служат углеводы пищи, главным образом крахмал, сахароза и лактоза.

Крахмал – это смесь двух гомополисахаридов: линейного (амилоза от 10% до 30%) и разветвленного (амилопектин от70% до 90%) строения. Крахмал содержится в основных продуктах питания: картофель до 10%, крупы – 70-80%.

Остатки глюкозы соединяются в амилозе и линейных цепях амилопектина с помощью -1,4-гликозидных связей, а в точках ветвления амилопектина - с помощью -1,6-гликозидных связей.

Крахмал, поступая с пищей в ротовую полость, после механической обработки будет подвергаться гидролизу с помощью -амилазы слюны. Этот фермент является эндоамилазой, расщепляющей -1,4-гликозидные связи. Оптимальный рН фермента находится в слабощелочной среде (рН=7-8). Поскольку пища в ротовой полости долго не находится, крахмал здесь подвергается лишь частичному гидролизу с образованием амилодекстринов.

Далее пища идёт в желудок. Слизистая оболочки желудка гликозидазы (ферменты, расщепляющие углеводы) не вырабатываются. В желудке среда резко кислая (рН=1,2-2,5) ,поэтому действие -амилазы слюны прекращается, но в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие фермента слюны продолжается и крахмал успевает пройти стадию гидролиза - эритродекстринов.

Основным местом переваривания крахмала служит тонкий кишечник. Здесь происходят наиболее важные стадии гидролиза крахмала. В двенадцатиперсной кишке, куда открывается проток поджелудочной железы, под действием ферментов ПЖЖ (-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидазы) будет идти гидролиз крахмала. Выделяющийся сок поджелудочной железы содержит бикарбонаты, которые участвуют в нейтрализации кислого желудочного содержимого. Образующийся при этом углекислый газ способствует перемешиванию пищевого комка, создаётся слабощелочная среда (рН=8-9). Образующиеся катионы натрия и калия способствуют активации панкреатических гидролаз (-амилаза, амило-1,6-гликозидаза, олиго-1,6-гликозидаза). Эти ферменты завершают гидролитический разрыв внутри гликозидных связей, начатых -амилазой слюны.

Эритродекстрины превращаются в ахродекстрины. Под влиянием -амилазы панкреатического сока завершается разрыв внутренних -1,4-гликозидных связей в крахмале с образованием мальтозы. -1,6-гликозидные связи в точках ветвления гидролизуются под действием амило-1,6-гликозидазы и олиго-1,6-гликозидазы, которая является терминальной (последней) в этом процессе.

Т.о. три панкреатических фермента завершают гидролиз крахмала в кишечнике с образованием мальтоз. Из тех глюкозных остатков, которые в молекуле крахмала были соединены с помощью -1,6-гликозидных связей, образовались дисахариды – изомальтозы.

Слизистая оболочка тонкой кишки (энтероциты) синтезирует мальтазы (изомальтазы), лактазы и сахаразы. Образующиеся в результате гидролиза мальтоза, изомальтоза являются временным продуктом гидролиза, и в клетках кишечника они быстро гидролизуются под влиянием кишечных мальтазы, изомальтазы на две молекулы глюкозы. Т.о. в результате гидролиза крахмала в органах пищеварения образуется конечный продукт – глюкоза.

В составе пищи кроме полисахаридов поступают и дисахариды (лактоза и сахароза), которые подвергаются гидролизу только в тонком кишечнике. В энтероцитах синтезируются специфические ферменты: лактаза и сахараза, которые осуществляют гидролиз этих дисахаридов с образованием глюкоз, галактоз и фруктоз. Продукты полностью перевариваются. Углеводы - моносахариды всасываются в кровь и на этом завершается начальный этап обмена углеводов в организме человека - пищеварение.

Было установлено, что для всасывания моносахаридов (глюкозы) в кровь необходимо наличие в энтероцитах:

В цитоплазме - ионов калия, натрия, АТФ и воды.

В биомембранах - специфических белков–переносчиков и фермента - АТФ-азы.

90% образовавшейся в результате гидролиза крахмала глюкозы всасывается в кровь и через систему воротной вены поступает в печень, где депонируется в виде резервного полисахарида - гликогена. Около 10% всасывающихся в кровь моносахаридов попадает в большой круг кровообращения, разносится к органам и тканям, которые используют их в метаболических реакциях.

С пищей в организм человека поступает клетчатка – полисахарид, состоящий из остатков -D- глюкопиранозы. В ЖКТ человека она гидролизу не подвергается, поскольку не вырабатываются -гликозидазы, которые расщепляют её до глюкозы.

Биологическая роль клетчатки:

1. формирует пищевой комок;

2. продвигаясь по ЖКТ она раздражает слизистую оболочку, усиливая секрецию пищеварительных желез;

3. усиливает перистальтику кишечника;

4. нормализует кишечную микрофлору.

Шпоры по биохимии.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

К данному материалу относятся разделы:

Биохимия и ее задачи

Белки и их биологическая роль

Классификация белков

Методы разделения (фракционирования) белков

Характеристика сложных белков

Хромопротеины

Липид-белковые комплексы

Нуклеопротеины

Углевод-белковые комплексы

Фосфопротеины

ФЕРМЕНТЫ

Изоферменты

Классификация и номенклатура ферментов

Номенклатура ферментов

Современные представления о ферментативном катализе

Молекулярные эффекты действия ферментов

Теория кислотно-основного катализа

Обмен веществ

Обмен белков Переваривание и всасывание белков

Переваривание сложных белков и их катаболизм

Гниение белков и обезвреживание его продуктов

Метаболизм аминокислот

Общие пути обмена веществ

Временное обезвреживание аммиака

Орнитиновый цикл мочевинообразования

Синтез и распад нуклеотидов

Образование креатинина

Образование конечных безазотистых продуктов

Функции ЦТК

Дыхательная цепь (ДЦ) (или Цепь Переноса Электронов – ЦПЭ, или Электрон-Транспортная Цепь – ЭТЦ)

Функционирование ДЦ

Окислительное фосфорилирование

Альтернативные варианты биологического окисления

Матричный биосинтез. Генетический код

Репликация (самоудвоение, биосинтез) ДНК

Транскрипция (передача информации с ДНК на РНК) или биосинтез РНК

Трансляция (биосинтез белка)

Адресование белков

Регуляция биосинтеза белка

Нарушения матричных биосинтезов

Система репарации ДНК

Генные мутации

Ингибиторы матричных биосинтезов (Антибиотики)

Антибактериальные

Биохимический полиморфизм

Биологические последствия обратной транскрипции

Теломеры и теломеразы

Патология белкового обмена

Механизмы развития раковой опухоли

Генная инженерия

Обмен углеводов

Биологический синтез гликогена

Распад гликогена

Гликогеновые болезни

Пути катаболизма глюкозы

Гексозодифосфатный путь превращения углеводов в тканях

Гексозомонофосфатный путь превращения углеводов в тканях

Патология углеводного обмена

Липиды

Простагландины, простациклины, тромбоксаны и лейкотриены

Переваривание липидов

Механизм ресинтеза жира

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины