Функции коры больших. Зона сенсорного восприятия. Какие доли выделяют в коре больших полушарий

Функции коры больших. Зона сенсорного восприятия. Какие доли выделяют в коре больших полушарий

1. Кора больших полушарии выполняет функцию высшего анализа сигналов поступающих от всех рецепторов тела и орган высшего синтеза ответных реакций в биологически целесообразный акт.

2. Кора больших полушарий является высшим органом координации рефлекторной деятельности. Она способна пускать в ход, затормаживать. согласовывать работу нижележащих отделов, этажей ЦНС.

3. Кора больших полушарий, как высший орган координации рефлекторной деятельности, формирует биологически целесообразные реакции, которые обеспечивают приспособление организма к внешней среде, реакции, уравновешивающие организм с внешней средой.

4. На высшем этапе своего развития ЦНС, кора больших полущарий приобретает еще одну функцию, она становится органом психической деятельности. На основе физиологических процессов в ней возникают ощущения и восприятия, появляется мышление. Кора головного мозга -это орган мышления. Мозг человека, его высший отдел кора больших полушарий, обеспечивает возможность социальной жизни, обеспечивает возможность общения, познания окружающего мира, познания природы.

Анатомия и гистология коры

Кора больших полушарий - самый совершенный аппарат ЦНС. Свое название она подточила потому, что покрывает мозг со всех сторон, как кора дерева окружает его ствол. Она изрезана множеством борозд и извилин. Сверху она покрыта слоем нейронов, толщина которых варьирует в пределах 2-4 мм, составляя в среднем 2,5 мм. В коре находится около 49 млрд клеток, т.е. 14/15 всех нейронов.(Начиная с 20 лет, каждый день гибнет около 100 тыс. нейронов коры). Основная часть коры состоит из белого вещества. Белое вещество переднего мозга образовано аксонами этих клеток, а также аксонами различных восходящих путей. Как и во всяком нервном центре, в коре имеются сенсорные нейроны, воспринимающие информацию с приносящих путей, эфферентные нейроны, отправляющие приказы по нисходящим путям, и вставочные или ассоциативные нейроны, которые составляют основную массу. За счет отростков ассоциативных нейронов кора объединяется в единое целое: возбуждение возникшее в одном участке, может охватить всю кору.

В зависимости от филогенеза, в соответствии с историей развития коры больших полушарий выделяют 3 части.

1. Древняя кора - архикортикс. Древняя кора включает обонятельные луковицы (сюда приходят афферентные волокна от обонятельного эпителия слизистой полости носа), обонятельные тракты (расположены на нижней поверхности лобной доли) и обонятельные бугорки (здесь расположены вторичные обонятельные центры).

2. Старая кора - палеокортекс. Старая кора включает поясну извилину, гиппокамп и миндалину. Все эти образования входят в состав лимбической системы, которая является высшим отделом вегетативной нервной системы.

3. Новая кора - неокортекс. В состав новой коры входят все остальные области коры больших полушарий: лобная, височная, затылочная, теменная доли.

В процессе филогенеза новая кора впервые появляется у млекопитающих и достигает высшего развития у человека, т. е. является наиболее молодой нервной структурой, и у человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Цитоархитектоника коры (расположение и взаимосвязь нейронов в коре). Если древняя кора имеет 3 слоя, то новая кора имеет 6-ти слойное сроение.

1.Самый поверхностный слой – молекулярный. В этом слое очень мало нервных клеток, но много ветвящихся волокон нижележащих клеток, которые образуют густую сеть сплетений.

2.Второй слой - наружный зернистый, представлен в основном звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток второго слоя расположены преимущественно вдоль поверхности коры, образуя кортико-кортикальные связи.

3.Третий слой - наружный пирамидный слой, состоит в основном из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортико-кортикальные ассоциативные связи.

4 Внутренний зернистый слой по характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое имеют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса; здесь отмечена наибольшая плотность капилляризации.

5. Внутренний пирамидный слой или слой клеток Беца. Этот слой состоит в основном из средних и больших пирамидных клеток. Но в этом слое в прецентральной извилине находятся крупные, гигантские пирамидные клетки, клетки Беца. Длинные дендриты этих клеток идут ввер и достигают поверхностный слой - это так называемые апикальные дендриты. Аксоны клеток Беца идут к различным ядрам головного и спинного мозгаобразуя эфферентные кортико-спинальный и кортико-бульбарный двигательные тракты. Самые длинные аксоны входят в состав пирамидного тракта и доходят до нижних сегментов спинного мозга, оканчиваясь на вставочных клетках и на a-мотонейронах спинного мозга.

6. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортико-таламические пути.

Входные афферентными импульсы поступают в кору снизу, поднимаются к клеткам Ⅲ - Ⅴ слоев коры, здесь происходит восприятие и обработка поступающих в кору сигналов.

Главными эфферентными связями коры больших полушарий являются, покидающие кору эфферентные пути, формирующиеся преимущественно в V-VI слоях.

Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков К. Бродманом (1909), который выделил 52 поля; многие из них характеризуются функциональными и нейрохимическими особенностями.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В коре мозга имеются функциональные объединения нейронов, расположенные в цилиндрике диаметром 0,5-1,0 мм. Эти объединения были названы нейронными колонками . Они обнаружены в моторной коре, в различных зонах сенсорной коры. Соседние нейронные колонки могут взаимодействовать друг с другом.

Таким образом, различные области новой коры имеют четкое, стереотипное строение.

Но несмотря на общностъ нейронной организации всей коры, разные отделы коры отличаются друг от друга. Различая заключает в количестве и размерах нейронов, в ходе волокон, ветвлении аксонов и дендритов. Эти различия обусловлены неодинаковой функцией разных областей коры. Каждый участок, область коры выполняет какую-то определенною функцию, имеется функциональная специализация разных областей коры.

Головной мозг

Рефлекторная функция спинного мозга

n Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица)

n Спинной мозг осуществляет элементарные двигательные рефлексы – сгибательные и разгибательные, ритмические (шагательные, чесательные) рефлексы, возникающие при раздражении кожи или проприорецепторов мышц и сухожилий, а также посылают постоянную импульсацию к мышцам, поддерживая тонус

n Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения

n Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему).

Проводниковая функция спинного мозга связана с:

n Передачей в вышележащие отделы нервной системы получаемого с периферии потока информации;

n С проведением импульсов из головного мозга в спинной.

Головной мозг расположен в полости черепа. Он развивается из головного отдела нервной трубки и первоначально состоит из трех мозговых пузырей, которые называются передним , средним и задним .

Из переднего мозгового пузыря развиваются полушария большого мозга, базальные ядра, гипоталамус и таламус.

Из среднего мозга - средний мозг.

Из заднего мозгового пузыря - мост, продолговатый мозг и мозжечок.

Средний мозг, мост, продолговатый мозг входит в состав ствола мозга.

Большой мозг заполняет передневерхнюю часть полости черепа, а также переднюю и среднюю черепные ямки. Он представлен двумя полушариями , состоящими из нервных клеток (серое вещество) и волокон (белое вещество). Они разделены между собой глубокой продольной щелью. В глубине этой щели находится мозолистое тело - широкая дугообразно изогнутая пластинка белого вещества, соединяющая полушария между собой и состоящая из поперечно ориентированных нервных волокон (Рис. 11).

Области большого мозга . При помощи глубоких латеральной и центральной борозд каждое полушарие делится на: лобную, височную, теменную и затылочную доли (Рис. 12).

Тонкий слой серого вещества, покрывающий каждое полушарие, называется корой.

Кора представляет собой тонкий слой (1,3-4,5 мм) серого вещества на поверхности полушарий. Поверхность коры в процессе эволюции увеличивалась за счет появления борозд и извилин. Площадь коры у взрослого человека 2200-2600 см 2 . На нижней и внутренней поверхности коры находятся старая и древняя кора (архи – и палеокортекс). Они функционально связаны с гипоталамусом, миндалиной, некоторыми ядрами среднего мозга и все вместе образуют лимбическую систему, которая играет важнейшую роль в формировании эмоций и внимания, памяти и обучения Лимбическая система участвует в регуляции пищевого и питьевого поведения, цикла бодрствование-сон, агрессивно-оборонительных реакций и в ней находятся центры удовольствия и неудовольствия, беспирчинной радости, тоски, страха.


На наружной поверхности коры расположена новая кора – неокортекс. Вся кора имеет 6-7 слоев, различающихся формой, величиной и расположением нейронов (Рис. 13). Между нервными клетками всех слоев коры в процессе их деятельности возникают постоянные и временные связи.

Рис.11. Среднесагиттальный разрез головы человека


Рис. 12. Области большого мозга

Основные типы клеток коры – пирамидные и звездчатые нейроны.

Звездчатые – воспринимают раздражения и объединяют деятельность различных пирамидных нейронов.

Пирамидные осуществляют эфферентную функцию коры и взаимодействия между различными зонами коры.


Рис. 13. Перечень слоёв коры (начиная с поверхностного): молекулярный слой (I), наружный зернистый слой (II), пирамидный слой (III), или слой средних пирамид, внутренний зернистый слой (IV), ганглионарный слой (V), или слой крупных пирамид, слой полиморфных клеток (VI).

Под корой располагается белое вещество больших полушарий, которое состоит из ассоциативных, комиссуральных и проекционных волокон. Ассоциативные волокна связывают отдельные участки одного и того же полушария, а короткие ассоциативные волокна – отдельные извилины и близкие поля. Комиссуральные волокна – связывают симметричные части обоих полушарий, большая их часть проходит через мозолистое тело. Проекционные волокна выходят за пределы полушарий, входят в состав нисходящих и восходящих путей. По которым осуществляется двусторонняя связь коры с нижележащими отделами ЦНС.

Известны случаи рождения детей без коры больших полушарий головного мозга (анэнцефалы). Они живут несколько дней (максимум 3 -4 года). Один такой ребенок почти все время спал, у него были некоторые врожденные реакции (сосание, глотание). Поэтому сделали вывод, что в процессе филогенеза происходит кортиколизация функций (все, что приобретается организмом в течение индивидуальной жизни, связано с корой больших полушарий - вся высшая нервная деятельность).

В коре есть 3 типа областей – сенсорные, моторные и ассоциативные (Рис.14).

· Сенсорные ( расположены позади центральной борозды). Каждому рецепторному аппарату в коре соответствует определенная область, которую Павлов назвал корковым ядром анализатора. Именно к корковому ядру анализатора по афферентным волокнам приходят сигналы от рецепторов органов чувств. В сенсорных зонах выделяют первичные и вторичные проекционные поля. Нейроны проекционных первичных полей выделяют отдельные признаки сигнала (например, контур, цвет, контраст). Вторичные – формируют их в целостный образ. Сенсорные зоны локализованы в определенных частях коры: зрительная – в затылочной области, слуховая – в височной, вкусовая – в нижней части теменных областей, соматосенсорная зона (анализирующая импульсацию с рецепторов мышц, суставов, сухожилий и кожи) располагается в области задней центральной извилины.

· Моторные – зоны, раздражение которых вызывает двигательную реакцию, расположены впереди центральной борозды. В моторной коре тело человека спроецировано как бы вверх ногами, то есть ближе к латеральной борозде находятся области, обеспечивают функционирование мышц головы, а у противоположного конца предцентральной извилины - мышц нижней конечности (Рис.15).

· Ассоциативные – не имеют прямых афферентных и эфферентных связей с периферией. Они связаны с моторными и сенсорными зонами. Здесь расположены центры, связанные с речевой деятельностью. Функции ассоциативных зон –

А) обработка и хранение поступающей информации

Б) переход от наглядного восприятия к абстрактным символическим процессам.

В) Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в ассоциативных полях.

Г) Целенаправленное поведение человека, формирование намерений и планов, программ произвольных движений

Д) Отвечают за согласованную работу обеих полушарий мозга. Как правило, одно из полушарий является ведущим – доминантным. У большинства если ведущая рука – правая, доминантное полушарие – левое. Левое лучше снабжается кровью, в нем больше взаимосвязей нейронов, в нем находится моторный центр речи, отвечающий за произнесение слов и сенсорный центр речи, отвечающий за понимание слов. У человека есть три формы межполушарной функциональной асимметрии, т.е. неодинакового вклада полушарий: моторная, сенсорная и психическая. Моторная и сенсорная – это когда у человека с ведущей правой рукой, главным является левый глаз или левое ухо. Причем в каждом полушарии есть центры, которые контролируют оба уха, оба глаза и т.д. Это дает возможность совмещать функции двух полушарий в одном, при повреждении. Психическая асимметрия проявляется в виде специализации полушарий. Левое больше отвечает за аналитические процессы, абстрактное мышление, логическое мышление, предвосхищение событий. Правое обрабатывает информацию целиком, не расчленяя на детали, преобладает предметное мышление, художественное, а функции связаны с прошлым, т.е. обработка информации на основе прошлого опыта.

В коре полушарий большого мозга выделяют также высшие центры осознанного поведения, морали, воли и интеллекта.

Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейрон ов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.
Корковые нейрон ы и их связи. Несмотря на огромное число нейрон ов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейрон ы.
...
В афферентной функции коры и в процессах переключения возбуждения на соседние нейрон ы основная роль принадлежит звездчатым нейрон ам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксон ы, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендрит ы. Звездчатые нейрон ы участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейрон ов.

Пирамидные нейрон ы осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейрон ами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит , через который в клетку поступают различные афферентные влияния от других нейрон ов, а вертикально вниз отходит эфферентный отросток - аксон .

Многочисленность контактов (например, только на дендрит ах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейрон ов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейрон ных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

...
Первичные, вторичные и третичные поля коры . Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенез е, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецептор ов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейрон ы. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышлени е (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысл енные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарии . Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психи ческих процессов восприятия, представления, мышлени я. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы-см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.
...
Экспериментально показано, что у высших представителей животного мира после полного оперативного удаления коры высшая нервная деятельность резко ухудшается. Они теряют способность тонко приспосабливаться к внешней среде и самостоятельно существовать в ней.

Тема нашей лекции « Функции коры больших полушарий».

Головной мозг находится в полости мозгового черепа. Имеет выпуклую верхнелатеральную и нижнюю поверхности, а также уплощенную поверхность - основание головного мозга.

Большой мозг состоит из двух полушарий - правого и левого, которые связаны комиссурой - мозолистым телом. Правое и левое полушария делятся с помощью продольной щели. Под комиссурой находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между мозолистым телом и сводом натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка.

Полушария имеют верхнелатеральную, медиальную и нижнюю поверхности. Верхнелатеральная - выпуклая, медиальная - плоская, обращенная к такой же поверхности другого полушария, и нижняя - неправильной формы. На трех поверхностях располагаются глубокие и мелкие борозды, и между ними извилины. Борозды - углубления между извилинами. Извилины - возвышения мозгового вещества.

Поверхности полушарий большого мозга отделены друг от друга краями - верхним, нижнелатеральным и нижневертикальным. В пространстве между двумя полушариями входит большой серповидный отросток, представляющий собой тонкую пластинку твердой оболочки, которая проникает в продольную щель большого мозга, не достигая мозолистого тела, и отделяет друг от друга правое и левое полушария.

Наиболее выступающие участки полушарий получили название полюсов: лобного, затылочного и височного. Рельеф поверхностей полушарий большого мозга очень сложен и связи с наличием более или менее глубоких борозд большого мозга и расположенных между ними валикообразных возвышений - извилин. Глубина, протяженность некоторых борозд и извилин, их форма и направление очень изменчивы.

Каждое полушарие делится на доли - лобную, теменную, затылочную, височную , островковую. Центральная борозда отделяет лобную долю от теменной, латеральная борозда - височную долю от лобной и теменной, теменно-затылочная борозда разделяет теменную и затылочную доли.

Кора больших полушарий состоит горизонтальных слоев, расположенных в направлении с поверхности в глубь.

I. Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

II. Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

III. Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

IV. Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

V. Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.

VI. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

В первом и четвертом слоях происходят восприятие и обработка поступающих в кору сигналов. Нейроны второго и третьего слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в пятом и шестом слоях.

Более детально деление коры на различные поля проведено на основе формы и расположения нейронов Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает следующие поля: 8, 9, 10, 11, 12, 44, 45, 46, 47. В прецентральную область входят 4 и 6 поле, в постцентральную область входят 1, 2, 3 и 43 поле. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная область 17 18 19. Височная область состоит из очень большого количества полей.

В коре выделяют сенсорные, ассоциативные и двигательные зоны, исходя из расположения нейронов:

Проблема локализации функций в коре больших полушарий имеет три концепции:

Принцип узкой локализации - все функции помещены в одну, отдельно взятую структуру.

Концепция эквипотенциала - различные корковые структуры функционально равноценны.

Принцип многофункциональности корковых полей.

Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры - это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Сенсорная кора имеет хорошо выраженные вторые и четвертые слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями. Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий, которую обозначают как первичная соматосенсорная область. Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног - в верхнемедиальных зонах извилины, проекция нижней части голени и стоп - в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела. Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Вторичная соматосенсорная область меньших размеров расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции вторичной соматосенсорной области изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

Другой первичной сенсорной зоной является слуховая кора, которая расположена в глубине латеральной борозды. В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область. Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения.

Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области. Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы.

Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела, центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи, находящийся в задних отделах верхней височной извилины. Этот центр обеспечивает речевой гнозис - распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентральной извилины. Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины, центр моторной течи Брока в заднем отделе нижней лобной извилины, обеспечивающий речевой праксис, а также музыкальный моторный центр, определяющий тональность речи, способность петь.

В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки пятого слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток пятого слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ?-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ?-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины.

Волокна пирамидного пути оканчиваются на альфа-мотонейронах двигательных ядер третьего - седьмого и девятого - двенадцатого черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь).

Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре.

Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь. В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути.

Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути.

Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения - в ассоциативной коре больших полушарий, программы движений - в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения у человека проявляются в двух формах - функциональной асимметрии больших полушарий и совместной их деятельности.

Межполушарная асимметрия как одна из важных особенностей функционирования высших отделов мозга в основном определяется двумя моментами: 1) асимметричной локализацией нервного аппарата второй сигнальной системы и 2) доминированием правой руки как мощного средства адаптивного поведения человека. Этим и объясняется, что первые представления о функциональной роли межполушарной асимметрии возникли лишь тогда, когда удалось установить локализацию нервных центров речи (моторного — центра Брока и сенсорного — центра Вернике в левом полушарии).

Перекрестная проекция видов сенсорной чувствительности и нисходящих пирамидных путей — регуляторов моторной сферы организма — в сочетании с левосторонней локализацией центра устной и письменной речи определяет доминирующую роль левого полушария в поведении человека, управляемого корой больших полушарий.

Полученные экспериментальные данные подтверждают представление о доминирующей роли левого полушария мозга в реализации функций второй сигнальной системы, в мыслительных операциях, в творческой деятельности с преобладанием форм абстрактного мышления. В общем виде можно считать, что люди с левополушарным доминированием относятся к мыслительному типу, а с правополушарным доминированием — к художественному.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга.

При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) - правым.

Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса - левое.

Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения.

В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными.

Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.

У человека, как и у многих животных, большинство органов парные: две руки, две ноги, два глаза, два уха, две почки, два полушария мозга. Парность органов не означает их одинаковое функционирование. Мы знаем, какая рука у нас ведущая - выполняет наиболее сложные, тонкие операции. У большинства людей - это правая рука. Мы едим, шьем, пишем, рисуем правой рукой. Среди людей - правшей, использующих для точных действий правую руку, 90%, тогда как левши составляют в среднем 10%.

Левши всех рас и культур в прошлом и настоящем находились в меньшинстве среди праворукого окружения.

При изучении вопроса о происхождении левшества выделились три основных направления: «генетическое», «культурное» и «патологическое».

В настоящее время наибольшее распространение получили две генетические модели. Согласно одной асимметрия мозга определяется присутствием одного гена, который был назван ею фактором «правого сдвига». Если данный фактор имеется у индивидуума, последний предрасположен быть правшой. Если фактор отсутствует, человек может быть либо левшой, либо правшой в зависимости от случайных обстоятельств. При этом большое значение придается повреждениям мозга в пренатальном и раннем постнатальном периоде, которые могут повлиять на фенотипическую реализацию фактора «правого сдвига».

Более сложная модель была предложена Леви и Нагилаки (1972). Эти ученые предполагают, что рукость является функцией двух генов. Один ген с двумя аллелями определяет полушарие, которое будет контролировать речь и ведущую руку.

На вероятность не генетической, а цитоплазматической закодированности асимметрии указывает Морган (1978), выдвигая концепцию, согласно которой и мозговая латерализация, и мануальное предпочтение рассматриваются в широком общебиологическом аспекте. Предполагается, что развитие мозга находится под влиянием лево-правого градиента, а это приводит к более раннему и быстрому созреванию в онтогенезе левого полушария, которое при этом оказывает тормозящее влияние на правое - в результате возникает доминирование левого полушария по речи и праворукость.

С «генетическим» направлением непосредственно сочетаются исследования, связанные с выявлением анатомических, физиологических и морфологических стигматов, свойственных правшам и левшам. Показано, что у правшей сильвиева борозда справа расположена выше левой, в то время, как у 71% левшей правая и левая борозды примерно симметричны.

У правшей отмечается больший диаметр внутренней сонной артерии слева и выше давление в ней, чем в правой, а у левшей - обратная картина.

Аналогичная диссоциация выявляется у правшей и левшей при изучении средней мозговой артерии. Гипотеза Гершвинда и Галабурды также предполагает эндокринное влияние на формирование различий в строении мозга мужчин и женщин. Известна теория Превика, согласно которой церебральная латерализация у человека формируется при асимметричном пренатальном развитии системы внутреннего уха и лабиринта.

Существует и генетико-культурная гипотеза функциональной асимметрии. Английский ученый из Кембриджа Лэлэнд и его коллеги считают, что левшество является в равной степени генетически и культурологически обусловленным.

Альтернативными «генетическим» представляются гипотезы возникновения межполушарной асимметрии, базирующиеся на признании детерминирующей роли культурных условий в формировании рукости. «Культурно-социальные» концепции рассматривают правшество-левшество как следствие социального воспитания, опыта, условий жизни.

Наряду с представленными выше теориями, широко распространены представления о патологическом происхождении левшества. Крайней точки зрения придерживается Бэкан (1973), который утверждает, что любое проявление леворукости есть следствие родовой травмы. По мнению Чуприкова (1975), изменение моторного доминирования является одним из объективных доказательств врожденной энцефалопатии. В подтверждение приводятся факты увеличения левшей среди близнецов, особенности пренатального развития которых предполагают риск внутриутробной гипоксии мозга. В пользу этого подхода говорят и результаты проб Вада, согласно которым повреждение левого полушария на ранних этапах онтогенеза может привести к смене ведущей руки и доминантного по речи полушария.

Изучение вопроса о происхождении латеральности продолжается. Обилие фактов, подчас противоречащих друг другу, показывает, что каждая из теорий функциональной межполушарной асимметрии мозга требует дальнейшего обоснования. Вместе с тем очевидно, что основополагающие принципы вышеперечисленных подходов составляют базу для будущего системного исследования, необходимость которого вытекает из множества проблем и вопросов, оставшихся открытыми.

Мозг это загадочный орган, который постоянно изучается учеными и остается до конца не исследованным. Система строения не простая и является сочетанием нейронных клеток, которые группируются в отдельные отделы. Кора головного мозга имеется у большинства животных и млекопитающих, но именно в человеческом организме она получила большего развития. Этому способствовала трудовая активность.

Почему мозг называют серым веществом или серой массой? Он сероватый, но в нем присутствует белый, красный и черные цвет. Серая субстанция представляет разные типы клеток, а белая нервную материю. Красный цвет это кровяные сосуды, а черный это меланин пигмент, который отвечает за окраску волос и кожи.

Строение мозга

Главный орган делится на пять основных частей. Первая часть продолговатая. Это продление спинного мозга, который контролирует связь с деятельностью тела и состоит из серой и белой субстанции. Вторая, средняя включает четыре бугорка, из которых два ответственные за слуховую, а два за зрительскую функцию. Третья, задняя включает мосток и церебеллум или мозжечок. Четвертая, буферная гипоталамус и таламус. Пятая, конечная, которая формирует два полушария.

Поверхность состоит из бороздочек и мозгов, покрытых оболочкой. Этот отдел составляет 80 % общего веса человека. Также мозг можно разделить на три части церебеллум, стволик и полушария. Он покрыт тремя слоями, которые предохраняют и питают основной орган. Это паутинный слой, в котором циркулирует мозговая жидкость, мягкий содержит кровяные сосуды, твердый близкий к мозгу и защищает его от повреждений.

Функции мозга


Мозговая деятельность включает основные функции серого вещества. Это чувствительные, зрительные, слуховые, обонятельные, осязательные реакции и моторные функции. Однако все главные центры управления находятся в продолговатой части, где координируется деятельность сердечно-сосудистой системы, защитных реакций и мышечной деятельности.

Двигательные пути продолговатого органа создают перекрещивание с переходом на противолежащую сторону. Это ведет к тому, что рецепторы сначала образуются в правой области, после чего поступают импульсы в левую область. Речь выполняется в больших полушариях мозга. Задний отдел отвечает за вестибулярный аппарат.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины