Вирусологический метод, основные этапы. Вирусологи́ческие ме́тоды иссле́дования Лабораторная диагностика вирусных инфекций

Вирусологический метод, основные этапы. Вирусологи́ческие ме́тоды иссле́дования Лабораторная диагностика вирусных инфекций

19.07.2019

Вирусологические методы исследования

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

В зараженных клеточных культурах можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит ткани, образуются и вирусоспецифические . Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная , а также , метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из , секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. основана на гибридизации комплементарных нитей или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, in situ и др.

Антитела класса lgM появляются раньше, чем класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. , М., 1986; Вирусология, Методы, под ред. Б. Мейхи, . с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Вирусологические методы исследования" в других словарях:

    Имеют целью обнаружение вирусов, их отождествление (идентификацию) и изучение биологических свойств. Для выделения вирусов (См. Вирусы) от человека, животных и растений исследуемый материал вводят в организм чувствительных к вирусам… … Большая советская энциклопедия

    ВИРУСОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ - вирусологические исследования, комплекс методов исследования, позволяющих распознать этиологию вирусного заболевания и изучить его возбудителя.Основными этапами В. и. являются выделение вируса от больных и павших животных (взятие, консервирование … Ветеринарный энциклопедический словарь

    ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ - ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. см. ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. Важнейшим условием получения достоверных результатов исследований является правильный выбор объектов анализа, своевременный их отбор и формулировка задачи исследования. Правила отбора проб … Болезни рыб: Справочник

    Учреждения системы здравоохранения либо структурные подразделения лечебно профилактических или санитарно профилактических учреждений, предназначенные для проведения различных медицинских исследований. В эту группу не входят научно… … Медицинская энциклопедия

    I Эпидемиология (Эпидемия + греч. logos учение) наука, изучающая закономерности эпидемического процесса и разрабатывающая меры борьбы с заразными болезнями человека. Исторически Э. сложилась как научная дисциплина, объектом изучения которой… … Медицинская энциклопедия

    I Вирусология (вирус [ы] (Вирусы) + греч. logos учение) медико биологическая наука, изучающая вирусы. Возникла в конце 19 в., когда русский ученый Д.И. Ивановский (1892) впервые установил существование мельчайших микроорганизмов, вызывающих… … Медицинская энциклопедия

    - (синонимы: клещевой энцефаломиелит, весенне летний энцефалит, весенне летний менингоэнцефалит, таежный энцефалит, русский дальневосточный энцефалит) инфекционная болезнь, характеризующаяся лихорадкой, интоксикацией и преимущественным поражением… … Медицинская энциклопедия

Основными методами, используемыми в диагностике вирусных болезней, являются культивирование и идентификация вирусов.

Для доказательства вирусной этиологии болезни необходимо: выделение вируса из организма больной рыбы, пассирование его на культуре клеток или чувствительных рыбах, воспроизведение болезни у здоровых рыб того же или родственного вида, повторное выделение того же вируса от экспериментальных животных.

Для идентификации вирусов используют несколько взаимодополняющих методов: электронная микроскопия вируса, изучение его физико-химических свойств, обнаружение характерных морфологических изменений в зараженных клетках и симптомов у зараженных животных, различные иммунологические методы.

Вирусы выделяют в основном на однослойных первичных или перевиваемых клеточных культурах, подбирая в каждом случае культуры, чувствительные к данному вирусу. Для получения первичных культур клеток рыб наиболее часто используют гонады самок карпа или карася. Гонады должны быть II или II-III стадии зрелости по шкале Киселевича. Такие гонады не содержат икринок, различимых невооруженным глазом. В противном случае содержимое икринок будет отрицательно влиять на рост клеток. Культуры клеток из гонад карпа и карася готовят по утвержденной методике.

В качестве перевиваемых культур наиболее широко используют следующие клеточные линии: FHM - из тканей хвостового стебля жирноголового гольяна; RTG- из гонад радужной форели; ЕРС - из оспенных разростов на коже карпа. Названные линии поддерживаются в специализированных лабораториях по изучению болезней рыб ветеринарных и рыбохозяйственных научно-исследовательских институтов, где их можно заказать и получить.

При диагностике хорошо изученных вирусных болезней исследуют органы и ткани, где концентрируется возбудитель.

При болезнях рыб, сведения о которых недостаточны, вирусологическому исследованию подвергают наиболее пораженные органы. Соскобы с кожи и жабр, кусочки этих органов вместе со слизью помещают в стерильные флаконы с 2-3 мл стерильного физиологического или буферного раствора. Пробы из внутренних органов берут в строго асептических условиях.

В тех случаях, когда быстро исследовать материал невозможно, его сохраняют не более суток в холодильнике при температуре не выше 5°С. Материал в замороженном состоянии можно сохранять более длительное время.

Предназначенный для исследования патологический материал измельчают в гомогенизаторе или растирают в фарфоровой ступке с кварцевым песком. Из измельченных тканей готовят 10 %-ную суспензию на растворах Хенкса, Эрла, буферном или физиологическом растворе и центрифугируют 10-15 мин при 2000-3000 об/мин, надосадочную жидкость отсасывают пипеткой и помещают в стерильные флаконы. Если суспензия не стерильна, подготовленные материалы фильтруют через мембранные фильтры с диаметром пор 0,2-0,45 мкм или обрабатывают антибиотиками (пенициллин 1000 ЕД/мл и стрептомицин 1000 мкг/мл).

Из кишечного содержимого готовят 20 %-ную взвесь в стерильной дистиллированной воде и центрифугируют 10-15 мин при 2000 об/мин. Надосадочную жидкость центрифугируют повторно при 4000-5000 об/мин в течение 30 мин. Затем надосадочную жидкость отсасывают в стерильный флакон и обрабатывают антибиотиками. На 1 мл добавляют 1000 мкг/мл стрептомицина и 1000 ЕД/мл пенициллина. Смесь выдерживают 2-3 ч при: комнатной температуре. Все материалы проверяют на бактериальную стерильность путем посева на МПБ и МПА. Приготовленные материалы сразу используют для работы или, в крайнем случае, сохраняют в замороженном состоянии (при температуре минус 20°С).

Заражение культуры клеток . Для заражения используют пробирки с хорошим клеточным монослоем или зоной роста вокруг эксплантата. Питательную среду отсасывают и в каждую пробирку вносят по 0,2-0,3 мл исследуемой суспензии. Одновременно в пробирки добавляют по 0,8-0,9 мл питательной среды с 2-3 % сыворотки.

Материалом, приготовленным из каждой пробы, заражают культуру тканей в 4-6 пробирках. Из каждой серии исследований столько же пробирок оставляют в качестве контроля, добавляя в них по 1 мл питательной среды. Пробирки оставляют при комнатной температуре на 1-2 ч для адсорбции вируса на клетках, затем отсасывают пипеткой надосадочную жидкость и вносят поддерживающую питательную среду до первоначального объема.

Зараженные и контрольные культуры клеток инкубируют при температуре 22-26°С и ежедневно просматривают под малым увеличением микроскопа для обнаружения появившихся морфологических изменений в клетках. При выраженной дегенерации клеток культуральную жидкость отсасывают и делают пассажи, а при отсутствии цитопатогенного действия (ЦПД) проводят два последовательных пассажа. Для этого используют культуральную жидкость вместе с клеточной фракцией, разрушенной путем повторного замораживания и оттаивания. Для заражения свежих культур используют надосадочную жидкость центрифугированной клеточной массы. ЦПД после третьего пассажа учитывают как специфическое действие вирусного агента.

Степень поражения клеточного монослоя оценивается по 4-крестовой системе; " + - поражение до 25%, "+ + " - до 50%, "+ + +" - до 75% и "+ + + + " - до 100 % монослоя.

При некоторых вирусных заболеваниях рыб в клетках (цитоплазме ядре) различных органов и тканей появляются тельца-включения. Материалом для исследования вирусных включений служат инфицированные культуры тканей, соскобы и мазки-отпечатки из органов и тканей, казанные материалы перед окраской фиксируют по общепринятым методам, спользуя жидкости Дюбоск - Бразил - Буэна, Буэна, Карнуа или 10 %-ный раствор нейтрального формалина.

Вирусные включения окрашивают различными методами: по Муромцеву, рубиной, Манну, Селлексу, Клисенко, Романовскому-Гимзе, Май-Грюн-альду - Гимзе и др.

Титрование вируса - количественное определение вирусной активности. Титр вируса выражается количеством инфекционных единиц, содержащихся единице объема суспензии вируса. За инфекционную единицу вируса принимается такая его доза, которая вызывает инфекцию у 50 % зараженных ею чувствительных объектов. Такая доза вируса называется инфекционной и обозначается ИД 50 .

В качестве чувствительных объектов при титровании вирусов рыб используют главным образом культуры клеток. Титрование на культуре клеток осуществляют по цитопатогенному действию вирусов. В этом случае ИД 50 называют тканевой цитопатогенной дозой (ТЦД 50), а титр вируса выражают количеством ТЦД 50 в 1 мл вирусной суспензии. Титр вируса при этом определяют методом конечных разведений. Согласно этому методу чувствительные культуры клеток вводят определенный объем суспензии вируса в последовательно возрастающих разведениях и, учитывая результат к аждого введения как положительный (если есть ЦПД) или отрицательный если ЦПД отсутствует), рассчитывают конечную точку титрования - 1 ТЦД 50 .

Для титрования вирусов, дающих ярко выраженное ЦПД, используют также метод бляшек. При этом зараженный вирусом монослой клеток заливают смесью питательной среды с агаром, чтобы предотвратить перенос вируса на другие клетки, значительно удаленные от первично инфицированных, и иметь возможность инфицировать первоначальные очаги заражения бляшки).

Каждая бляшка возникает из одной инфекционной единицы, которую обозначают БОЕ (бляшкообразующая единица), а титр вируса выражают количеством БОЕ в единице объема суспензии.

Реакция нейтрализации (РН) на культуре клеток .

В основе реакции лежит связывание антигена антителами гомологичной антисыворотки. Реакцию используют для идентификации возбудителей при диаг-остике заболеваний вирусной этиологии. Она позволяет определять по из-естным антителам неизвестный вирусный антиген или по заведомо известному (стандартному) антигену - неизвестные антитела в сыворотках больных ли переболевших рыб.

Определение выделенного вируса в реакции нейтрализации проводят, применяя набор диагностических гипериммунных антисывороток (антител) гомологичных к ним антигенов (вирусов).

Гипериммунные антисыворотки получают при заражении лабораторных животных (например, кроликов) известными штаммами вирусов - возбудителей болезней рыб. У полученных антисывороток определяют титры специфических антител. Для работы берут антисыворотки, содержащие антитела в высоких титрах.

Порядок проведения реакции.

1. Инактивирование нормальной и гипериммунной сыворотки прогреванием при 56 о С в течение 30 мин.

2. Приготовление разведений ингредиентов реакции. Питательной средой без сыворотки и антибиотиков разводят антиген и сыворотки, начиная с 1: 5, 1: 50, 1: 500 и до получения разведения содержанием менее 1 ТЦД 50 /0,2 мл. Гипериммунную сыворотку разводят 1: 2 или 1: 5. При малом титре сыворотку используют неразведенной. Нормальную сыворотку разводят так же, как и гипериммунную.

3. Постановка реакции. В штативе размещают три ряда стерильных пробирок. В первый ряд разливают разведенную гипериммунную сыворотку, во второй - разведенную нормальную сыворотку, в третий - питательную среду. Каждый ингредиент вносят в объеме 0,5 мл.

Приготовленные разведения вируса переносят по 0,5 мл в соответствующие пробирки каждого из трех рядов, причем вирус каждого разведения I переносят отдельной пипеткой, начиная с наибольшего разведения. Таким образом, в каждом ряду пробирок получают последовательные 10-кратные разведения вируса: 10-1, 10-2 и т. д.

Для контроля токсичности сывороток в отдельную пробирку вносят 0,5 мл приготовленного разведения гипериммунной сыворотки, а затем прибавляют равное количество питательной среды. То же проделывают с нормальной сывороткой.

Пробирки со смесями тщательно встряхивают и выдерживают при комнатной температуре в течение 1 часа. Затем заражают культуру клеток каждым разведением вируса (0,2 мл на каждую пробирку) с гипериммунной нормальной сыворотками и питательной средой по 4 пробирки культуры клеток. Параллельно ставят контроли на токсичность используемых клеток и контрольные пробы культуры клеток.

Пробирки с культурой клеток инкубируют в термостате при оптимальной для размножения данного вируса температуре, ежедневно просматривают под малым увеличением микроскопа для обнаружения ЦПД вируса. Результаты заносят в таблицу (табл. 11).

Титр вируса выражается количеством инфекционных единиц, содержащихся в единице объема суспензии вируса. Находят индекс нейтрализации (IN). Он соответствует максимальному количеству ИД 50 , которое может быть нейтрализовано гипериммунной сывороткой. Расчет IN ведут по формуле: lgIN = lgT 1 -lgT 2 , где Т 1 - титр вируса в присутствии нормальной сыворотки; Т 2 - титр вируса в присутствии гипериммунной сыворотки. Значение IN находят по таблице антилогарифмов. Принято считать значение IN до 10 отрицательным, от 10 до 49 - сомнительным, 50 и более - положительным результатом.

Результаты реакции можно считать достоверными только в том случае если гипериммунная сыворотка проверена на специфическую нейтрализующую активность. Для этого предварительно определяют титр нейтрализующих антител в этой сыворотке или ее индекс нейтрализации в реакции с гомологичным вирусом.

Выделение рабдовирусов методом бляшек . Данный метод специфический, применяют его для выделения, предварительного типирования и селекции рабдовирусов карпа, форели при наличии специфических иммунных сывороток для идентификации вируса.

Округлые колонии (бляшки) образуются в клеточных культурах под агаровым покрытием при наличии вируса в исследуемом материале.

В асептических условиях пастеровской пипеткой набирают ткань почек, печени, селезенки и жидкость из брюшной полости, переносят во флакон со средой, содержащей по 500 ME (мкг)/мл антибиотиков в соотношении 1: 10. выдерживают 60-90 мин при температуре 18-22°С, затем центрифугируют при 2-3 тыс. об/мин в течение 10 мин. Надосадочную жидкость разводят питательной средой 1: 10 (разведение 1: 100). Для заражения клеточных культур используют надосадочные жидкости обоих разведений.

Для исследования отбирают 3-суточную перевиваемую культуру клеток, выращенную в матрацах с хорошо выраженным монослоем, из расчета 2 матраца на каждое разведение патологического материала и по 2 матраца для контроля. Из флаконов удаляют питательную среду и вносят по 2 мл среды без эмбриональной сыворотки. Затем вносят по 0,2 мл исследуемого патматериала и оставляют для адсорбции вируса на 60 мин при температуре оптимальной для вирусов, поражающих рыб (для вирусов карпа - 24-26°С и для вирусов форели-16-18°С).

Контроль ставят в 2 матрацах с клеточными культурами по 0,2 мл, содержащих по 100 ТЦД 50 /мл известного вируса, а в 2 - по 0,2 мл питательной среды без вируса.

Через 60 мин жидкость из флаконов удаляют. По стенке, противоположной монослою, вносят во флакон емкостью 50 мл 5 мл агарового покрытия, нагретого до 40-42°С (при выделении вируса ВГС - не более 38°С). Матрацы поворачивают монослоем вниз, покрывают черной бумагой. Через 15-20 мин матрацы переносят для инкубации при оптимальной для изучаемых вирусов температуре. Матрацы кладут агаровым покрытием вверх. При неизвестном вирусе культуры содержат при двух температурных режимах - 14-18 и 22-24°С.

Зараженные клеточные культуры просматривают на белом фоне. При наличии в изучаемом материале вируса в клеточной культуре вначале появляются прозрачные точки на розово-матовом фоне культуры. В дальнейшем они увеличиваются в размере, образуя круглые прозрачные колонии - бляшки, наличие которых свидетельствует о наличии в патматериале рабдовирусов.

Пастеровской пипеткой набирают кусочек бляшки на границе пораженной и непораженной части с таким расчетом, чтобы попал не только агаровый, но и клеточный слой. Отобранный кусочек помещают в пробирку с 1 мл ростовой среды, замораживают при минус 20°С и выдерживают 60 мин. В случае большого количества бляшек (весь клеточный слой прозрачный) исследования повторяют в разведениях 10 -3 и 10 -4 .

Бляшки диаметром 3-8 мм рабдовируса карпа на перевиваемой культуре ЕРС и FHM, инкубируемой при температуре 24-26°С, проявляются на 4-7-й день.

При отсутствии бляшек и наличии ЦПД в клеточных культурах проводят дополнительные исследования вируссодержащей культуральной жидкости в разведениях 10 -2 -10 -3 (2-3 пассажа). В качестве дополнительных методов идентификации вирусов используют: метод флуоресцирующих антител; определение чувствительности вируса к хлороформу, эфиру, величине рН, нагреванию; электронно-микроскопическое исследование морфологии вирусов.

Диагноз ОКИ устанавливается на основании клинико-эпидемиологических данных, с обязательным лабораторным подтверждением. Без лабораторного подтверждения диагноз ОКИ можно ставить только в тех случаях, когда имеются четко установленные эпидемиологические данные (в очагах инфекции и при лабораторно расшифрованных групповых вспышках заболеваний у большинства больных).

Для окончательной диагностики используют бактериологический, вирусологический и серологический методы исследования.Копрологический метод, как и результаты ректороманоскопии (при шигеллезе) имеют вспомогательное значение.

I . Бактериологический метод имеет наибольшее значение при ОКИ, обусловленных бактериальной флорой (инвазивных и секреторных диареях). Лучшие результаты дает посев испражнений непосредственно у постели больного, до назначения антибактериальной терапии и с доставкой его в бактериологическую лабораторию в первые два часа с момента забора. Для исследования необходимо выбирать частицы, содержащие патологические примеси, но не кровь. Посевы биоматериала производят на селективные среды Плоскирева, Левина и др. Отрицательный результат бактериологического исследования испражнений дается на 3-5 –й, а положительный, как правило – на 5-7 день с момента доставки материала в бактериологическую лабораторию. Частота положительных результатов (высев возбудителя и его идентификация), даже при наличии типичных клинических проявлений ОКИ. Не превышает 70-80%.

II . Серологические методы диагностики, как правило, используют в сомнительных случаях и при отрицательных результатах бактериологического исследования испражнений. У детей первых мес. жизни он малоинформативен, но и во всех случаях имеет значение нарастание титра антител в 4 раза и более. Они проводятся в двух направлениях –определение титра специфических антител в сыворотке крови больного и антигена в испражнениях.

Для определения титра специфических антител обычно используется РНГА, реже РПГА или РА. В качестве антигенов берут взвесь суточной культуры бактерий (РА) или эритроцитарный диагностикум (РПГА, РНГА). Более достоверным следует считать нарастание титров антител в динамике заболевания. Специфические антитела в крови больного ОКИ появляются на 3-5 день болезни и нарастают до максимума в течение 2-3 недель, а затем постепенно снижаются. У детей раннего возраста, особенно с измененным преморбидным фоном специфические антитела в крови не определяются или имеют низкие титры (1:50 – 1:100).

При наличии типичной клинической симптоматики и выявлении диагностического титра специфических антител (1:200) и выше с соответствуюшим диагностикумом), или нарастании их титра в динамике заболевания, клинический диагноз кишечной инфекции следует считать установленным даже при отсутствии высева возбудителя из испражнений больного.

III . Методы экспресс-диагностики кишечных инфекций основаны на обнаружении антигена возбудителя (бактерии или вируса) из испражнений, для чего используется: прямой метод люминесцирующих антител (ПМЛА) илииммуноадсорбционный метод – реакция угольной агломерации(РУА). Предварительный результат можно получить через 2-3 часа, окончательный – через сутки. Специфичность метода составляет 82-94,6%.

В последние годы для экспресс-диагностики диарей используют иммуноферментный метод (ИФА) и реакцию латекс-агглютинации (РЛА).

Этиологическая расшифровка вирусных диарей осуществляется с использованием вирусологических и бактериологических методов.

Оптимальным сроком для обнаружения вирусов в кале считают с 1 по 4 день болезни, хотя нередко возбудитель сохраняется дольше.

В качестве основного метода используется – метод электронной микроскопии,позволяющий по морфологическим признакам выявить широкий спектр вирусных агентов, вызывающих гастроэнтериты.

Используется также иммуноэлектронная микроскопия(основанная на способности вирусных частиц в присутствии гомологичных сывороток или сывороток реконвалесцентов к образованию агрегатов ротавирусных частиц с иммуноглобулинами.

Среди методов серодиагностики к традиционным относят реакцию нейтрализации, торможения гемагглютинации, связывания комплемента.Двух-четырехкратное нарастание антител в парных сыворотках имеет ретроспективное значение для диагностики ротавирусной инфекции. Для выявления ротавирусов или их антигенов используют ИФА, диффузную преципитацию, латекс-агглютинацию, реакцию коагглютинации.

В практической работе наиболее широкое место занялИФАвыделение ротавирусных антигенов в копрофильтрах. Лучше эти методы использовать в динамике (первый день госпитализации и после клинического выздоровления).

С целью исключения бактериальной этиологии ОКИ проводится и бактериологическое исследование фекалий путем посева на питательные среды

Ректороманоскопический метод у детей используют редко, главным образом для выяснения причины длительного бактериовыделения и диагностики затяжных и хронических форм заболевания. Этот метод обследования позволяет оценить только характер морфологических изменений слизистых оболочек дистального отдела кишечника, но не может быть использован для постановки этиологического диагноза кишечной инфекции.

Показаниями для инструментального исследования (УЗИ, рентгенологическое исследование органов брюшной полости, ФГС)при ОКИ является необходимость проведения дифференциального диагноза с хирургическими заболеваниями органов брюшной полости (инвагинация, аппендицит), соматическими заболеваниями(гастрит, язвенная болезнь, холецистопанкреатиты и др.) и функциональными расстройствами желудочно-кишечного тракта.

Определение клинической формы токсикоза (нейротоксикоз, токсикоз с эксикозом, ИТШ), его степени (стадии), вида дегидратации при инфекционных диареях у детей и оказание неотложной помощи


Вирусологические методы исследования - методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- m -антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования ): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология, М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер. с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.

ВИРУСОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ - исследования, проводимые с целью диагностики вирусных инфекций, изучения соответствующих возбудителей, их распространения в природе, а также при производстве вирусных препаратов. В вирусологических лабораториях (см.) мед. профиля изучают как вирусы человека, так в ряде случаев и вирусы животных (напр., проводят диагностику бешенства у собак, обследование животных, используемых для производства вирусных препаратов). Методы исследования тех и других сходны.

Одним из основных этапов В. и. является выделение вирусов. При выделении вирусов от людей используют кровь, различные секреты и экскреты, кусочки органов. Наиболее часто кровь исследуют при арбовирусных заболеваниях. Используется цельная дефибринированная или Гемолизированная кровь, отдельные ее элементы или сгустки (на поздних стадиях заболевания). Вирусы бешенства, эпид, паротита, простого герпеса могут быть обнаружены в слюне. Носоглоточные смывы служат для выделения возбудителей гриппа, кори, пситтакоза, риновирусов, респираторно-синцитиального вируса, аденовирусов. В смывах с конъюнктивы также обнаруживаются аденовирусы. Смыв берут путем полоскания носа и глотки (отдельно) и промывания конъюнктивы изотоническим раствором хлорида натрия. Можно протирать носовые ходы и заднюю стенку глотки тампонами, смоченными бульоном. Нестерильный материал обрабатывают антибиотиками (по 1000 ЕД пенициллина и стрептомицина на 1 мл) в течение 30 мин. Из фекалий выделяют различные энтеровирусы, адено- и реовирусы. Пробы разводят 1:10 фосфатным буфером, центрифугируют дважды по 20 мин. при 8000 об I мин. Антибиотики прибавляют, как указано выше. Реже для В. и. берут содержимое пустул (при оспе, ветрянке, герпесе) и пунктаты органов (при венерической лимфогранулеме). Секционный материал следует брать как можно скорее после гибели организма. Его хранят до момента исследования при t°-20° и ниже. Для проведения В. и. ткань измельчают (растирают) и готовят 10-20% взвесь на изотоническом растворе хлорида натрия или питательной среде для клеточных культур. Ее центрифугируют 20 мин. при 1500 об/мин; надосадочную жидкость используют для дальнейшего исследования.

С целью выделения вирусов заражают лабораторных животных, эмбрионы птиц, клеточные и тканевые культуры. Животные оказываются пригодными в том случае, если вирус вызывает у них четкие клинические симптомы заболевания или патологоанатомические изменения (напр., параличи, пневмонию и т. п.). От тропизма вируса зависит эффективность того или иного пути введения материала. Широко применяют заражение под кожу, внутрибрюшинно и внутривенно. Нейротропные вирусы выявляют при заражении животных в полушария головного мозга (арбовирусы, вирус бешенства и др.), зрительный бугор (вирус полиомиелита в опытах на обезьянах), спинной мозг. Вирусы оспы и герпеса можно обнаружить путем нанесения материала кроликам на скарифицированную роговицу. Некоторые вирусы легко выявить при инокуляции в переднюю камеру глаза (напр., вирус гепатита собак в опыте на щенках). Для изучения возбудителей респираторных инфекций обычно применяют интраназальное заражение животных (закапывание материала в нос наркотизированным животным или введение его в виде аэрозоля в специальной камере). В пищеварительный тракт материал вводят с пищей или через рот тупой иглой. При изучении некоторых онкогенных вирусов применяют метод заражения золотистых хомячков в слизистую оболочку защечных мешков.

Ко многим вирусам новорожденные животные и сосунки восприимчивее половозрелых особей. Мышей-сосунков широко используют для выделения арбовирусов и вирусов Коксаки (после заражения в мозг). Некоторые аденовирусы способны индуцировать опухоли при подкожном заражении новорожденных золотистых хомячков. Изучение ряда вирусов птиц проводят на цыплятах первых дней жизни.

Использование куриных эмбрионов имеет ряд преимуществ. Их недифференцированные ткани обладают широким спектром чувствительности в отношении многих вирусов. О наличии инфекции судят по гибели эмбрионов, появлению изменений (оспин) на хорион-аллантоисной оболочке (рис. 1), накоплению в эмбриональных жидкостях гемагглютининов и комплемент-связывающего вирусного антигена. Заражают эмбрионы на хорионаллантоисную оболочку (в возрасте 11 - 12 дней вирусами группы оспы), в аллантоисную и амниотическую полости (10-11-дневными миксовирусами), желточный мешок (в возрасте 5-6 дней возбудителями пситтакозаорнитоза и др.). Инокуляцию материала эмбрионам в мозг и внутривенно (в сосуды оболочек) производят редко. При любом способе заражения эмбрионы могут быть травмированы, поэтому погибших в первые 24-48 час. из учета исключают.

Для изучения действия на вирусы хим. веществ весьма удобны деэмбрионированные яйца, в которых удален эмбрион, но сохранена хорионаллантоисная оболочка. Внутрь помещают вирус и изучаемое вещество в 20 мл изотонического раствора хлорида натрия. Отверстие в скорлупе закрывают колпачком с трубочкой, через к-рую можно брать пробы для анализа.

При оценке опытов на животных и эмбрионах птиц следует иметь в виду возможность провокации у них латентных инфекций или выделения находящегося в латентном состоянии вируса.

Исключительно широко для выделения и накопления вирусов применяют культуры клеток и тканей (см.). Этими методами можно культивировать большинство известных вирусов (см. Культивирование вирусов). Некоторые из них интенсивно накапливаются уже при первичном заражении культур, для адаптации других требуется несколько пассажей. Размножение большинства вирусов в клеточных культурах сопровождается развитием цитопатического эффекта. По его характеру в известной степени можно судить о принадлежности вирусов к тому или иному роду: пикорнавирусы вызывают округление и сморщивание клеток, аденовирусы - образование округлившимися клетками скоплений в виде виноградных гроздьев, миксовирусы и герпетические вирусы - формирование многоядерных синцитиев. Ряд вирусов культивировать вне организма не удается.

Размножение некоторых вирусов (оспенная группа, миксо- и арбовирусы) можно обнаружить с помощью реакции гемадсорбции, поскольку пораженные клетки приобретают способность адсорбировать эритроциты. Соответствующие эритроциты (человека, обезьяны, морской свинки, курицы) в концентрации 0,4-0,5% помещают на монослой при t° 4° или при комнатной температуре на 20- 30 мин. Эритроциты адсорбируются диффузно по всей культуре (напр., парагриппозными вирусами) или формируют островки (вирусы гриппа, паротита).

О размножении вируса иногда судят путем исследования культуральной жидкости на животных (клещевой энцефалит) или в РСК. Наличие вируса, не обладающего цитопатической активностью, иногда определяют по его способности интерферировать с цитопатогенным вирусом. Так, в культурах клеток эмбрионов кур, инфицированных вирусами лейкозов птиц, подавляется размножение вируса саркомы Рауса. Для обнаружения нецитопатогенных штаммов вирусов диареи крупного рогатого скота и холеры свиней предложен метод END (exaltation of Newcastle disease virus) - суперинфицирование культур вирусом болезни Ньюкасла. При совместном действии обоих вирусов наступает разрушение клеток.

При появлении цитопатических изменений или других признаков размножения вируса культуральную жидкость используют для идентификации вируса или пассажа. Ряд вирусов остается связанным с клетками даже при дегенерации культуры (аденовирусы, вирусы группы оспы), вследствие чего производят замораживание и оттаивание культур перед сбором жидкости. Некоторые герпетические вирусы, напр, вирус болезни Марека у кур, необходимо пересевать вместе с неповрежденными клетками.

Для изучения респираторных корона-вирусов человека и некоторых других используют метод тканевых культур, т. е. заражение культивируемых in vitro тканевых фрагментов. Чаще всего используют ткань трахеи кролика. Размножающийся вирус поражает клетки эндотелия слизистой оболочки, что определяют по прекращению движения ресничек.

Следует учитывать возможность присутствия в культурах тканей и клеток посторонних вирусов. Они могут быть внесены с клетками, если последние взяты из инфицированного организма, попасть из трипсина или сыворотки, использованной для культивирования клеток.

Помимо посева биопсийного или секционного материала на уже выращенные культуры, применяют непосредственное культивирование клеток исследуемого органа после его трипсинизации, что нередко более эффективно в отношении выделения вируса (напр., обнаружение аденовирусов в миндалинах). Используют также методику смешанных культур, когда клетки исследуемого органа выращивают вместе с какими-либо чувствительными к данному вирусу клетками (напр., посев клеток мозга больных подострым склерозирующим панэнцефалитом вместе с клетками почек обезьян или Hela-клетками для выделения вируса кори). Метод смешанных культур является зачастую единственным способом выделения вируса из индуцированных им у животных опухолей, которые не продуцируют активного вируса, однако содержат вирусный геном.

Однослойные клеточные культуры дают возможность получить колонии вируса - бляшки (рис. 2). Как правило, бляшки формируют вирусы, обладающие цитопатической активностью. В то же время этот метод позволяет обнаруживать некоторые нецитопатогенные вирусы (напр., ряд штаммов вируса диареи крупного рогатого скота). Для получения бляшек вирус вносят на клеточный монослой в чашках или плоских флаконах. Множественность заражения, т. е. число вирусных частиц на одну клетку, должна быть небольшой, чтобы образовавшиеся бляшки не сливались. После 30-60 мин. адсорбции наслаивают питательную среду с 1,35 - 1,5% агара и нейтральным красным в конечном разведении 1: 40 000. Культуры в чашках Петри инкубируют в атмосфере с 5-10% углекислоты, а герметически закрытые флаконы - в обычном термостате. Через несколько дней среди прижизненно окрашенных клеток начинают выделяться неокрашенные фокусы из дегенерированных клеток.

Можно на клетки помещать агар без нейтрального красного, а через несколько дней нанести второй слой агара с красителем; бляшки становятся видимыми через несколько часов. Агар иногда содержит сульфаты полисахаридов, которые являются ингибиторами роста вирусов; для их нейтрализации в среду добавляют протамин-сульфат (60 мг на 100 мл). Для получения бляшек ряда вирусов можно использовать в качестве покрытия метилцеллюлозу и другие вещества. Некоторые вирусы (оспы, кори) формируют бляшки и без агарового покрытия. Метод бляшек позволяет провести клональный анализ вирусных штаммов. Для выделения генетически однородных клонов извлекают одну бляшку, к-рую используют для следующего заражения. Обычно клонирование проводят на протяжении трех пассажей.

Метод бляшек пригоден также для определения в зараженной культуре количества клеток, продуцирующих вирус (т. е. число инфекционных центров). Для этого клетки суспендируют, помещают на однослойную культуру чувствительных к вирусу индикаторных клеток и заливают агаром. Вокруг зараженных клеток формируются бляшки.

Для диагностики вирусных инфекций и изучения антигенной структуры вирусов применяется реакция преципитации в геле. Чаще всего с этой целью используют агар. Антигены и специфические антитела, помещенные в агаровый гель на определенном расстоянии, диффундируют и образуют при встрече преципитат в виде белых полос. 0,8-1% агар в изотоническом растворе хлорида натрия или фосфатном буфере помещают в капилляры или наносят слоем на предметные стекла. Антигены предпочтительно иметь очищенные и концентрированные. Ингредиенты реакции вносят на агар в противоположные концы капилляра или в лунки, сделанные в слое агара на стеклах на расстоянии 5-6 мм. Инкубация продолжается 4-20 час.

Значительное число В. и. выполняют с помощью световой и электронной микроскопии. Наиболее крупные вирусы (напр., оспы) после соответствующей обработки (серебрение, окраска викторияблау и др.) могут быть выявлены при обычной световой микроскопии. Этот метод применяют при диагностике оспы путем обследования материала из пустул. Характерным для некоторых инфекций является формирование в клетках телец - включений. Так, в ядрах появляются включения при герпетической и аденовирусной инфекции, в цитоплазме - при оспе (тельца Гуарниери) и бешенстве (тельца Бабеша- Негри). Обнаружение включений имеет значение для диагностики бешенства, оспы, цитомегалии, подострого склерозирующее панэнцефалита и др.

Микроскопию в темном поле (см. Темнопольная микроскопия) и фазово-контрастную микроскопию (см.) используют гл. обр. для изучения динамики изменений в пораженных вирусом клетках. Более широко применяют люминесцентную микроскопию (см.).

Исследуют мазки, отпечатки и выращенные на стеклах однослойные клеточные культуры. Препараты (нативные или фиксированные) чаще всего окрашивают акридином оранжевым. Метод позволяет выявлять крупные вирусы и скопления вирусных компонентов. Образования, содержащие ДНК, светятся ярко-зеленым светом, а содержащие РНК - кирпично-красным. Еще чаще при В. и. производят обработку зараженных клеток флюоресцирующими антителами, что позволяет выявить скопления вирусного антигена. При прямом методе используют иммунный гамма-глобулин, меченный флюоресцентным красителем, напр, флюоресцеин-изотиоцианатом. При непрямом методе препарат обрабатывают обычной иммунной сывороткой какого-либо животного, а затем мечеными антителами против гамма-глобулина этого животного. Препараты просматривают в ультрафиолетовом свете, вирусный антиген обнаруживают по светло-зеленому свечению (см. Иммунофлюоресценция). Метод мазков из носоглотки позволяет проводить раннюю диагностику респираторных вирусных инфекций - гриппозной, парагриппозной, рино- и аденовирусной, респираторно-синцитиальной.

Хим. состав вирусов исследуют общепринятыми хим. методами. Нуклеиновую к-ту обычно получают фенольной экстракцией, реже применяют анионные детергенты - додецил- или лаурилсульфат натрия.

Для идентификации вирусов (см.) в первую очередь следует установить их родовую принадлежность. Для этого необходимо определить размеры и структуру вирусных частиц, вид входящей в их состав нуклеиновой к-ты, наличие липоидной оболочки. Вид нуклеиновой к-ты чаще всего определяют косвенными методами, напр, используя способность бромдезоксиуридина подавлять размножение ДНК-содержащих вирусов. Наличие липоидной оболочки у вируса устанавливают по его чувствительности к действию эфира и хлороформа (имеющие оболочку вирусы инактивируются). Дальнейшую идентификацию проводят с набором иммунных сывороток к известным вирусам, используя различные реакции - нейтрализации, РСК, РТГА и др. Реже производят иммунизацию животных известным вирусом с дальнейшим их заражением неизвестным или наоборот.

Библиография: Лабораторная диагностика вирусных и риккетсиозных заболеваний, под ред. Э. Леннета и Н. Шмидт, пер. с англ., М., 1974, библиогр.; Лурия G. Е. и Д а р н e л л Дж. Е. Общая вирусология, пер. с англ., М., 1970, библиогр.; Методы вирусологии и молекулярной биологии, пер. с англ., М., 1972; П ш e н и ч-н о в В. А., Семенов Б.Ф. иЗезе-р о в Е. Г. Стандартизация методов вирусологических исследований, М., 1974, библиогр.; Руководство по лабораторной диагностике вирусных и риккетсиозных болезней, под ред. П. Ф. Здродовского и М. И. Соколова, М., 1965; Соколов М. И., С и н и ц к и й А. А. и Ремезов П. И. Вирусологические и серологические исследования при вирусных инфекциях, Л., 1972; Virologische Praxis, hrsg, v. G. Starke, Jena, 1968, Bibliogr.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины