Характеристика ферментов расщепляющих углеводы биохимия кратко. Реферат: Лекции по биохимии углеводов. Механизм действия и метаболические эффекты инсулина

Характеристика ферментов расщепляющих углеводы биохимия кратко. Реферат: Лекции по биохимии углеводов. Механизм действия и метаболические эффекты инсулина

15.06.2019

ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007г

ЛЕКЦИЯ № 7

Тема: Переваривание и всасывание углеводов. Обмен гликогена

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Углеводы – это многоатомные спирты содержащие оксогруппу.

По количеству мономеров все углеводы делят на: моно-, ди-, олиго- и полисахариды.

Моносахариды по положению оксогруппы делятся альдозы и кетозы.

По количеству атомов углерода моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д.

Функции углеводов

Моносахариды – углеводы, которые не гидролизуются до более простых углеводов.

Моносахариды:

· выполняют энергетическую функцию (образование АТФ).

· выполняют пластическую функцию (участвуют в образовании ди-, олиго-, полисахаридов, аминокислот, липидов, нуклеотидов).

· выполняют детоксикационную функцию (произ­водные глюкозы, глюкурониды, участвуют в обезвреживании токсичных метаболитов и ксенобиотиков).

· являются фрагментами гликолипидов (цереброзиды).

Дисахариды – углеводы, которые гидролизуются на 2 моносахарида. У человека образуется только 1 дисахарид - лактоза. Лактоза синтезируется при лактации в молочных железах и содержится в молоке. Она:

· является источником глюкозы и галактозы для новорожденных;

· участвует в формировании нормальной микрофлоры у новорожденных.

Олигосахариды – углеводы, которые гидролизуются на 3 - 10 моносахаридов.

Олигосахариды являются фрагментами гликопротеинов (ферменты, белки-транспортёры, белки-рецепторы, гормоны), гликолипидов (глобозиды, ганглиозиды). Они образуют на поверхности клетки гликокаликс.

Полисахариды – углеводы, которые гидролизуются на 10 и более моносахаридов. Гомополисахариды выполняют запасающую функцию (гликоген – форма хранения глюкозы). Гетерополисахариды (ГАГ) являются структурным компонентом межклеточного вещества (хондроитинсульфаты, гиалуроновая кислота), участвуют в пролиферации и дифференцировке клеток, препятствуют свертыванию крови (гепарин).

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль. В пище человека в основном содержатся по­лисахариды - крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе - до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтоза есть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды - обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1). Внутриклеточное (в лизосомах); 2). Внеклеточное (в ЖКТ): а). полостное (дистантное); б). пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)

В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α-амилаза (α-1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов - декстринов и небольшого количества мальтозы и изомальтозы. Необходим ион Cl - .

Переваривание углеводов в желудке (полостное)

Действие амилазы слюны прекращается в кислой среде (рН <4) содержимого желудка, однако, внутри пищевого комка ак­тивность амилазы может некоторое время сохраняться. Желудочный сок не содержит фермен­тов, расщепляющих углеводы, в нем возможен лишь незначительный кислотный гидролиз гликозидных связей.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)

В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5-8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α-амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3-8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе - дисахариде грибов.Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.Всасывание углеводов Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na + . Через белок-переносчик Na + двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na + создаётся Nа + /К + -АТФ-азой.
При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза > другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии через белки-переносчики.

Нарушение переваривания и всасывания углеводов

Недостаточное переваривание и всасывание переваренных продуктов называют мальабсорбцией . В основе мальабсорбции углеводов могут быть причины двух типов:

1). Наследственные и приобретенные дефекты ферментов, участвующих в переваривании . Известны наследственные дефекты лактазы, α-амилазы, сахаразно-изомальтазного комплекса. Без лечения эти па­тологии сопровождаются хроническим дисбактериозом и нарушениями физического разви­тия ребёнка.

Приобретённые нарушения переваривания могут наблю­даться при кишечных заболеваниях, например гастритах, колитах, энтеритах, после операций на ЖКТ.

Дефицит лактазы у взрослых людей может быть связан со снижением экспрессии гена лактазы, что проявляться непе­реносимостью молока - наблюдается рвота, диарея, спазмы и боли в животе, метеоризм. Частота этой па­тологии составляет в Европе 7-12%, в Китае - 80%, в Африке - до 97%.

2). Нарушение всасывания моносахаридов в кишечнике.

Нарушения всасывания могут быть следствием дефекта какого-либо компонента, участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы.

Синдром мальабсорбции сопровождается осмотической диареей, усилением перистальтики, спазмами, болями, а также метеоризмом. Диарею вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды в дистальных отделах кишечника, а также органические кислоты, образованные микроорганизмами при неполном расщеплении углеводов.

Углеводы - обширная группа органических веществ, которые вместе с белками и жирами составляют основу организма человека и животных. Углеводы присутствуют в каждой клетке организма, выполняют разнообразные функции. Небольшие молекулы углеводов, представленные, в основном, глюкозой, могут перемещаться по всему организму и выполнять энергетическую функцию. Крупные молекулы углеводов не перемещаются и выполняют, в основном, строительную функцию. Из пищи человек извлекает только мелкие молекулы, так как только они могут всосаться в клетки кишечника. Крупные же молекулы углеводов организму приходится строить самому. Совокупность всех реакций по расщеплению углеводов пищи до глюкозы и синтезу из нее новых молекул, а также другие многочисленные превращения этих веществ в организме, называют в биохимии обменом углеводов.

Классификация

В зависимости от строения, различают несколько групп углеводов.

Моносахариды - мелкие молекулы, которые не расщепляются в пищеварительном тракте. Это глюкоза, фруктоза, галактоза.

Дисахариды - мелкие молекулы углеводов, которые в пищеварительном тракте расщепляются на два моносахарида. Например, лактоза - на глюкозу и галактозу, сахароза - на глюкозу и фруктозу.

Полисахариды - крупные молекулы, состоящие из сотен тысяч остатков моносахаридов (в основном, глюкозы), соединенных между собой. Это крахмал, гликоген мяса.

Углеводы и диеты

Время расщепления полисахаридов в пищеварительном тракте отличается, что зависит от их способности растворяться в воде. Одни полисахариды расщепляются в кишечнике быстро. Тогда при их распаде, быстро попадает в кровь. Такие полисахариды называют «быстрыми». Другие хуже растворяются в водной среде кишечника, поэтому медленнее расщепляются, а глюкоза медленнее поступает в кровь. Такие полисахариды называют «медленными». Некоторые из этих элементов вообще не расщепляются в кишечнике. Их называют нерастворимыми пищевыми волокнами.

Обычно под названием «медленные или быстрые углеводы» имеются в виду не сами полисахариды, а продукты, которые их содержат в большом количестве.

Список углеводов - быстрых и медленных, представлен в таблице.

Быстрые углеводы Медленные углеводы
жареный картофель Хлеб с отрубями
Белый хлеб Необработанные зерна риса
Картофельное пюре Горох
Мед Овсяные хлопья
Морковь Гречневая каша
Кукурузные хлопья Ржаной хлеб с отрубями
Сахар Свежевыжатый фруктовый сок без сахара
Мюсли Макароны из муки грубого помола
Шоколад Красная фасоль
Вареный картофель Молочные продукты
Бисквит Свежие фрукты
Кукуруза Горький шоколад
Белый рис Фруктоза
Черный хлеб Соя
Свекла Зеленые овощи, помидоры, грибы
Бананы -
Джем -

При выборе продуктов для составления рациона диетолог всегда опирается на список быстрых углеводов и медленных. Быстрые в сочетании с жирами в одном продукте или приеме пищи приводят к отложению жира. Почему? Быстрое повышение содержания глюкозы в крови стимулирует выработку инсулина, который обеспечивает запас глюкозы в организме, включая и путь образования из нее жира. В результате при поедании пирожных, мороженого, жареной картошки вес набирается очень быстро.

Переваривание

С точки зрения биохимии, обмен углеводов проходит в три этапа:

  • Пищеварение.Оно начинается еще в ротовой полости в процессе пережевывания пищи.
  • Собственно метаболизм углеводов.
  • Образование конечных продуктов обмена.

Углеводы - основа пищевого рациона человека. Согласно формуле рационального питания, в составе пищи их должно быть в 4 раза больше, чем белков или жиров. Потребность в углеводах индивидуальна, но, в среднем, человеку необходимо 300-400 г в сутки. Из них около 80% приходится на крахмал в составе картофеля, макарон, круп и 20% - на быстрые углеводы (глюкоза, фруктоза).

Обмен углеводов в организме также начинается в ротовой полости. Здесь на полисахариды - крахмал и гликоген действует фермент слюны амилаза. Амилаза гидролизует (расщепляет) полисахариды на крупные осколки - декстрины, которые попадают в желудок. Здесь нет ферментов, действующих на углеводы, поэтому декстрины в желудке никак не изменяются и проходят дальше по пищеварительному тракту, попадая в тонкий кишечник. Здесь на углеводы действует несколько ферментов. Амилаза панкреатического сока гидролизует декстрины до дисахарида мальтозы.

Секретируют клетки самого кишечника. Фермент мальтаза гидролизует мальтозу до моносахарида глюкозы, лактаза - лактозу до глюкозы и галактозы, сахараза - сахарозу до глюкозы и фруктозы. Полученные монозы всасываются из кишечника в кровь и по воротной вене попадают в печень.

Роль печени в обмене углеводов

Этот орган обеспечивает поддержание определенного уровня глюкозы в крови за счет реакций синтеза и распада гликогена.

В печени идут реакции взаимопревращений моносахаридов - фруктоза и галактоза превращаются в глюкозу, а глюкоза может превратиться во фруктозу.

В этом органе идут реакции глюконеогенеза - синтеза глюкозы из неуглеводных предшественников - аминокислот, глицерина, молочной кислоты. Также здесь нейтрализуется гормон инсулин с помощью фермента инсулиназы.

Метаболизм глюкозы

Глюкоза играет ключевую роль в биохимии обмена углеводов и в общем метаболизме организма, поскольку она является главным источником энергии.

Уровень глюкозы в крови является постоянной величиной и составляет 4 - 6 ммоль/л. Основными источниками этого элемента в крови являются:

  • Углеводы пищи.
  • Гликоген печени.
  • Аминокислоты.

Расходуется глюкоза в организме на:

  • образование энергии,
  • синтез гликогена в печени и мышцах,
  • синтез аминокислот,
  • синтез жиров.

Природный источник энергии

Глюкоза - универсальный источник энергии для всех клеток организма. Энергия необходима для построения собственных молекул, сокращения мышц, выработки тепла. Последовательность реакций превращения глюкозы, приводящих к выделению энергии, называют гликолизом. Реакции гликолиза могут идти в присутствии кислорода, тогда говорят об аэробном гликолизе, или в бескислородных условиях, тогда процесс является анаэробным.

В ходе анаэробного процесса одна молекула глюкозы превращается в две молекулы молочной кислоты (лактата) и выделяется энергия. Анаэробный гликолиз дает мало энергии: из одной молекулы глюкозы получается две молекулы АТФ - вещества, химические связи которого аккумулируют энергию. Этот способ получения энергии используется для кратковременной работы скелетных мышц - от 5 секунд до 15 минут, то есть в то время, пока механизмы снабжения мышц кислородом не успевают включиться.

В ходе реакций аэробного гликолиза одна молекула глюкозы превращается в две молекулы пировиноградной кислоты (пирувата). Процесс с учетом трат энергии на собственные реакции дает 8 молекул АТФ. Пируват вступает в дальнейшие реакции окисления - окислительное декарбоксилирование и цитратный цикл (цикл Кребса, цикл трикарбоновых кислот). В результате этих превращений на молекулу глюкозы выделится 30 молекул АТФ.

Обмен гликогена

Функция гликогена - запасание глюкозы в клетках животного организма. Эту же функцию в растительных клетках выполняет крахмал. Гликоген иногда называют животным крахмалом. Оба вещества являются полисахаридами, построенными из многократно повторяющихся остатков глюкозы. Молекула гликогена более разветвленная и компактная, чем молекула крахмала.

Процессы обмена в организме углевода гликогена особенно интенсивно идут в печени и скелетных мышцах.

Гликоген синтезируется в течение 1-2 часов после еды, когда уровень в крови глюкозы высок. Для образования молекулы гликогена нужен праймер - затравка, состоящая из нескольких остатков глюкозы. К концу праймера последовательно присоединяются новые остатки в виде УТФ-глюкозы. Когда цепочка вырастает на 11-12 остатков, к ней присоединяется боковая цепь из 5-6 таких же фрагментов. Теперь у цепочки, идущей от праймера, есть два конца - две точки роста молекулы гликогена. Эта молекула будет многократно удлиняться и ветвиться до тех пор, пока сохраняется высокая концентрация в крови глюкозы.

Между приемами пищи гликоген распадается (гликогенолиз), освобождая глюкозу.

Полученная при распаде гликогена печени, она идет в кровь и используется для нужд всего организма. Глюкоза, полученная при распаде гликогена в мышцах, тратится на нужды только мышц.

Образование глюкозы из неуглеводных предшественников - глюконеогенез

Организму хватает энергии, запасенной в виде гликогена, только на несколько часов. Через сутки голодания этого вещества в печени не остается. Поэтому при безуглеводных диетах, полном голодании или при длительной физической работе нормальный уровень глюкозы в крови поддерживается за счет ее синтеза из неуглеводных предшественников - аминокислот, глицерина молочной кислоты. Все эти реакции протекают, в основном, в печени, а также в почках и слизистой кишечника. Таким образом, процессы обмена углеводов, жиров и белков тесно переплетены между собой.

Из аминокислот и глицерина глюкоза синтезируется при голодании. В условиях отсутствия еды тканей до аминокислот, жиры - до жирных кислот и глицерина.

Из молочной кислоты глюкоза синтезируется после интенсивной физической нагрузки, когда она накапливается в больших количествах в мышцах и печени в ходе анаэробного гликолиза. Из мышц молочная кислота переносится в печень, где из нее синтезируется глюкоза, которая вновь возвращается в работающую мышцу.

Регуляция углеводного обмена

Этот процесс осуществляется нервной системой, эндокринной системой (гормонами) и на внутриклеточном уровне. Задача регуляции - обеспечить стабильный уровень глюкозы в крови. Из гормонов, регулирующих процессы обмена углеводов, главными являются инсулин и глюкагон. Они вырабатываются в поджелудочной железе.

Основная задача инсулина в организме - снижение уровня глюкозы в крови. Добиться этого можно двумя путями: увеличив проникновение глюкозы из крови в клетки организма и усилив в них ее использование.

  1. Инсулин обеспечивает проникновение глюкозы в клетки определенных тканей - мышечной и жировой. Их называют инсулинзависимыми. В мозг, лимфатическую ткань, эритроциты глюкоза попадает без участия инсулина.
  2. Инсулин усиливает использование глюкозы клетками путем:
  • Активации ферментов гликолиза (глюкокиназа, фосфофруктокиназа, пируваткиназа).
  • Активации синтеза гликогена (за счет усиления превращения глюкозы в глюкозо-6-фосфат и стимуляции гликогенсинтазы).
  • Торможения ферментов глюконеогенеза (пируваткарбоксилаза, глюкозо-6-фосфатаза, фосфоенолпируваткарбоксикиназа).
  • Усиления включения глюкозы в пентозофосфатный цикл.

Все остальные гормоны, регулирующие углеводный обмен - это глюкагон, адреналин, глюкокортикоиды, тироксин, гормон роста, АКТГ. Они увеличивают содержание глюкозы в крови. Глюкагон активирует распад гликогена в печени и синтез глюкозы из неуглеводистых предшественников. Адреналин активирует распад гликогена в печени и мышцах.

Нарушения обмена. Гипогликемия

Самыми распространенными нарушениями обмена углеводов являются гипо- и гипергликемии.

Гипогликемия - состояние организма, вызванное низким уровнем глюкозы в крови (ниже 3,8 ммоль/л). Причинами могут быть: снижение поступление этого вещества в кровь из кишечника или печени, повышение его использования тканями. К гипогликемии могут привести:

  • Патологии печени - нарушение синтеза гликогена или синтеза глюкозы из неуглеводных предшественников.
  • Углеводное голодание.
  • Патологии почек - нарушение обратного всасывания глюкозы из первичной мочи.
  • Нарушения пищеварения - патологии расщепления углеводов пищи или процесса всасывания глюкозы.
  • Патологии эндокринной системы - избыток инсулина или недостаток гормонов щитовидной железы, глюкокортикоидов, гормона роста (СТГ), глюкагона, катехоламинов.

Крайнее проявление гипогликемии - гипогликемическая кома, которая чаще всего развивается у больных сахарным диабетом I типа при передозировке инсулина. Низкое содержание глюкозы в крови приводит к кислородному и энергетическому голоданию мозга, что вызывает характерные симптомы. Отличается чрезвычайно быстрым развитием - если не предпринять нужных действий в течение нескольких минут, человек потеряет сознание и может погибнуть. Обычно пациенты с сахарным диабетом умеют распознавать признаки падения глюкозы в крови и знают, что нужно предпринять - выпить стакан сладкого сока или съесть сладкую булочку.

Гипергликемия

Еще одним видом нарушения углеводного обмена является гипергликемия - состояние организма, вызванное стойким высоким содержанием глюкозы в крови (выше 10 ммоль/л). Причинами могут быть:

  • патологии эндокринной системы. Самая частая причина гипергликемии - сахарный диабет. Различают сахарный диабет I и II типа. В первом случае причина болезни - дефицит инсулина, вызванный поражением клеток поджелудочной железы, секретирующих этот гормон. Поражение железы чаще всего имеет аутоиммунный характер. Сахарный диабет II типа развивается при нормальной выработке инсулина, поэтому называется инсулиннезависимым; но инсулин не выполняет свою функцию - не проводит глюкозу в клетки мышечной и жировой тканей.
  • неврозы, стрессы активируют выработку гормонов - адреналина, глюкокортикоидов, щитовидной железы, которые усиливают распад гликогена и синтез глюкозы из неуглеводных предшественников в печени, тормозят синтез гликогена;
  • патологии печени;
  • переедание.

В биохимии обмен углеводов - одна из самых интересных и обширных тем для изучения и исследований.

ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007г

ЛЕКЦИЯ № 7

Тема: Переваривание и всасывание углеводов. Обмен гликогена

Углеводы – это многоатомные спирты содержащие оксогруппу.

По количеству мономеров все углеводы делят на: моно-, ди-, олиго- и полисахариды.

Моносахариды по положению оксогруппы делятся альдозы и кетозы.

По количеству атомов углерода моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д.

Функции углеводов

Моносахариды – углеводы, которые не гидролизуются до более простых углеводов.

Моносахариды:

· выполняют энергетическую функцию (образование АТФ).

· выполняют пластическую функцию (участвуют в образовании ди-, олиго-, полисахаридов, аминокислот, липидов, нуклеотидов).

· выполняют детоксикационную функцию (произ­водные глюкозы, глюкурониды, участвуют в обезвреживании токсичных метаболитов и ксенобиотиков).

· являются фрагментами гликолипидов (цереброзиды).

Дисахариды – углеводы, которые гидролизуются на 2 моносахарида. У человека образуется только 1 дисахарид - лактоза. Лактоза синтезируется при лактации в молочных железах и содержится в молоке. Она:

· является источником глюкозы и галактозы для новорожденных;

· участвует в формировании нормальной микрофлоры у новорожденных.

Олигосахариды – углеводы, которые гидролизуются на 3 - 10 моносахаридов.

Олигосахариды являются фрагментами гликопротеинов (ферменты, белки-транспортёры, белки-рецепторы, гормоны), гликолипидов (глобозиды, ганглиозиды). Они образуют на поверхности клетки гликокаликс.

Полисахариды – углеводы, которые гидролизуются на 10 и более моносахаридов. Гомополисахариды выполняют запасающую функцию (гликоген – форма хранения глюкозы). Гетерополисахариды (ГАГ) являются структурным компонентом межклеточного вещества (хондроитинсульфаты, гиалуроновая кислота), участвуют в пролиферации и дифференцировке клеток, препятствуют свертыванию крови (гепарин).

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль. В пище человека в основном содержатся по­лисахариды - крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе - до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтоза есть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды - обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1). Внутриклеточное (в лизосомах); 2). Внеклеточное (в ЖКТ): а). полостное (дистантное); б). пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)

В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α-амилаза (α-1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов - декстринов и небольшого количества мальтозы и изомальтозы. Необходим ион Cl - .

Переваривание углеводов в желудке (полостное)

Действие амилазы слюны прекращается в кислой среде (рН <4) содержимого желудка, однако, внутри пищевого комка ак­тивность амилазы может некоторое время сохраняться. Желудочный сок не содержит фермен­тов, расщепляющих углеводы, в нем возможен лишь незначительный кислотный гидролиз гликозидных связей.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)

В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5-8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α-амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3-8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе - дисахариде грибов.Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.Всасывание углеводов Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na + . Через белок-переносчик Na + двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na + создаётся Nа + /К + -АТФ-азой.
При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза > другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии через белки-переносчики.

Нарушение переваривания и всасывания углеводов

Недостаточное переваривание и всасывание переваренных продуктов называют мальабсорбцией . В основе мальабсорбции углеводов могут быть причины двух типов:

1). Наследственные и приобретенные дефекты ферментов, участвующих в переваривании . Известны наследственные дефекты лактазы, α-амилазы, сахаразно-изомальтазного комплекса. Без лечения эти па­тологии сопровождаются хроническим дисбактериозом и нарушениями физического разви­тия ребёнка.

Приобретённые нарушения переваривания могут наблю­даться при кишечных заболеваниях, например гастритах, колитах, энтеритах, после операций на ЖКТ.

Дефицит лактазы у взрослых людей может быть связан со снижением экспрессии гена лактазы, что проявляться непе­реносимостью молока - наблюдается рвота, диарея, спазмы и боли в животе, метеоризм. Частота этой па­тологии составляет в Европе 7-12%, в Китае - 80%, в Африке - до 97%.

2). Нарушение всасывания моносахаридов в кишечнике.

Нарушения всасывания могут быть следствием дефекта какого-либо компонента, участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы.

Синдром мальабсорбции сопровождается осмотической диареей, усилением перистальтики, спазмами, болями, а также метеоризмом. Диарею вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды в дистальных отделах кишечника, а также органические кислоты, образованные микроорганизмами при неполном расщеплении углеводов.

Транспорт глюкозы из крови в клетки Глюкоза поступает из кровотока в клетки путём облегчённой диффузии с помощью белков-переносчиков - ГЛЮТов. Глюкозные транспортёры ГЛЮТы имеют доменную организацию и обнаружены во всех тканях. Выделяют 5 типов ГЛЮТов: ГЛЮТ-1 - преимущественно в мозге, плаценте, почках, толстом кишечнике; ГЛЮТ-2 - преимущественно в печени, почках, β-клетках поджелудочной железы, энтероцитах, есть в эритроцитах. Имеет высокую Км;

ГЛЮТ-3 - во многих тканях, включая мозг, плаценту, почки. Обладает большим, чем ГЛЮТ-1, сродством к глюкозе;

ГЛЮТ-4 - инсулинзависимый, в мышцах (скелетной, сердечной), жировой ткани; ГЛЮТ-5 - много в клетках тонкого кишечника, является переносчиком фруктозы.

ГЛЮТы, в зависимости от типа, могут находиться преимущественно как в плазматической мембране, так и в цитозольных везикулах. Трансмембранный перенос глюкозы происходит только тогда, когда ГЛЮТы находятся в плазматической мембране. Встраивание ГЛЮТов в мембрану из цитозольных везикул происходит под действием инсулина. При снижении концентрации инсулина в крови эти ГЛЮТы снова перемещаются в цитоплазму. Ткани, в которых ГЛЮТы без инсулина почти полностью находятся в цитоплазме клеток (ГЛЮТ-4, и в меньшей мере ГЛЮТ-1), оказываются инсулинзависимыми (мышцы, жировая ткань), а ткани, в которых ГЛЮТы преимущественно находятся в плазматической мембране (ГЛЮТ-3) - инсулиннезависимыми.

Известны различные нарушения в работе ГЛЮТов. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета.

Метаболизм моносахаридов в клетке

После всасывания в кишечнике глюкоза и другие моносахариды поступают в воротную вену и далее в печень. Моносахариды в печени превращаются в глюкозу или продукты её метаболизма. Часть глюкозы в печени депонируется в виде гликогена, часть идет на синтез новых веществ, а часть через кровоток, направляется в другие органы и ткани. При этом печень поддерживает концентрацию глюкозы в крови на уровне 3,3-5,5 ммоль/л.

Фосфорилирование и дефосфорилирование моносахаридов

В клетках глюкоза и другие моносахариды с использованием АТФ фосфорилируются до фосфорных эфиров: глюкоза + АТФ → глюкоза-6ф + АДФ. Для гексоз эту необратимую реакцию катализирует фермент гексокиназа , которая имеет изоформы: в мышцах - гексокиназа II, в печени, почках и β-клетках поджелудочной железы - гексокиназа IV (глюкокиназа), в клетках опухолевых тканей - гексокиназа III. Фосфорилирование моносахаридов приводит к образованию реакционно-способных соединений (реакция активации), которые не способны покинуть клетку т.к. нет соответствующих белков-переносчиков. Фосфорилирование уменьшает количество свободной глюкозы в цитоплазме, что облегчает ее диффузию из крови в клетки.

Гексокиназа II фосфорилирует D-глюкозу, и с меньшей скоростью, другие гексозы. Обладая высоким сродством к глюкозе (Кm <0,1 ммоль/л), гексокиназа II обеспечивает поступление глюкозы в ткани даже при низкой концентрации глюкозы в крови. Так как гексокиназа II ингибируется глюкозо-6-ф (и АТФ/АДФ), глюкоза поступает в клетку только по мере необходимости.

Глюкокиназа (гексокиназа IV) имеет низкое сродство к глюкозе (Кm - 10 ммоль/л), активна в печени (и почках) при повышении концентрации глюкозы (в период пищеварения). Глюкокиназа не ингибируется глюкозо-6-фосфатом, что дает возможность печени без ограничений удалять излишки глюкозы из крови.

Глюкозо-6-фосфатаза катализирует необратимое отщепление фосфатной группы гидролитическим путём в ЭПР: Глюкозо-6-ф + Н 2 О → Глюкоза + Н 3 РО 4 , есть только в печени, почках и клетках эпителия кишечника. Образовавшаяся глюкоза способна диффундировать из этих органов в кровь. Таким образом, глюкозо-6-фосфатаза печени и почек позволяет повышать низкий уровень глюкозы в крови.

Метаболизм глюкозо-6-фосфата

Глюкозо-6-ф может использоваться клетке в различных превращениях, основными из которых являются: катаболизм с образованием АТФ, синтез гликогена, липидов, пентоз, полисахаридов и аминокислот.


МЕТАБОЛИЗМ ГЛИКОГЕНА

Многие ткани в качестве резервной формы глюкозы синтезируют гликоген. Синтез и распад гликогена в печени поддерживают гомеостаз глюкозы в крови.

Гликоген - разветвлённый гомополисахарид глюкозы с массой >10 7 Да (50000 остатков глюкозы), в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления, примерно через каждые 10 остатков глюкозы, мономеры соединены α-1,6-гликозидными связями. Гликоген, водонерастворим, хранится в цитозоле клетки в форме гранул диаметром 10-40 нм. Гликоген депонируется главным образом в печени (до 5%) и скелетных мышцах (до 1%). В организме может содержаться от 0 до 450 г гликогена.

Разветвлённая структура гликогена способствует работе ферментов, отщепляющих или присоединяющих мономеры.

Синтез гликогена (гликогеногенез)

Гликоген синтезируется с затратой энергии в период пищеварения (через 1-2 ч после приёма углеводной пищи).

Синтез гликогена осуществляется путём удлинения уже имеющейся молекулы полисахарида, называемой «затравка », или «праймер ». В состав праймера может входить белок гликогенин, в котором к Тир присоединен олигосахарид (примерно из 8 остатков глюкозы). Глюкозные остатки переносятся гликогенсинтазой на нередуцирующий конец олигосахарида и связываются α-1,4-гликозидными связями.

При удлинении линейного участка примерно до 11 глюкозных остатков, фермент ветвления переносит её концевой блок, содержащий 6-7 остатков, на внутренний остаток глюкозы этой или другой цепи с образованием α-1,6-гликозидной связи. Новая точка ветвления образуется на расстоянии не менее 4 остатков от любой уже существующей точки ветвления.

Распад гликогена (гликогенолиз)

Распад гликогена происходит путем последовательного отщепления глюкозо-1-ф в ответ на повышение потребности организма в глюкозе. Реакцию катализирует гликогенфосфорилаза:

Гликогенфосфорилаза состоит из 2 идентичных субъединиц (94500 Да). Неактивная форма обозначается b, активная - a. Активируется киназой фосфорилазы b путем фосфорилирования каждой субъединицы по серину в 14 положении.

Гликогенфосфорилаза расщепляет фосфоролизом α-1,4-гликозидные связи, до тех пор, пока до точки ветвления не остается 4 остатка глюкозы.

Инактивация гликогенфосфорилазы происходит при дефосфорилировании с участием специфической фосфатазы фосфорилазы (фосфопротеинфосфотазы ФПФ).

Удаление ветвления осуществляет деветвящий фермент . Он обладает трансферазной и гликозидазной активностями. Трасферазная часть (олигосахаридтрансфераза ) переносит три оставшихся до точки ветвления глюкозных остатка на нередуцирующий конец соседней цепи, удлиняя её для фосфорилазы.

Гликозидазная часть (α-1,6-глюкозидаза ) гидролизует α-1,6-гликозидную связь, отщепляя глюкозу.

Глюкозо-1-ф изомеризуется в глюкозо-6-ф фосфоглюкомутазой.

Регуляция метаболизма гликогена в печени

4Са 2+ КМ

Са 2+ , ДАГ


Метаболизм гликогена контролируется гормонами (в печени - инсулином, глюкагоном, адреналином; в мышцах - инсулином и адреналином), которые регулируют фосфорилирование /дефосфорилирование 2 ключевых ферментов гликогенсинтазы и гликогенфосфорилазы.

При недостаточном уровне глюкозы в крови выделяется гормон глюкагон, в крайних случаях – адреналин. Они стимулируют фосфорилирование гликогенсинтазы (она инактивируется) и гликогенфосфорилазы (она активируется). При повышении уровня глюкозы в крови выделяется инсулин, он стимулирует дефосфорилирование гликогенсинтазы (она активируется) и гликогенфосфорилазы (она инактивируется). Кроме того, инсулин индуцирует синтез глюкокиназы, тем самым, ускоряя фосфорилирование глюкозы в клетке. Всё это приводит к тому, что инсулин стимулирует синтез гликогена, а адреналин и глюкагон – его распад.

В печени существует и аллостерическая регуляция гликогенфосфорилазы: ее ингибирует АТФ и глюкозо-6ф, а активирует АМФ.

Нарушения обмена гликогена

Гликогеновые болезни - группа наследственных нарушений, в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена, либо нарушение регуляции этих ферментов.

Гликогенозы - заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах.

В настоящее время гликогенозы делят на 2 группы: печёночные и мышечные.

Печёночные формы гликогенозов ведут к нарушению использования гликогена для поддержания уровня глюкозы в крови. Поэтому общий симптом для этих форм - гипогликемии в постабсорбтивный период.

Болезнь Гирке (тип I) отмечают наиболее часто. Причина - наследственный дефект глюкозо-6-фосфатазы - фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени и почек. Клетки печени и извитых канальцев почек заполнены гликогеном, печень и селезенка увеличены, у больных опухлое лицо - «лицо китайской куклы». Болезнь проявляется гипогликемией, гипертриацилглицеролемией, гиперурикемией, ацидоз.

1). В гепатоцитах: глюкозо-6-ф → ПВК, лактат (ацидоз), рибозо-5-ф. рибозо-5-ф→ пуринов→ мочевая кислота

2). В крови: ↓глюкоза →↓инсулин/глюкагон→: а) липолиз жировой ткани → ЖК в крови.

б). ↓ЛПЛ жировой ткани → ТАГ в крови.

Лечение - диета по глюкозе, частое кормление.

Болезнь Кори (тип III) распространена, 1/4 всех печёночных гликогенозов. Накапливается разветвленный гликоген, так как дефектен деветвящий фермент. Гликогенолиз возможен, но в незначительном объёме. Лактоацидоз и гиперурикемия не отмечаются. Болезнь отличается более лёгким течением чем болезнь Гирке.

Мышечные формы гликогенозов характеризуются нарушением в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и быстрой утомляемостью.

Болезнь МакАрдла (тип V) - аутосомно-рецессивная патология, отсутствует в скелетных мышцах активность гликогенфосфорилазы. Накопление в мышцах гликогена аномальной структуры.

Агликогенозы

Агликогеноз (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерный симптом - судороги, проявляющиеся особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007 г

ЛЕКЦИЯ № 8

Тема: Катаболизм глюкозы. Гликолиз

Основные пути катаболизма глюкозы

Катаболизм глюкозы в клетке может проходить как в аэробных, так и в анаэробных условиях, его основная функция - это синтез АТФ.

Аэробное окисление глюкозы

В аэробных условиях глюкоза окисляется до СО 2 и Н 2 О. Суммарное уравнение:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 2880 кДж/моль.

Этот процесс включает несколько стадий:

1. Аэробный гликолиз . В нем происходит окисления 1 глюкозы до 2 ПВК, с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются) и 2 НАДН 2 ;

2. Превращение 2 ПВК в 2 ацетил-КоА с выделением 2 СО 2 и образованием 2 НАДН 2 ;

3. ЦТК. В нем происходит окисление 2 ацетил-КоА с выделением 4 СО 2 , образованием 2 ГТФ (дают 2 АТФ), 6 НАДН 2 и 2 ФАДН 2 ;

4. Цепь окислительного фосфорилирования. В ней происходит окисления 10 (8) НАДН 2 , 2 (4) ФАДН 2 с участием 6 О 2 , при этом выделяется 6 Н 2 О и синтезируется 34 (32) АТФ.

В результате аэробного окисления глюкозы образуется 38 (36) АТФ, из них: 4 АТФ в реакциях субстратного фосфорилирования, 34 (32) АТФ в реакциях окислительного фосфорилирования. КПД аэробного окисления составит 65%.

Анаэробное окисление глюкозы

Катаболизм глюкозы без О 2 идет в анаэробном гликолизе и ПФШ (ПФП).

· В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С 6 Н 12 О 6 + 2Н 3 РО 4 + 2АДФ → 2С 3 Н 6 О 3 + 2АТФ + 2Н 2 О.

· В ходе ПФП из глюкозы образуются пентозы и НАДФН 2 . В ходе ПФШ из глюкозы образуются только НАДФН 2 .

ГЛИКОЛИЗ

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы). Все его реакции протекают в цитозоле.

Аэробный гликолиз - это процесс окисления глюкозы до ПВК, протекающий в присутствии О 2 .

Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О 2 .

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

Этапы гликолиза

В любом гликолизе можно выделить 2 этапа:

  • 1 этап подготовительный, в нем затрачивается 2 АТФ. Глюкоза фосфорилируется и расщепляется на 2 фосфотриозы;
  • 2 этап, сопряжён с синтезом АТФ. На этом этапе фосфотриозы превращаются в ПВК. Энергия этого этапа используется для синтеза 4 АТФ и восстановления 2НАДН 2 , которые в аэробных условиях идут на синтез 6 АТФ, а в анаэробных условиях восстанавливают ПВК до лактата.

Энергетический баланс гликолиза

Таким образом, энергетический баланс аэробного гликолиза:

8АТФ = -2АТФ + 4АТФ + 6АТФ (из 2НАДН 2)

Энергетический баланс анаэробного гликолиза:

2АТФ = -2АТФ + 4АТФ

Общие реакции аэробного и анаэробного гликолиза

1. Гексокиназа (гексокиназа II, АТФ: гексозо-6-фосфотрансфераза) в мышцах фосфорилирует в основном глюкозу, меньше – фруктозу и галактозу. Кm<0,1 ммоль/л. Ингибитор глюкозо-6-ф, АТФ. Активатор адреналин. Индуктор инсулин.

Глюкокиназа (гексокиназа IV, АТФ: глюкозо-6-фосфотрансфераза) фосфорилирует глюкозу. Кm - 10 ммоль/л, активна в печени, почках. Не ингибируется глюкозо-6-ф. Индуктор инсулин. Гексокиназы осуществляют фосфорилирование гексоз.

2. Фосфогексозоизомераза (глюкозо-6ф-фруктозо-6ф-изомераза) осуществляет альдо-кетоизомеризацию открытых форм гексоз.

3. Фосфофруктокиназа 1 (АТФ: фруктозо-6ф-1-фосфотрансфераза) осуществляет фосфорилирование фруктозы-6ф. Реакция необратима и самая медленная из всех реакций гликолиза, определяет скорость всего гли­колиза. Активируется: АМФ, фруктозо-2,6-дф (мощный активатор, образуется с участием фосфофруктокиназы 2 из фруктозы-6ф), фруктозо-6-ф, Фн. Ингибируется: глюкагоном, АТФ, НАДН 2 , цитратом, жирными кислотами, кетоновыми телами. Индуктор реакции инсулин.

4. Альдолаза А (фруктозо-1,6-ф: ДАФ-лиаза). Альдолазы действуют на открытые формы гексоз, имеют 4 субъединицы, образуют несколько изоформ. В большинстве тканей содержится Альдолаза А. В печени и почках – Альдолаза В.

5. Фосфотриозоизомераза (ДАФ-ФГА-изомераза).

6. 3-ФГА дегидрогеназа (3-ФГА: НАД + оксидоредуктаза (фосфорилирующая)) состоит из 4 субъединиц. Катализирует образование макроэргической связи в 1,3-ФГК и восстановление НАДН 2 , которые используются в аэробных условиях для синтеза 8 (6) молекул АТФ.

7. Фосфоглицераткиназа (АТФ: 3ФГК-1-фосфотрансфераза). Осуществляет субстратное фосфорилирование АДФ с образованием АТФ.

В следующих реакциях низкоэнергетический фосфоэфир переходит в высокоэнергетический фосфат.

8. Фосфоглицератмутаза (3-ФГК-2-ФГК-изомераза) осуществляет перенос фосфатного остатка в ФГК из по­ложения 3 положение 2.

9. Енолаза (2-ФГК: гидро-лиаза) от­щепляет от 2-ФГК молекулу воды и образует высокоэнергетическую связь у фосфора. Ингибируется ионами F - .

10. Пируваткиназа (АТФ: ПВК-2-фосфотрансфераза) осуществляет субстратное фосфорилирование АДФ с образованием АТФ. Активируется фруктозо-1,6-дф, глюкозой. Ингибируется АТФ, НАДН 2 , глюкагоном, адреналином, аланином, жирными кислотами, Ацетил-КоА. Индуктор: инсулин, фруктоза.

Образующаяся енольная форма ПВК затем неферментативно переходит в бо­лее термодинамически стабильную кетоформу. Данная реакция является последней для аэробного гликолиза.

Дальнейший катаболизм 2 ПВК и использование 2 НАДН 2 зависит от наличия О 2 .

Реакция анаэробного гликолиза

В анаэробных условиях ПВК, подобно О 2 в дыхатель­ной цепи, обеспечивает регенерацию НАД + из НАДН 2 , что необходимо для продолжения реакций гликолиза. ПВК при этом превращается в молочную кислоту. Реакция протекает в цитоплазме с участием лактатдегидрогеназы (ЛДГ).

11. Лактатдегидрогеназа (лактат: НАД + оксидоредуктаза). Стоит из 4 субъединиц, имеет 5 изоформ.

Лактат не является конечным продуктом метаболизма, удаляемым из организма. Из анаэробной ткани лактат переноситься кровью в печень, где превращаясь в глюко­зу (Цикл Кори), или в аэробные ткани (миокард), где превращает­ся в ПВК и окисляется до СО 2 и Н 2 О.

Катаболизм ПВК в митохондриях

В аэробных условиях ПВК и водороды с НАДН 2 транспортируются в матрикс митохондрий. ПВК самостоятельно не проходит внутреннюю мембрану митохондрий, перенос ее через мембрану осуществляется вторично-активным транспортом симпортом с Н + . ПВК в митохондриях используется в 2 реакциях:

1. Пируватдегидрогеназный комплекс (ПВК: НАД + оксидорудуктаза (декарбоксилирующая)) содержит 3 фермента и 5 коферментов: а) Пируватдекарбоксилаза содержит (Е1 ) 120 мономеров и кофермент ТПФ; б) Дигидролипоилтрансацилаза (Е2 ) содержит 180 мономеров и коферменты липоамид и HSКоА; в) Дигидролипоилдегидрогеназа (Е3 ) содержит 12 мономеров и коферменты ФАД и НАД. Пируват ДГ комплекс осуществляет окислительное декарбоксилирование ПВК с образованием Ацетил-КоА. Активатор: HSКоА, НАД + , АДФ. Ингибитор: НАДН 2 , АТФ, Ацетил-КоА, жирные кислоты, кетоновые тела. Индуктор инсулин.

Механизм работы Пируват ДГ комплекса. Процесс проходит 5 стадий:

2. Пируваткарбоксилаза (ПВК: СО 2 -синтетаза (АТФ → АДФ + Фн)) сложный олигомерный фермент, содержит биотин. Карбоксилирует ПВК до ЩУК. Пополняющая реакция, по мере необходимости добавляет ЩУК в ЦТК. Активатор: Ацетил-КоА.

Челночные системы

В аэробных условиях О 2 обеспечивает регенерацию НАД + из НАДН 2 , что необходимо для продолжения реакции гликолиза (НАД + субстрат 3-ФГА ДГ).

Так как внутренняя мембрана митохондрий непроницаема для НАДН 2 , восстановленный в гликолизе НАДН 2 , передает свои водороды на дыхательную цепь митохондрий с помощью специальных систем, назы­ваемых «челночными». Известны 2 челночные системы: малат-аспартатная и глицерофосфатная.

1. Малат-аспартатный челнок является универсальным, работает в печени, почках, сердце.

2.

Глицерофосфатный челночный механизм. Работает в белых скелетных мышцах , мозге, в жировой ткани, гепатоцитах .

Малат-аспартатный челнок энергетически более эффективе­н, так как передаёт водород в дыхательную цепь через митохондриальный НАД, соотношение Р/О равно 3, синтезируется 3 АТФ.

В глицерофосфатный челнок передаёт водород в дыхательную цепь через ФАД на KoQ, соотношение Р/О равно 2, синтезируется 2 АТФ.

Пластическое значение катаболизма глюкозы

При ка­таболизме глюкоза может выполнять пластические функции. Метаболиты гликолиза ис­пользуются для синтеза новых соединений. Так, фруктозо-6ф и 3-ФГА участвуют в образовании рибозо-5-ф (компонент нуклеотидов); 3-фосфоглицерат может включаться в синтез ами­нокислот, таких как серии, глицин, цистеин. В печени и жировой ткани Ацетил-КоА исполь­зуется при биосинтезе жирных кис­лот, холестерина, а ДАФ для синтеза глицерол-3ф.

Регуляция гликолиза

Эффект Пастера – снижение скорости потребления глюкозы и накопления лактата в присутствии кислорода.

Эффекта Пастера объясняется наличием конкуренции между ферментами аэробного (ПВК ДГ, ПВК карбоксилаза, ферменты цепи окислительного фосфорилирования) и анаэробного (ЛДГ) пути окисления за общий метаболит ПВК и кофермент НАДН 2 .

· Без О 2 митохондрии не потребляют ПВК и НАДН 2 , в результате их концентрация в цитоплазме повышается и они идут на образование лактата. Так как анаэробный гликолиз дает из 1 глюкозы только 2 АТФ, для образования достаточного количества АТФ необходимо много глюкозы (в 19 раз больше чем в аэробных условиях).

· В присутствии О 2 , митохондрии выкачивают ПВК и НАДН 2 из цитоплазмы, прерывая реакцию образования лактата. При аэробном окислении из 1 глюкозы образуется 38 АТФ, соответственно для образования достаточного количества АТФ необходимо мало глюкозы (в 19 раз меньше чем в анаэробных условиях).

МЕТАБОЛИЗМ ФРУКТОЗЫ И ГАЛАКТОЗЫ

Фрук­тоза и галактоза наряду с глюкозой используются для получения энергии или синтеза веществ: гликогена, ТГ, ГАГ, лактозы и др.

Метаболизм фруктозы

Значительное количество фруктозы, образу­ющееся при расщеплении сахарозы, превраща­ется в глюкозу уже в клетках кишечника. Часть фруктозы поступает в печень.

Метаболизм фруктозы в клетке начинает­ся с реакции фосфорилирования:

1. Фруктокиназа (АТФ: фруктоза-1-фосфотрансфераза) фосфорилирует только фруктозу, имеет к ней высокое сродство. Содержится в печени, почках, кишечнике. Инсулин не влияет на ее активность.

2. Альдолаза В (фруктозо: ГА-лиаза) есть в печени, расщепляет фруктозо-1ф (фруктозо-1,6ф) до глицеринового альдегида (ГА) и диоксиацетонфосфата (ДАФ).

3. Триозокиназа (АТФ: ГА-3-фосфотрансфераза). Много в печени.

ДАФ и ГА, полученные из фруктозы, вклю­чаются в печени главным образом в глюконеогенез. Часть ДАФ может восстанав­ливаться до глицерол-3-ф и участвовать в синтезе ТГ.

Нарушения метаболизма фруктозы

Причиной нарушения метаболизма фруктозы является дефект 3 ферментов: фруктокиназы, альдолазы В, триозокиназы.

Доброкачественная эссенциальная фруктозурия связана с недостаточностью фруктокиназы , клинически не проявляется. Фруктоза накапливается в крови и выделяется с мочой, где её можно обнару­жить лабораторными методами. Частота 1:130 000.

Наследственная непереносимость фруктозы частая патология, воз­никает при генетически дефек­те альдолазы В (аутосомно-рецессивная форма). Она проявляется, когда в рацион добавляют фрукты, соки, сахарозу. После приёма пищи, содержащей фрук­тозу возникает рвота, боли в животе, диарея, гипогли­кемия и даже кома и судороги . У маленьких детей и подростков развиваются хрони­ческие нарушения функций печени и почек . Болезнь сопро­вождается накоплением фруктозо-1-ф, который ингибирует активность фосфоглюкомутазы, поэтому происходит торможение распада гликогена и развивается гипогликемия . Как следствие, ускоряется мо­билизация липидов, окисление жирных кис­лот и синтез кетоновых тел. Повышение кетоновых тел может привести к метаболическому ацидозу.

Результатом торможения гликогенолиза и гликолиза является снижение синтеза АТФ. Кроме того, накопление фосфорилированной фруктозы ведёт к нарушению обмена неорга­нического фосфата и гипофосфатемии . Для пополнения внутриклеточного фосфата ускоряется распад адениловых нуклеотидов. Продукты распада этих нуклеотидов включаются в катаболизм, проходя стадии образования гипоксантина, ксантина и, наконец, мочевой кис­лоты. Повышение количества мочевой кислоты и снижение экскреции уратов в условиях мета­болического ацидоза проявляются в виде гиперурикемии . Следствием гиперурикемии может быть подагра даже в молодом возрасте.

Метаболизм галактозы

Галактоза образуется в кишечнике в результа­те гидролиза лактозы. Превращение галакто­зы в глюкозу происходит в печени в реакции эпимеризации в виде УДФ-производного.

Галактокиназа (АТФ: галактозо-1-фосфотрансфераза) фосфорилирует галактозу.

Галактозо-1ф-уридилтрансфераза замещает галактозой остаток глюкозы в УДФ-глюкозе с образованием УДФ-галактозы.

Эпимераза (УДФ-галактозо-УДФ-глюкозо-изомераза) - НАД-зависимый фермент, катализирует эпимеризацию ОН группы по С 4 углеродному атому, обеспечивая взаимопревращения галактозы и глюкозы в составе УДФ.

Образованная глюкозо-1-ф может включаться в: 1) синтез гликогена; 2) превращение в свободную глюкозу; 3) катаболизм, сопряжённый с синтезом АТФ, и т.д.

Нарушения метаболизма галактозы

Галактоземия обусловленна наследствен­ным дефектом любого из трёх ферментов, включающих галактозу в метаболизм глюкозы.

Галактоземия , вызванная недостаточностью галактозо-1-фосфатуридилтрансферазы (ГАЛТ) имеет несколько форм, про­является рано, и особенно опасна для детей, так как материнское молоко, содержит лактозу. Ранние симптомы дефекта ГАЛТ: рвота, диарея, дегидратация, уменьше­ние массы тела, желтуха . В крови, моче и тканях повышается концентрация галактозы и галак­тозо-1-ф. В тканях глаза (в хрусталике) галактоза восстанавливается альдоредуктазой (НАДФ) с образованием галактитола (дульцита). Галактитол накапливается в стекловид­ном теле и связывает большое количество воды, чрезмерная гидратация хрусталика приводит к развитию катаракты, которая на­блюдается уже через несколько дней после рож­дения. Галактозо-1-ф ингибирует активность ферментов углеводного обмена (фосфоглюкомутазы, глюкозо-6-фосфатдегидрогеназы).

Га­лактозо-1ф оказывает токсическое действи­е на гепатоциты: возникают гепатомегалия, жи­ровая дистрофия. Галактитол и га­лактозо-1-ф вызывают почечную недостаточность. Отмечают нарушения в клетках полушарий го­ловного мозга и мозжечка, в тяжёлых случаях - отёк мозга, задержку умственного развития, воз­можен летальный исход.

Некоторые дефекты в строении ГАЛТ при­водят лишь к частичной потере активности фер­мента. Поскольку в норме ГАЛТ присутствует в организме в избытке, то снижение его актив­ности до 50%, а иногда и ниже может клини­чески не проявляться.

Лечение заключается в удалении галактозы из рациона.

Педфак. Особенности катаболизма моносахаридов у новорожденных и детей

У детей активен УДФ-глюкоза ↔ УДФ-галактоза путь. У взрослых этот путь неактивен. У новорожденных низкая активность ПФШ. При рождении у ребенка происходит переключение катаболизма глюкозы с анаэробного на аэробный путь. Вначале преобладает использование липидов.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2005 г

ЛЕКЦИЯ № 9

Тема: Пентозофосфатный шунт и глюконеогенез,
регуляция углеводного обмена.

Глюконеогенез (ГНГ)

Глюконеогенез – синтез глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Основными субстратами глюконеогенеза являются лактат, глицерол, аминокислоты. Глюконеогенез является обратным процессом гликолиза, который протекает в цитоплазме и матриксе митохондрий. Необратимые реакции гликолиза (1, 3 и 10), катализируемые гексокиназами, фруктокиназами и пируваткиназами обходятся с участием 4 специфических ферментов глюконеогенеза: пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-фосфотазы и глюкозо-6-фосфотазы. Кроме того, в глюконеогенезе участвуют ферменты ЦТК, например, малат ДГ.

Реакции глюконеогенеза представлены на схеме. Ключевые (необратимые) реакции глюконеогенеза:

1. Пируваткарбоксилаза (ПВК: СО 2 -синтетаза (АТФ→АДФ+Фн)) содержит биотин, находиться в митохондриях, превращает ПВК в ЩУК. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибитор: АМФ, активатор АцетилКоА. Образующийся ЩУК проходит внутреннюю мембрану митохондрий в своей восстановленной (в виде малата) или аминоформе (в виде аспартата).

2. Фосфоенолпируваткарбоксикиназа (ГТФ: ЩУК-2-фосфотрансфераза (декарбоксили-рующая)) находиться в цитоплазме, превращает ЩУК в ФЕП. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

3. Фруктозо-1,6-фосфотаза (Фруктозо-1,6дф: фосфо-гидролаза) дефосфорилирует фруктозо-1,6дф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибирует АМФ, фруктозо-2,6дф. Активатор: цитрат, жирные кислоты.

4. Глюкозо-6-фосфотаза (Глюкозо-6ф: фосфо-гидролаза) дефосфорилирует глюкозо-6ф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

Энергетический баланс глюконеогенеза . На образование 1 глюкозы из 2 лактатов требуется 6 АТФ: 2 АТФ для пируваткарбоксилазы, 2 ГТФ для ФЕПкарбоксикиназы, 2 АТФ для фосфоглицераткиназы. Обще уравнение глюконеогенеза:

2 лактат + 4 АТФ + 2 ГТФ + 4 Н 2 О → 1 глюкоза + 4 АДФ + 2 ГДФ + 6 Фн

Регуляция глюконеогенеза . Регуляция глюконеогенеза осуществляется реципрокно с реакциями гликолиза: активация глюконеогенеза, сопровождается ингибированием гликолиза и наоборот. Регуляция обмена глюкозы происходит с участием гормонов и метаболитов, которые изменяют активность и количество регуляторных ферментов гликолиза и глюконеогенеза. Инсулин индуцирует синтез ключевых ферментов гликолиза и репрессирует синтез ключевых ферментов глюконеогенеза. Глюкагон, кортизол и адреналин индуцирует синтез ключевых ферментов глюконеогенеза. Ключевые ферменты гликолиза активируют – АМФ, фруктозо-2,6дф, фруктозо-1,6дф, ингибируют – АТФ, НАДН 2 , цитрат, жирные кислоты, аланин, АцетилКоА, глюкагон, адреналин. Ключевые ферменты глюконеогенеза активируют – АцетилКоА, глюкагон, ингибируют – АМФ, фруктозо-2,6дф.

Тканевые особенности глюконеогенеза. В большинстве тканей глюконеогенеза нет.

Наибольшая активность глюконеогенеза отмечается в печени, меньше в почках и слизистой оболочке кишечника, в них может синтезироваться до 80-100г глюкозы в сутки. В этих органах глюконеогенез идет до конца с образованием свободной глюкозы, которая может выходить из клеток, поддерживая гомеостаз глюкозы в крови. В норме гомеостаз глюкозы в крови обеспечивается глюконеогенезом печени до 80%, почек до 20%.

Небольшая активность глюконеогенеза наблюдается в мышечных тканях, однако из-за отсутствия у них последних ферментов глюконеогенеза, вместо свободной глюкозы образуются только ее производные, которые не способны покинуть клетку. Таким образом, углеводы синтезируются в мышечных тканях только для собственных нужд. Например, в скелетных мышцах и жировой ткани нет глюкозо-6-фосфотазы, продукт глюконеогенеза – глюкозо-6ф. В миокарде и гладких мышцах нет фруктозо-1,6-дифосфотазы, продукт глюконеогенеза – фруктозо-1,6-дф.

Биологическое значение глюконеогенеза . Необходимость поддержание постоянного уровня глюкозы в крови связана с тем что, для многих тканей глюкоза является основным (нервная ткань), а для некоторых единственным (эритроциты) источником энергии. Потребность в синтезе глюкозы объясняется тем что, гликогенолиз печени может самостоятельно обеспечивать гомеостаз глюкозы в крови только в течение 8-12 часов, далее запас гликогена в течение суток почти полностью истощается. В условиях длительного голодания (больше суток) глюконеогенез является единственным источником глюкозы в организме.

Пентозофосфатный шунт (ПФШ)

Пентозофосфатный шунт (путь, цикл) является альтернативным путем окисления глюкозы. Наиболее активен этот процесс в жировой ткани, печени, коре надпочечников, эритроцитах, фагоцитирующих лейкоцитах, лактирующей молочной железе, семенниках. Протекает он в цитозоле без участия кислорода и состоит из 2 стадий окислительной и неокислительной. В окислительной стадии происходит восстановление НАДФН 2 , который используется: 1) для регенерации глутатиона в антиоксидантной системе; 2) для синтеза жирных кислот; 3) в оксигеназных реакциях с участием цитохрома Р 450 при обезвреживании ксенобиотиков, метаболитов, синтезе холестерина, стероидных гормонов и т.д. В неокислительной стадии образуются различные пентозы. Рибозо-5ф может использоваться для синтеза пуриновых и пиримидиновых нуклеотидов.

Тканевые особенности функционирования ПФШ (пути, цикла).

В зависимости от потребности ткани, пентозофосфатный процесс может протекать в виде метаболического цикла, пути или шунта начальных реакций гликолиза:

1. При ПФЦ или ПФШ в качестве продукта образуется только НАДФН 2 . Пентозы в этом случае не являются конечным продуктом, они превращаются в фосфогексозы, которые замыкают цикл, или уходят в гликолиз, завершая шунт. В жировой ткани, эритроцитах.

2. Продуктом ПФП являются НАДФН 2 и пентозы. В печени, костном мозге.

3. В тканях, которые не испытывают потребность в НАДФН 2 , функционирует только неокислительная стадия ПФП, причем ее реакции идут в обратную сторону начиная с фруктозы-6ф до фосфопентоз. В мышцах.

Реакции окислительной стадии

Окислительная стадия ПФШ (пути, цикла) состоит из 3 необратимых реакций:

1). Глюкозо-6ф дегидрогеназа (глюкозо-6ф: НАДФ + оксидоредуктаза). Ингибитор НАДФН 2 . Индуктор инсулин.

2). Глюконолактонгидратаза (6-фосфоглюконат: гидро-лиаза).

3). 6-фосфоглюконат дегидрогеназа (6-фосфоглюконат: НАДФ + оксидоредуктаза (декарбоксилирующая)). Индуктор инсулин.

Схема ПФШ (пути, цикла)

На схеме неокислительная стадия начинается с эпимераз и изомераз, которые изомеризуют рибулозо-5ф. Все реакции неокислительной стадии обратимы.

Общее уравнение ПФЦ:

6 глюкозо-6ф + 12 НАДФ + → 6 СО 2 + 12 НАДФН 2 + 5 глюкозо-6ф

Общее уравнение ПФШ:

3 глюкозо-6ф + 6 НАДФ + → 3 СО 2 + 6 НАДФН 2 + 2 фруктозо-6ф + ФГА

Общие уравнения ПФП:

1) глюкозо-6ф + 2 НАДФ + → СО 2 + 2 НАДФН 2 + рибозо-5ф

2) 2 фруктозо-6ф + ФГА → 3 рибозо-5ф

Патология ПФШ

НАДФН 2 является важным компонентом антиоксидантной защиты, он необходим для регенерации глутатиона, который с участием глутатионпероксидазы разрушает активные формы кислорода. Так как в эритроцитах НАДФН 2 образуется только в реакциях ПФШ, дефект глюкозо-6ф ДГ вызывает дефицит НАДФН 2 и снижение антиоксидантной защиты. В этом случае под действием прооксидантов, например, антималярийных препаратов происходит существенное повышение СРО. Активация СРО вызывает окисление цистеина в белковой части гемоглобина, в результате чего протомеры гемоглобина, соединяясь дисульфидными мостиками, образуют тельца Хайнца. Т.к. тельца Хайнца снижают пластичность клеточной мембраны эритроцитов, она при деформации в капиллярах разрушается. Массированный гемолиз эритроцитов ведет к развитию гемолитической анемии.

Витамин B 1 (тиамин).

Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.

Источники. Витамин В 1 - первый витамин, выделенный в кристаллическом виде К. Фун-ком в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В 1 , содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В 1 . Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.

Биологическая роль витамина В 1 , определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и α-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбокси-лировании пирувата и α-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.

Основной, наиболее характерный и специфический признак недостаточности витамина В 1 - полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В 1 , относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.

Регуляция обмена углеводов

Энергетический гомеостаз обеспечивает энергетические потребности тканей с использованием различных субстратов. Т.к. углеводы являются основным источником энергии для многих тканей и единственным для анаэробных, регуляция углеводного обмена является важной составляющей энергетического гомеостаза организма.

Регуляция углеводного обмена осуществляется на 3 уровнях:

1. центральный.

2. межорганный.

3. клеточный (метаболический).

1. Центральный уровень регуляции углеводного обмена

Центральный уровень регуляции осуществляется с участием нейроэндокринной системы и регулирует гомеостаз глюкозы в крови и интенсивность метаболизма углеводов в тканях. К основным гормонам, поддерживающим нормальный уровень глюкозы в крови 3,3-5,5 мМоль/л, относят инсулин и глюкагон. На уровень глюкозы влияют также гормоны адаптации – адреналин, глюкокортикоиды и другие гормоны: тиреоидные, СДГ, АКТГ и т.д.

2. Межорганный уровень регуляции углеводного обмена

Глюкозо-лактатный цикл (цикл Кори) Глюкозо-аланиновый цикл

Глюкозо-лактатный цикл не требует наличие кислорода, функционирует всегда, обеспечивает: 1) утилизацию лактата, образующегося в анаэробных условиях (скелетные мышцы, эритроциты), что предотвращает лактоацидоз; 2) синтез глюкозы (печень).

Глюкозо-аланиновый цикл функционирует в мышцах при голодании. При дефиците глюкозы, АТФ синтезируется за счет распад белков и катаболизма аминокислот в аэробных условиях, при этом глюкозо-аланиновый цикл обеспечивает: 1) удаление азота из мышц в нетоксичной форме; 2) синтез глюкозы (печень).

3. Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Например, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы - глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.

IV. Педфак . Возрастные особенности ПФШ и ГНГ, значение.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 10

Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы.
Механизм действия и метаболические эффекты инсулина.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Гормоны поджелудочной железы

Поджелудочная железа выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной железы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме. 1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной железы.

В островковой части поджелудочной железы выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) - инсулин, D- (или δ-) клетки (<5%) - соматостатин, F-клетки (следовые количества) секретируют панкреатический полипептид. Глюкагон и инсулин в основном влияют на углеводный обмен, соматостатин локально регулирует секрецию инсулина и глюкагона, панкреатический полипептид влияет на секрецию пищеварительных соков. Гормоны поджелудочной железы выделяются в панкреатическую вену, которая впадает в воротную. Это имеет большое значение т.к. печень является главной мишенью глюкагона и инсулина.

Строение инсулина

Инсулин - полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В - 30 аминокислотных остатков. В инсулине 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.

Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).

Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1. На рибосомах ЭПР синтезируется препроинсулин (L-В-С-А, 110 аминокислот), биосинтез его начинается с образования гидрофобного сигнального пептида L (24 аминокислот), который направляет растущую цепь в просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулин при отщеплении эндопептидазой I сиг­нального пептида. Цистеины в проинсулине окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться «сложным», имеет 5% активности от инсулина.

3. «Сложный» проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы II расщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, где инсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка - 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. В крови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной железе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.

Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсу­лина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителей низкая активность инсулина, отмечается гиперинсулинемия, нет инсулинорезистентности.

Регуляция синтеза и секреции инсулина

Синтез инсулина индуцируют глюкоза и секреция инсулина. Репрессирует секрецию жирные кислоты.

Секрецию инсулина стимулируют: 1. глюкоза (главный регулятор), аминокислоты (особенно лей и арг); 2. гормоны ЖКТ (β-адренергические агонисты, через цАМФ): ГИП , секретин, холецистокинин, гастрин, энтероглюкагон; 3. длительно высокие концентрации СТГ, кортизола, эстрогенов, прогестинов, плацентарного лактогена, ТТГ, АКТГ; 4. глюкагон; 5. повышение К + или Са 2+ в крови; 6. лекарства, производные сульфонилмочевины (глибенкламид).

Под влиянием соматостатина секреция инсулина понижается. β-клетки также находятся под влиянием автономной нервной системы. Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина. Симпатическая часть (адреналин через α 2 -адренорецепторы) подавляет выделение инсулина.

Секреция инсулина осуществляется с участием нескольких систем, в которых основная роль принадлежит Са 2+ и цАМФ.

Поступление Са 2+ в цитоплазму контролируется несколькими механизмами:

1). При повышении концентрации глюкозы в крови выше 6-9 ммоль/л, она при участии ГЛЮТ-1 и ГЛЮТ-2 поступает в β-клетки и фосфорилируется глюкокиназой. При этом концентрация глюкозо-6ф в клетке прямо пропорциональна концентрации глюкозы в крови. Глюкозо-6ф окисляется с образованием АТФ. АТФ образуется также при окислении аминокислот и жирных кислот. Чем больше в β-клетке глюкозы, аминокислот, жирных кислот тем больше из них образуется АТФ. АТФ ингибирует на мембране АТФ-зависимые калиевые каналы, калий накапливается в цитоплазме и вызывает деполяризацию клеточной мембраны, что стимулирует открытие потенциалзависимых Са 2+ -каналов и поступление Са 2+ в цитоплазму.

2). Гормоны, активирующие инозитолтрифосфатную систему (ТТГ), выпускают Са 2+ из митохондрий и ЭПР.

цАМФ образуется из АТФ с участием АЦ, которая активируется гормонами ЖКТ, ТТГ, АКТГ, глюкагоном и Са 2+ -кальмодулиновым комплексом.

цАМФ и Са 2+ стимулируют полимеризацию субъединиц в микротубулы (микроканальцы). Влияние цАМФ на микроканальцевую систему опосредуется через фосфорилирование ПК А микроканальцевых белков. Микроканальцы способны сокращаться и расслабляться, перемещая гранулы по направлению к плазматической мембране обеспечивая экзоцитоз.

Секреция инсулина в ответ на стимуляцию глюкозой представляет собой двухфазную реакцию, состоящую из стадии быстрого, раннего высвобождения инсулина, называемую первой фазой секреции (начинается через 1 мин, продолжается 5-10 мин), и второй фазы (продолжительность ее до 25-30 мин).

Транспорт инсулина. Инсулин водорастворим и не имеет белка-переносчика в плазме. Т 1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин, проинсулина 20-23 мин.

Разрушение инсулина происходит под дей­ствием инсулинзависимой протеиназы и глутатион-инсулин-трансгидрогеназы в тканях мишенях: в основном в пе­чени (за 1 проход через печень разрушается около 50% инсулина), в меньшей степени в почках и плаценте.

БИОЛОГИЧЕСКИЕ ФУНКЦИИ ИНСУЛИНА

Инсулин - главный анаболический гормон, он влияет на все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается обмена углеводов.

Влияние инсулина на метаболизм глюкозы

Ин­сулин стимулирует утилизацию глюкозы в клетках разными путями. Около 50% глюкозы использует­ся в процессе гликолиза, 30-40% превращается в жиры и около 10% накапливается в форме глико­гена. Общий результат стимуляции этих процес­сов - снижение концентрации глюкозы в крови.

Влияние инсулина на метаболизм липидов

В пе­чени и жировой ткани инсулин стимулирует син­тез липидов, обеспечивая получение для этого про­цесса необходимых субстратов (ацетил-КоА, глицерофосфат и NADPH 2) из глюкозы. В жировой ткани инсулин тормозит мобилизацию липидов, что снижает концентрацию жирных кислот, циркулирующих в крови.

Влияние инсулина на метаболизм белков

Инсулин оказывает в целом анаболическое действие на белковый обмен. Он стимулирует потребление нейтральных аминокислот в мышцах и синтез белков в печени, мышцах и сердце.

Кроме того, инсулин регулирует клеточную дифференцировку, пролифе­рацию и трансформацию боль­шого количества клеток. Инсулин поддерживает рост и репликацию многих клеток эпителиального происхождения, в том числе гепатоцитов, опухолевых клеток. Инсулин усиливает спо­собность фактора роста фибробластов (ФРФ), тромбоцитарного фактора роста (ТФР), фак­тора роста эпидермиса (ФРЭ), простагландина (ПГF 2 a), вазопрессина и аналогов цАМФ акти­вировать размножение клеток.

Основные направления действия инсулина

1. Инсулин регулирует транспорт веществ

Инсулин стимулирует транспорт в клетку глюкозы, аминокислот, нуклеозидов, органического фосфата, ионов К + и Са 2+ . Эффект проявляются очень быстро, в течение несколь­ких секунд и минут.

Транспорт глюкозы в клетки происходит при участии ГЛЮТ. В мышцах и жировой ткани инсули­нзависимый ГЛЮТ-4, в отсутствие инсулина находится в цитозольных везикулах. Под влиянием инсулина происходит транслокация везикул с ГЛЮТ в плазмати­ческую мембрану и начинается транспорт глюкозы. При снижении концентрации инсулина, ГЛЮТ-4 возвращаются в цитозоль, и транспорт глюкозы прекращается.

2. Инсулин регулирует синтез ферментов

Инсулин влияет на скорость транскрипции более чем 100 специфических мРНК в печени, жировой ткани, скелетных мышцах и сердце. Эффект реализуется в течение несколько часов. В клетках печени инсулин индуцирует синтез ключевых ферментов гликолиза (глюкокиназы, фруктокиназы и пируваткиназы), ПФШ (глюкозо-6ф ДГ), липогенеза (цитратлиаза, пальмитатсинтаза, Ацетил-КоА-карбоксилаза), транспортеров глюкозы (?) и репрессирует синтез ключевого фермента глюконеогенеза (ФЕП карбоксикиназу).

3. Инсулин регулирует активность ферментов

Инсулин регулирует активность ферментов путем их фосфорилирования и дефосфорилирования. Эффект проявляются очень быстро, в течение несколь­ких секунд и минут.

· Инсулин активирует ключевые ферменты гликолиза: в печени, мышцах, жировой ткани – фосфофруктокиназу и пирруваткиназу; в печени – глюкокиназу; в мышцах - гексокиназу II.

· Инсулин ингибирует в печени глюкозо-6-фосфотазу, что тормозит глюконеогенез и выход глюкозы в кровь.

· Инсулин активирует фосфопротеинфосфотазу гликогенсинтазы и гликогенфосфорилазы, в результате активируется синте­з гликогена и тормозится его распад.

· В адипоцитах инсулин активирует ключевой фермент липогенеза (АцетилКоА-карбоксилазу). Инсулин в гепатоцитах и адипоцитах активирует фосфопротеинфосфатазу, которая дефосфорилирует и инактивирует ТАГ-липазу, что тормозит липолиз.

· Инсулин снижает активность аминотрансфераз и ферментов цикла мочевины. Последний эффект инсулина характеризуется повышением активности РНК-полимеразы и концентрации РНК в печени. При этом увеличивается скорость образования полисом и рибосом.

· Инсулин активирует ФДЭ, которая снижает концентра­цию цАМФ, прерывает эффекты контринсулярных гормонов: в печени и жировой ткани тормозит липолиз, в печени и мышцах - глюконеогенез.

МЕХАНИЗМ ДЕЙСТВИЯ ИНСУЛИНА

Инсулин связы­вается с инсулиновым рецептором (IR), находящимся на мембране. IR обнаруже­ны почти во всех типах клеток, но больше все­го их в гепатоцитах и клетках жировой тка­ни (концентрация достигает до 20000 на клетку). IR постоянно син­тезируется (ген в 19 хромосоме) и разрушается. После связывания инсулина с IR весь комплекс погружается в цитоплазму, достигает лизосом, где инсулин разрушается, а IR может разрушаться, а может возвращаться мембрану. Т 1/2 IR 7-12 ч, но в присутствии инсулина уменьшается до 2-3 ч.

При высокой концентрации инсу­лина в плазме крови, число IR может умень­шаться в результате усиленного разрушения в лизосомах. Также у IR может снижаться активность при его фосфорилировании по ос­таткам серина и треонина.

Рецептор инсулина ( IR) - гликопротеин, состоит из 2 α и 2 β субъединиц связанных дисульфидными связями. α субъединицы (719 АК) расположены вне клетки, они связывают инсулин, а β субъединицы (трансмебранный белок, 620 АК) обладают тирозинкиназной активностью. После присоединения гормона к α субъединицам, β субъединицы сначала фосфорилируют друг друга, а затем внутриклеточные белки - суб­страты инсулинового рецептора (IRS). Извест­но несколько таких субстратов: IRS-1, IRS-2 (фосфопротеины, состоящие из более чем 1200 аминокислот), Shc, а также некоторые белки семейства STAT.

Активация инсулином сигнального пути Ras

Фосфорилированный инсулиновым рецептором She соединяется с небольшим цитозольным белком Grb. К образо­вавшемуся комплексу присоединяется с Ras-белок (из се­мейства малых ГТФ-связывающих белков, в неактивном состоянии прикреплён к внутренней поверхности плазматической мем­браны и связан с ГДФ), GAP (от англ. GTP- ase activating factor - фактор, активирующий ГТФазу), GEF (от англ. GTP exchange factor - фактор обмена ГТФ) и SOS (от англ. son ofsevenless, названный по му­тации гена у дрозофилы). Два последних белка способствуют отделению ГДФ от Ras-бел­ка и присоединению к нему ГТФ, с образованием активной ГТФ-связанной формы Ras.

Активированный Ras соединяется с протеинкиназой Raf-1 и активирует ее в результате многоэтапного процес­са. Акти­вированная ПК Raf-1 стимулирует каскад реакций фосфорилирования и активации дру­гих протеинкиназ. ПК Raf-1 фосфорилирует и активирует киназу МАПК, которая, в свою очередь, фосфорилирует и активирует митогенактивируемые протеинкиназы МАПК.

МАПК фосфорилирует многие цитоплазматические белки: ПК pp90S6, бел­ки рибосом, фосфолипазу А 2 , активаторы транскрипции STAT.

В результате активации протеинкиназ происходит фосфорилирование ферментов и факторов транскрипции, что со­ставляет основу многочисленных эффектов ин­сулина. Например:

Активация гликогенсинтазы

ПК pp90S6 фосфорилирует и активирует фосфопротеинфосфатазу (ФПФ). ФПФ дефосфорилирует и инактивирует киназу гликогенфосфорилазы и гликогенфосфорилазу, дефосфорилирует и активирует гликогенсинтазу. В результате активируется синтез гликогена, а распад - ингибируется.

Активация инозитолтрифосфатной системы

Фосфорилированные инсулином белки IRS-1 присоединяются к ФЛ С и активируют ее.

ФЛ С расщепляет фосфатидилинозитолы с образованием инозитолфосфатов и ДАГ.

Фосфорилированные инсулином белки IRS-1 и Shc присоединяются к фосфоинозитол-3-киназе (ФИ-3-киназа) и активируют ее.

ФИ-3-киназа катализирует фосфорилирование инозитолфосфатов (ФИ, ФИ-4-ф и ФИ-4,5-бф) в 3 положении, образуя инозитолполифосфаты: ФИ-3-ф, ФИ-3,4-бф, ФИ-3,4,5-тф. ФИ-3,4,5-тф (ИФ 3) стимулирует мобилизацию Са 2+ из ЭПР.

Са 2+ и ДАГ активирует специфические ПК С.

Са 2+ активирует микроканальцы, которые осуществляют транслока­цию ГЛЮТ-4 в плазматическую мембрану, и та­ким образом ускоряет трансмембранный перенос глюкозы в клетки жировой и мышечной ткани.

Активация фосфодиэстеразы

Фосфорилированные инсулином белки IRS-1 и Shc присоединяются к протеинкиназе В (ПК В) и активируют ее. ПК В фосфорилирует и активирует фосфодиэстеразу (ФДЭ). ФДЭ катализирует превращение цАМФ в АМФ, прерывая эффекты контринсулярных гормонов, что приводит к торможению липолиза в жировой ткани, гликогенолиза в печени.

Регуляция транскрипции мРНК

STAT – особые белки, являются переносчиками сигнала и активаторами транскрипции. При фосфорилировании STAT с участием IR или МАПК образуют димеры, которые транспортируются в ядро, где связываются со специфическими участками ДНК, регулируют транскрипцию мРНК и биосинтез белков-фементов.

Путь Ras активирует­ся не только инсулином, но и дру­гими гормонами и факторами роста.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 11

Тема: Сахарный диабет I и II типа: механизмы возникновения,
метаболические нарушения, осложнения.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

В норме уровень глюкозы в крови натощак составляет 3.3 – 5.5 ммоль/л.

Гипергликемия – повышение уровня глюкозы в крови выше 6,1 ммоль/л. Гипергликемия бывает физиологической и патологической.

Причины физиологической гипергликемии:

1) алиментарная, при употреблении легкоусвояемых углеводов. Не превышает 11 ммоль/л, нормализуется в течение 3 часов;

2) стрессорная , под действием катехоламинов, глюкокортикоидов, вазопрессина;

3) кратковременные физические нагрузки .

Причины патологической гипергликемии:

1) судороги при эпилепсиях, столбняке;

2) эндокринные нарушения . Гиперпродукция контринсулярных гормонов (гипертириоз, синдромы Кушинга и Кона), абсолютный или относительный дефицит инсулина (сахарный диабет).

3) ЧМТ .

Гипогликемия снижение уровня глюкозы в крови ниже 3,3 ммоль/л. Гипогликемия бывает физиологической и патологической.

Причины физиологической гипогликемии: 1) алиментарная, при голодании; 2) .

Причины патологической гипогликемии: 1) эндокринные нарушения при избытке инсулина (инсулинома – доброкачественная опухоль β-клеток, передозировка инсулина у больных СД) или недостаточности контринсулярных гормонов (гипотиреоз, дефицит глюкокортикоидов); 2) гликогенозы, агликогенозы, препятствующие гликогенолизу; 3) печеночная недостаточность, связанная с низкой активностью глюконеогенеза; 4) почечная недостаточность, связанная с врожденной патологией реабсорбции глюкозы (почечный диабет); 5) отравления монойодацетатом (вызывает глюкозурию).

Сахарный диабет (СД) - системное гетерогенное заболевание, обусловленное абсолютным или относительным дефицитом инулина, который сначала вызывает нарушение углеводного, а затем всех видов обмена, что в итоге поражает все функциональные системы организма.

СД широко распространенное заболевание, им страдает 6,6% населения, в России – 5%.

СД бывает первичным и вторичным. Кроме того, выделяют нарушение толерантности к глюкозе и СД беременных.

Первичный СД - самостоятельное заболевание.

Вторичный СД является симптоматическим, он возникает при патологии эндокринных желез (акромегалия, феохромоцитома, глюкагонома, синдромы Кушинга, Кона) и патологии поджелудочной железы (хронический панкреатит, рак, панкреатэктомия, гемохроматоз, генетические синдромы).

Первичный СД по механизму развития подразделяется на СД I типа (раньше ИЗСД) и СД II типа (раньше ИНСД).

Общими симптомами любого СД являются жажда, полиурия, кожный зуд, склонность к инфекциям.

Этиологическая классификация СД (ВОЗ 1999) .

1. Сахарный диабет I типа (раньше ИЗСД)

а). Аутоиммунный

б). Идиопатический

2. СД II типа (раньше ИНСД)

3. Другие специфические типы

а). генетические дефекты β-клеток

б). генетические дефекты в действии инсулина

в). болезни экзокринной части поджелудочной железы (панкреатит и т.д.)

г). эндокринопатии

д). СД, индуцированный лекарствами и химикатами (глюкокортикоиды, никотиновая кислота, тиреоидные гормоны, тиазиды, вакор, пентамидин и т.д.)

е). Инфекции (врожденная краснуха, цитомегаловирус и т.д.).

ж). Необычные формы иммуноопосредованного диабета.

з). Другие генетические синдромы, иногда сочетающиеся с диабетом (Дауна, Тернера и т.д.).

4. Гестационный СД (беременных)

САХАРНЫЙ ДИАБЕТ I типа

СД I типа - за­болевание, которое возникает вследствие абсолютного дефицита инсулина, вызванного аутоиммунным разрушением β-клеток поджелудочной железы. СД I типа поражает в большинстве случаев де­тей, подростков и молодых людей до 30 лет, но может про­явиться в любом возрасте. СД I типа редко является семейным заболеванием (10-15% всех случаев).

Причины СД I типа

1. Генетическая предрасположенность . Генетические дефекты ведущие к СД могут реализоваться в клетках иммунной системы и β-клетках поджелудочной железы. В β-клетках известно около 20 генов, способствующих развитию СД I типа. В 60-70% случаях СД I типа связан с наличием в 6 хромосоме HLA региона генов DR3, DR4 и DQ.

2. Действие на β-клетки β-цитотропных вирусов (оспа, краснуха, корь, пароти­т, Коксаки, аденовирус, цитомегаловирус), химических и других диабетогенов .

Вариант 1

При наличии генетического дефекта, на поверхности β-клеток накапливаются антигены, имеющие схожую аминокислотную последовательность с β-цитотропными вирусами.

В случае возникновения инфекции β-цитотропных вирусов, развиваются иммунные реакции против этих вирусов и аутоиммунные реакции против схожих антигенов β-клеток. Реакция идет с участием моно­цитов, Т-лимфоцитов, антител к β-клеткам, инсулину, глутамат декарбоксилазе (фермент 64кДа, находиться на мембране β-клеток). В результате аутоиммунные реакции вызывают гибель β-клеток.

Вариант 2

При действии на β-клетки с генотипом HLA β-цитотропных вирусов или диабетогенов на поверхности β-клеток происходит изменение антигенов.

На измененные антигены β-клетки развиваются аутоиммунные реакции. Аутоиммунные реакции вызывают гибель β-клеток.

Вариант 3

β-цитотропные вирусы имеют схожую последовательность аминокислот с глутамат декарбоксилазой β-клеток. Генетический дефект СД8+ лимфоцитов (Т-супрессоров) не позволяет им отличить аминокислотную последовательность вируса и глутамат декарбоксилазы, поэтому при возникновении инфекции, Т-лимфоциты реагируют на глутамат декарбоксилазу β-клеток как на вирус.

Вариант 4

Некоторые β-цитотропные вирусы и химические диабетогены, например, производные нитрозомочевины, нитрозамины, аллоксан самостоятельно и избирательно поражают β-клетки, вызывая их лизис;

Стадии развития СД I типа

1.

2. Стадия провоцирующих событий . Инфекция β-цитотропных вирусов или действие химических диабетогенов. Протекает без клинических симптомов;

3. Стадия явных иммунных аномалий . Развитие смешанных аутоиммунных реакций против β-клеток. Ресурсы инсулина достаточны. Протекает без клинических симптомов. Развивается от 2-3 месяцев до 2-3 лет;

4. Стадия латентного диабета . Гибель 75% β-клеток, небольшое снижение инсулина, гипергликемия при нагрузочных пробах, снижение аутоиммунных процессов. Протекает без клинических симптомов;

5. Явный диабет . Гибель 80-90% β-клеток, заметное снижение инсулина, гипергликемия натощак, нет или слабые аутоиммунные реакции. Появляются клинические симптомы. Развивается 2 года. Необходима инсулинотерапия;

6. Терминальный диабет . Полная гибель β-клеток, высокая потребность в инсулинотерапии, аутоиммунные проявления снижены или их нет. Выраженные клинические проявления, появляются ангиопатии. Развивается до 3,5 лет;

Изменения метаболизма при СД I типа

При СД I типа исчезает инсулин, т.к. инсулин ингибитор секреции глюкагона, в крови происходит увеличение глюкагона.

Изменения в углеводном обмене

В печени дефицит инсулина и избыток глюкагона стимулирует реакции глюконеогенеза, гликогенолиза и ингибирует реакции гликолиза, ПФШ и синтеза гликогена. В результате в печени глюкозы больше образуется, чем потребляется.

Так как реакции глюконеогенеза протекают через ЩУК, он, образовавшись из ПВК, аспартата и малата, активно вовлекается в глюконеогенез, вместо того чтобы включаться в ЦТК. В результате ЦТК и ДЦ тормозится, снижается образование АТФ, возникает энергодефицит .

В инсулинзависимых тканях (мышцы, жировая ткань) дефицит инсулина препятствует поступлению глюкозы в клетки и ее использованию в реакциях гликолиза, ПФШ и синтеза гликогена. Блокирование ЦТК и ДЦ также вызывает энергодефицит.

Снижение потребления глюкозы инсулинзависимыми тканями и усиление ее образования в печени приводит к гипергликемии . Когда гипергликемия превышает кон­центрационный почечный порог возникает глюкозурия.

Глюкозурия – наличие глюкозы моче. В норме проксимальные канальцы по­чек реабсорбируют всю фильтрующуюся в клу­бочках глюкозу. Если уровень глюкозы превышает в крови 9-10 ммоль/л, глюкоза не успевает полностью реабсорбироваться из первичной мочи и частично выводится с вторичной мочой.

У больных с СД после приёма пищи концентрация глюкозы в крови может достигать 300-500 мг/дл и со­храняется на высоком уровне в постабсорбтивном периоде, т.е. снижается толерантность к глюкозе.

Изменения в липидном обмене

Дефицит АТФ, НАДФН 2 , инсулина и избыток глюкагона тормозят липогенез и усиливают липолиз в жировой ткани. В результате в крови повышается концентрация свободных жирных кислот, которые поступают в печень и окисляются там до Ацетил-КоА. АцетилКоА при дефиците ЩУК не может включаться в ЦТК. Поэтому он накапливается и поступает на альтернативные пути: синтез кетоновых тел (ацетоуксусная, β-гидроксимасляная кислоты) и холестерина.

В норме кетоновые тела являются источником энергии для аэробных тканей, они превращаются в АцетилКоА, который окисляется в ЦТК. Так как ЦТК заблокирован дефицитом ЩУК, кетоновые тела накапливаются в крови и вызывают кетонемию . Кетонемия усугубляет недостаточность инсулина, подавляя остаточную секреторную активность β-клеток. Когда кетонемия превышает кон­центрационный почечный порог (выше 20 мг/дл, иногда до 100 мг/дл) возникает кетонурия. Кетонурия – наличие кетоновых тел в моче.

В тканях ацетоуксусная кислота частич­но декарбоксилируется до ацетона, запах которого исходит от больных сахарным диабе­том и ощущается даже на расстоянии.

Липопротеины крови поставляют субстраты для липогенеза в тканях. Дефицит инсулина блокирует липогенез в жировой ткани, ингибирует липопротеинлипазу в сосудах, это препятствует расщеплению липопротеинов крови (в основном, ЛПОНП), в результате они накапливаются, вызывая гиперлипопротеинемию.

Изменения в белковом обмене

Энергодефицит, недостаток инсулина и избыток глюкагона приводит к снижению скорости синтеза белков в организме и усилению их распада, что повышает концентрацию аминокис­лот в крови. Аминокислоты поступают в печень и дезаминируются до кетокислот. Кетокислоты включаются в глюконеогенез, что усиливает гипергликемию. Из аммиака активно синтезируется мочевина. Повышение в крови аммиака, мочевины, аминокислот вызывает азотемию – увеличение концентрации азота в крови. Азотемия приводит к азотурии – увеличению концентрации азота в моче. Развивается отрицательный азотистый баланс. Катаболизм белков ведет к миодистрофии и вторичному иммунодефициту.

Изменения в водно-солевом обмене

Поскольку возможности почек ограничены, высокие концентрации глюкозы, кетоновых тел и мочевины не успевают реабсорбироваться из первичной мочи. Они создают в первичной моче высокое осмотическое давление, которое препятствует реабсорбции воды в кровь и образованию вторичной мочи. У таких пациентов развивается полиурия , выделение мочи воз­растает до 3-4 л в сутки (в некоторых случаях до 8-9 л). Потеря воды вызывает по­стоянную жажду или полидипсию . Без частого питья, полиурия может приводить к обезвожива­ нию организма. Потеря с мочой глюкозы усугубляет энергодефицит, может увеличить аппетит и полифагию . С первичной мочой из организма уходят некоторые полезные минеральные компоненты, что приводит к нарушению минерального обмена.

Высокие концентрации глюкозы, кетоновых тел и мочевины создают в плазме крови значительное осмотическое давление, которое способствует дегидратации тканей. Кроме воды ткани теряют электро­литы, прежде всего ионы К + , Na + , С1 - , НСО 3 - .

Изменение в газообмене тканей

Общая де­гидратация организма, вызванная полиурией и дегидратацией тканей приводит к снижению пери­ферического кровообращения, уменьшению мозгового и почечного кровотока и гипоксии. Причиной гипоксии является также гликозилирование Hb в Hb A 1 c , который не переносит О 2 к тканям. Гипоксия ведет к энергодефициту и накоплению в организме лактата .

Изменения в кислотно-основном равновесии

Накопление кетоновых тел, лактата и потеря щелочных валентностей с мочой снижает буферную ёмкость крови и вызывает ацидоз .

Симптомы СД I типа

Общие симптомы (жажда, полиурия, кожный зуд, склонность к инфекциям) выражены. Общая слабость, похудание, снижение трудоспособности, сонливость. Ожирение отсутствует. Повышенный аппетит при кетоацидозе сменяется анорексией. Развивается быстро, склонен к развитию кетоацидотической комы.

САХАРНЫЙ ДИАБЕТ II типа

СД II типа представляет собой группу гетерогенных нарушений углеводного обмена. СД II типа не инсулинозависимый, не склонен к кетоацидотической коме, не имеет антител к β-клеткам, не аутоиммунной природы, не имеет связи с определенными HLA фенотипами. Ожирение в 80%. На долю СД II типа приходится примерно 85-90% всех случаев СД, он поражает людей, как правило, старше 40 лет и характеризуется высо­кой частотой семейных форм (риск СД II типа у бли­жайших родственников больного достигает 50%, тогда как при СД I типа он не превышает 10%). СД II типа поражает преимущественно жителей развитых стран, особенно горожан.

В основе СД II типа лежат множество причин. СД II типа развивается при:

· генетических дефектах рецепторов инсулина, у них снижается чувствительность к инсулину;

· синтезе дефектного инсулина с низкой биологической активностью (мутация гена инсулина: в позиции 24 В-цепи вместо фен присутствует лей);

· нарушении превращения проинсулина в инсулин;

· нарушении секреции инсулина;

· повреждении инсулина и его рецепторов антителами;

· повышения скорости катаболизма инсулина;

· действия контринсулярных гормонов (создают гипеинсулинемию, которая вызывает инсулинорезистентность);

· нарушении глюкозочувствительного механизма b-клеток (мутации гена глюкокиназы) и т.д.

Основным провоцирующим фактором СД II типа служит ожирение.

Стадии СД II типа

1. Стадия генетической предрасположенности . Есть генетические маркеры, нет нарушений углеводного обмена. Может длиться всю жизнь;

2. Стадия латентного диабета . Гипергликемия при нагрузочных пробах. Протекает без клинических симптомов СД;

3. Явный диабет . Гипергликемия натощак. Появляются клинические симптомы.

Симптомы СД II типа

Общие симптомы (жажда, полиурия, кожный зуд, склонность к инфекциям) выражены умеренно или отсутствуют. Часто ожирение (у 80-90% больных).

Изменения метаболизма при СД II типа

Относительный дефицит инсулина вызывает метаболические нарушения, схожие с теми которые возникают при абсолютном дефиците инсулина, однако эти нарушения менее выражены, а у 50% больных с ожирением и умеренной гипергликемией СД II типа вообще протекает бессимптомно.

В отличие от абсолютного дефицита инсулина, при относительном дефиците инсулина, влияние инсулина сохраняется на жировую ткань, имеющую высокое содержание рецепторов к инсулину. Инсулин в жировой ткани стимулирует липогенез, блокирует липолиз и выход жирных кислот в кровь, поэтому при СД II типа не наблюдается кетоацидоз, масса тела не уменьшается, а наоборот развивается ожирение. Таким образом, ожирение, с одной стороны, важней­ший фактор риска, а с другой - одно из ран­них проявлений СД II типа.

Так как синтез инсулина как правило не нарушен, высокий уровень глюкозы в крови стимулирует секрецию инсулина из β-клеток, вызывая гиперинсулинемию . Высокая концентрация инсулина вызывает инактивацию и разрушение инсулиновых рецепторов, что снижает толерантность тканей к глюкозе. Инсулин больше не может нормализовать гликемию, возникает инсулинорезистентность . При этом, высокий уровень глюкозы в крови снижает чувствительность β-клеток к глюкозе, в результате запаздывает или отсутствует первая фаза секреции инсулина.

При СД II типа наблюдается гиперинсулинемия (80%), артериальная гипертензия (50%), гиперлипидемия (50%), атеросклероз, нейропатия (15%) и диабетическая нефропатия (5%).

Осложнения СД

Острые осложнения сахарного диабета. Механизмы развития диабетической комы

Острые осложнения специфичны для СД I и II типа.

Дегидратация тканей головного мозга в первую очередь, а также нарушения обмена веществ в нервной ткани могут приводить к развитию острых ослож­нений в виде коматозных состояний. Кома это крайне тяжелое состояние, характеризующееся глубоким угнетением ЦНС, стойкой по­терей сознания, утратой реакций на внешние раздражители любой интенсивности. Коматозные состояния при СД могут проявляться в трёх формах: кетоацидотической, гиперосмолярной и лактоацидотической.

Кетоацидотическая кома возникает при СД I типа, когда концентрация кетоновых тел становится выше 100 мг/дл (до 400-500мг/дл).

Гиперкетонемия приводит к:

1) ацидозу, который блокирует активность большинства ферментов, в первую дыхательных, что вызывает гипоксию и снижение синтеза АТФ.

2) гиперосмолярности, которая приводит к дегидратации тканей и нарушению водно-электролитного равновесия, с потерей ионов калия, натрия, фосфора, магния, кальция, бикарбонатов.

Это при определенной выраженности и вызывает коматозное состояние с падением артериального давления и развитием острой почечной недостаточности.

Возникающая гипокалиемия ведет к гипотонии гладкой и поперечно-полосатой мускулатуры, снижению тонуса сосудов, падению АД, сердечной аритмии, гипотонии дыхательной мускулатуры с развитием острой дыхательной недостаточности; атонии ЖКТ с парезом желудка и развитием кишечной непроходимости развивается выраженная гипоксия. В общей причине смертности она занимает 2-4 %.

Гиперосмолярная кома характерна для СД II типа, она наблюдается при высокой гипергликемии. У большинства высокая гипергликемия обуслов­лена сопутствующим нарушением функции по­чек, ее провоцируют стресс, травма, резкая дегидратация организма (рвота, диарея, ожоги, кровопотеря и т.д.). Гиперосмолярная кома развивается медленно, в течение нескольких дней при беспомощности человека (некомпенсируемая питьем), когда содержание глюкозы достигает 30-50 ммоль/л.

Гипергликемия способствует полиурии, создает гиперосмотическое состояние , которое вызывает дегидратацию тканей, приводящую к нарушению водно-электролитного равновесия.

Резкая дегидротация организма рвотой, диарей, кровопотерей на фоне полиурии и отсутствия питья приводит к гиповолемии . Гиповолемия вызывает снижение АД, сгущение крови, увеличение ее вязкости и способности к тромбообразованию . Нарушение гемодинамики приводит к ишемии тканей, развитию гипоксии, накоплению лактата и энергодефициту. Ишемия почек приводит к развитию острой почечной недостаточности – анурии . Анурия приводит к накоплению в крови остаточного азота (аммиак, мочевина, аминокислоты), возникает гиперазотемия . Гиповолемия через альдостерон снижает выведение с мочой NaCl, что вызывает гипернатриемию и гиперхлоремию . Гиперазотемия, гипернатриемия и гиперхлоремия усиливают гиперосмотическое состояние и нарушение водно-электролитного равновесия.

Энергодефицит и нарушение водно-электролитного равновесия препятствует формированию на мембране нейронов потенциала и проведению нервных импульсов в ЦНС, что приводит к развитию комы. Смертность при гипергликемической коме 50%.

Лактоацидотическая кома характерна для СД II типа, она возникает при накоплении лактата. В присутствии молочной кислоты резко снижается чувствительность адренорецепторов к катехоламинам, развивается необратимый шок. Появляется метаболическая коагулопатия, проявляющаяся ДВС-синдромом, периферическими тромбозами, тромбоэмболиями (инфаркт миокарда, инсульт).

Ацидоз при избытке кетоновых тел и лактата затрудняет отдачу Hb кислорода в ткани (гипоксия), он блокирует активность большинства ферментов, в первую очередь подавляется синтез АТФ, активный транспорт и создание мембранных градиентов, что в нервной ткани угнетает проведение нервных импульсов и вызывает кому.

Поздние осложнения сахарного диабета

Поздние осложнения СД неспецифичны (возникают при разных видах СД), к ним относятся:

1. макроангиопатия (атеросклероз крупных артерий);

2. нефропатия;

3. ретинопатия;

4. нейропатия;

5. синдром диабетической стопы.

Главная причина поздних осложнений сахар­ного диабета является гипергликемия, гиперлипидемия и гиперхолестеринемия. Они приводят к повреждению кровеносных сосудов и нарушению функций различных ор­ганов и тканей путем гликозилирования белков, образования сорбитола и активации атеросклероза.

1. Неферментативное гликози лирование белков . Глю­коза взаимодействует со свободными аминогруппами белков с образованием Шиффовых оснований, при этом белки изменяют свою конформацию и функции. Степень гликозилирования белков зависит от скорости их обнов­ления и концентрации глюкозы.

При гликозилировании кристаллинов - белков хрусталика, образуют мно­гомолекулярные агрегаты, увеличивающие пре­ломляющую способность хрусталика. Прозрач­ность хрусталика уменьшается, возникает его помутнение, или катаракта .

При гликозилировании белков (протеогликаны, коллагены, гликопротеины) базальных мембран нарушается их обмен, соотношение и структурная организация, происходит утолщение базальных мембран и развитие ангиопатий .

Макроангиопатии проявляются в поражени­ях крупных и средних сосудов сердца, моз­га, нижних конечностей. Гликозилированные бел­ки базальных мембран и межклеточного матрикса (коллагена и эластина) снижают элас­тичности артерий. Гликозилирование в сочетании с гиперлипидемией гликозилированных ЛП и гиперхолестеринемией является причиной активации атеросклероза.

Микроангиопатии - результат повреждения капилляров и мелких сосудов. Проявляют­ся в форме нефро-, нейро- и ретинопатии.

Нефропатия развивается примерно у трети больных СД. Признаком ранних стадий нефропатии служит микроальбуминурия (в пределах 30-300 мг/сут), которая в дальнейшем развивается до класси­ческого нефротического синдрома, характери­зующегося высокой протеинурией, гипоальбуминемией и отёками.

Ретинопатия, самое серьёзное осложнение са­харного диабета и наиболее частая причина сле­поты, развивается у 60-80% больных СД. На ранних стадиях развивается базальная ретинопатия, которая проявляется в крово­излияниях в сетчатку, расширении сосудов сет­чатки, отёках. Если изменения не затрагивают жёлтого пятна, потеря зрения обычно не проис­ходит. В дальнейшем может развиться пролиферативная ретинопатия, проявляющаяся в ново­образовании сосудов сетчатки и стекловидного тела. Ломкость и высокая проницаемость ново­образованных сосудов определяют частые кро­воизлияния в сетчатку или стекловидное тело. На месте тромбов развивается фиброз, приводя­щий к отслойке сетчатки и потере зрения.

2. Превращение глюкозы в сорбитол . При гипергликемии этот процесс ускоряется. Реакция катализируется альдозоредуктазой. Сорбитол не используется в клетке, а скорость его диффузии из клеток не­велика. При гипергликемии сорбитол накапливается в сетчатке и хрусталике глаза, клетках клубочков почек, шванновских клетках, в эндотелии. Сорбитол в высоких концентрациях токсичен для клеток, он приводит к увеличению осмотического дав­ления, набуханию клеток и отёку тканей. При накоп­лении сорбитола в хрусталике приводит к набуханию и нарушению упорядоченной структуры кристаллинов, в результате хрусталик мутнеет.

Диагностика сахарного диабета

Диагноз сахарного диабета ставят на основе классических симптомов са­харного диабета - полиурии, полидипсии, полифагии, ощущения сухости во рту.

Биохимическими признаками СД являются:

Уровень глюкозы натощак в капиллярной крови выше 6,1 ммоль/л;

Уровень С-пептида натощак менее 0,4 ммоль/л – признак СД I типа.

Тест с глюкагоном. Натощак определяется концентрация С-пептида (в норме >0,6 ммоль/л), затем 1мг глюкагона вводят внутривенно, через 6 минут определяется концентрация С-пептида (в норме >1,1 ммоль/л).

Наличие глюкозурии (определяют для контроля лечения);

Глюкозотелерантный тест (ГТТ), проводится при отсутствии клинических симптомов СД, когда концен­трация глюкозы в крови натощак соответству­ет норме. Признак СД - уровень глюкозы в плазме крови выше 11,1 ммоль/л через 2 ч после сахарной нагрузки;

Для оценки компенсации СД определяют:

В норме уровень гликозилированного гемоглобина НbА 1с не более 6% от общего содержания Hb, при компенсированном СД НbА 1с < 8,5%;

Альбуминурии. В норме альбуминов в моче < 30 мг/сут. При сахарном диабете до 300 мг/сут.

Поскольку СД II типа развивается значительно медленнее, классические клинические симптомы, гипергликемию и дефицит инсулина диагности­руют позднее, часто в сочетании с симптомами поздних осложнений сахарного диабета.

Лечение сахарного диабета

Лечение сахарного диабета зависит от его типа (I или II), является комплексным и включает диету, применение сахаропонижающих средств, инсулинотерапию, а также профилактику и ле­чение осложнений.

Сахаропонижающие препараты делят на две основные группы: производные сульфонилмочевины и бигуаниды.

Препараты сульфонилмочевины блокируют АТФ-чувствительные К + -каналы, что повышает внутриклеточную концентрацию К + и приводит к деполяризации мем­браны. Деполяризация мем­браны ускоряет транспорт ионов кальция в клетку, вследствие чего стимулируется секреция инсулина.

Бигуаниды увеличива­ют количество переносчиков глюкозы ГЛЮТ-4 на поверхности мембран клеток жировой ткани и мышц.

Инсулинотерапия обязательна для СД I типа (1-4 инъекции в день), при СД II типа инсулин иногда назначают для лучшего контроля СД, а также при развитии через 10-15 лет вторичной абсолютной инсулиновой недостаточности.

К перспективным методам лечения сахарного диабета относят следующие: трансплантация ос­тровков поджелудочной железы или изолирован­ных β-клеток, трансплантация генетически рекон­струированных клеток, а также стимуляция регенерации панкреатических островков.

При сахарном диабете обоих типов важнейшее значение имеет диетотерапия. Рекомендуют хоро­шо сбалансированную диету: на долю углеводов должно приходиться 50-60% общей калорийнос­ти пиши (исключение должны составлять легко­усвояемые углеводы, пиво, спиртные напитки, сиропы, пирожные и др.); на долю белков - 15-20%; на долю всех жиров - не более 25-30%. Пищу следует принимать 5-6 раз в течение суток.

Литература:

И.И. Дедов., Г.А. Мельниченко, В.В. Фадеев. Эндокринология. Москва.: «Медицина». 2000г.

окисляться как в аэробных, так и в анаэробных условиях;

    Защитно-механическая – основное вещество трущихся поверхностей суста-вов, в сосудах, слизистых;

    Опорная – целлюлоза в растениях, хондроитинсульфат в кости;

    Гидроосмотическая и ионрегулирующая – мукополисахариды обладают вы-

сокой гидрофильностью, отрицательным зарядом и, таким образом, удер-

живают Н2О, Са2+, Mg2+, Na+, в межклеточном веществе и определяют тургор кожи, упругость тканей;

    Кофакторная – гепарин является кофактором липопротеинлипазы плазмы крови и ферментов свертывания крови (инактивирует тромбокиназу).

КЛАССИФИКАЦИЯ

М ОНОСАХАРИДЫ

Моносахариды – это углеводы, которые не могут быть гидролизованы до более

простых форм. В свою очередь они подразделяются

    в зависимости от числа содержащихся в их молекуле атомов углерода: триозы, тетрозы, пентозы, гексозы, гептозы, октозы:

    в зависимости от присутствия альдегидной или кетонной группы: кетозы и альдо-

Производные моносахаридов

В природе существует огромное количество производных

как перечисленных выше моносахаров, так и других. Уроновые кислоты –дериваты гексоз,имеющие в6по-

ложении карбоксильные группы, например, глюкуроновая, га-лактуроновая, идуроновая, аскорбиновая кислоты.

Аминосахара –производные моносахаров,содержащие

аминогруппы, например, глюкозамин или галактозамин. Эти производные обязательно входят в состав дисахаридных

компонентов протеогликановых полисахаридов. Ряд антибио-

тиков (эритромицин. карбомицин ) содержат в своем составе аминосахара.

Гликозиды –соединения,образующиеся путем конден-

сации моносахарида (свободного или в составе полисахари-да) с гидроксильной группой другого соединения, которым

может быть любой моносахарид или вещество не углеводной

природы (агликон), например, метанол, глицерол, стерол, фе-нол. Важное клиническое значение имеют входящие в состав

наперстянки сердечные гликозиды. В качестве агликона они

Д ИСАХАРИДЫ

Дисахариды – это углеводы, которые при гидролизе дают две одинаковые или

различные молекулы моносахарида.

Сахароза –пищевой сахар,в наибольшей мере содержится в сахарной свекле и

тростнике, моркови, ананасах, сорго.

Мальтоза –продукт гидролиза крахмала и гликогена,содержится в солоде,про-

ростках злаков.

Лактоза –молочный сахар,содержится в молоке.В некоторых ситуациях(на-

пример. беременность) может появляться в моче.

Целлобиоза –промежуточный продукт гидролиза целлюлозы.Здоровая микро-

флора кишечника способна гидролизовать до 3\4 поступающей сюда целлюлозы до

свободной глюкозы, которая либо потребляется самими микроорганизмами, либо всасывается в кровь.

П ОЛИСАХАРИДЫ

Выделяют гомополисахариды . состоящие из одинаковых остатков моносахаров (крахмал. гликоген. целлюлоза) и гетерополисахариды (гиалуроновая кислота, хондроитинсульфаты) включающие разные моносахара.

Крахмал –гомополимерα-D-глюкозы.Находится в злаках,бобовых,картофеле инекоторых других овощах. Синтезировать крахмал способны почти все растения.

Двумя основными компонентами крахмала являются амилоза (15-20%.) и ами-лопектин (80-85%). Амилоза представляет собой неразветвленную цепь с ММ от 5 до 500 тысяч Д в которой остатки глюкозы соединены исключительно α-1-4-гликозид-ными связями. Амилопектин имеет массу не менее 1 млн Д и является весьма раз-ветвленной молекулой, содержащей α-1-4- и α-1-6-гликозидные связи, причем ветв-

ление происходит за счет присоединения небольших глюкозных цепочек к основной

цепи посредством α-1-6-гликозидных связей. Каждая ветвь имеет длину 24-30 остат-

ков глюкозы. веточки возникают примерно через 14-16 остатков глюкозы в цепочке.

Кроме строения, эти два полимера отличаются друг от друга по свойствам: во-первых. амилоза с йодом дает синее окрашивание, а амилопектин – красно-фиолетовое; во-вторых, амилоза более легко растворима в воде, например,

при варке картофеля в бульон переходит амилоза, именно она придает воде опалесцирующий оттенок, в самом же картофеле остается амилопектин.

Гликоген –резервный полисахарид животных тканей,в наибольшей мере со-

держится в печени и мышцах, Структурно он схож с амилопектином, но во-первых, длина веточек меньше – 11-18 остатков глюкозы, во-вторых, более разветвлен – че-

рез каждые 8-10 остатков. За счет этих особенностей гликоген более компактно уло-

жен, что немаловажно для животной клетки.

Целлюлоза является наиболее распространенным органическим соединением

биосферы. Около половины всего углерода Земли находится в ее составе. В отли-

чие от предыдущих полисахаридов она является внеклеточной молекулой, имеет волокнистую структуру и абсолютно нерастворима в воде. Единственной связью в

ней является β-1-4-гликозидная связь.

Интересно, что прочность целлюлозных волокон превышает таковую сталь-

ной проволоки того же диаметра, это позволяет волокнам формировать

весьма прочную структуру разнообразных растений, из продуктов питания достаточно вспомнить такие овощи как морковь, капуста, редька, а из рас-тений – любые деревья.

Инулин –полисахарид фруктозы.содержится в корнях георгинов,артишоков,

одуванчиков, Является легко растворимым соединением. В медицинской практике используется для определения очистительной способности почек клиренса .

Декстраны –резервный полисахарид дрожжей и бактерий.Основным типомсвязи является α-1-6-гликозидная, а в мес-

тах ветвления – α-1-4-гликозидные связи, также встречаются α-1-2- и

α-1-3-гликозидные связи. В медицине декст-

раны используются как компонент крове-заменителей ,например,в виде вязкого рас-

твора на 0,9% NaCl – реополиглюкина.

Гликозаминогликаны –полимерныемолекулы, в которых в качестве мономеров

используются дисахаридные фрагменты, содержащие уроновые кислоты и аминопро-изводные сахаров. В качестве примера мож-но привести хондроитин-4-сульфат и хонд-роитин-6-сульфат, гиалуроновую кислоту,

кератансульфат, дерматансульфат, гепа-

рин. Эти молекулы входят в состав проте-

огликанов – сложных белков, функцией ко-торых являются заполнение межклеточно-

го пространства и удержание здесь воды,

также они выступают как смазочный и структурный компонент суставов и других

тканевых структур.

Г ЛИКОПРОТЕИНЫ

Выделяют два подкласса белков, содержащих углеводы: протеогликаны и глико-протеины. Между эти подклассами имеются существенные отличия:

Гликопротеины

Протеогликаны

Доля углеводов 15-20%

Доля углеводов 80-85%

Имеются уроновые кислоты

Углеводные цепи

Углеводные цепи крайне велики

более 15 звеньев

Углевод имеет

нерегулярное

Углевод имеет регулярное

строение

строение

Более подробно см тема "Сложные белки".

Сиаловые кислоты являются ацетилпроизводными ней-

раминовой кислоты. Они, наряду с аминосахарами, входят в состав гликопротеинов.

Г ЛИКОЛИПИДЫ

Гликолипиды широко представлены в

нервной ткани и мозге. Размещаются они на

наружной поверхности плазматических мем-бран, при этом олигосахаридные цепи на-

правлены наружу. Большую часть гликолипи-

дов составляют гликосфинголипиды, вклю-чающие церамид (соединение аминоспирта

сфингозина с жирной кислотой) и один или

несколько остатков сахаров.

В нервной ткани главным гликолипидом является галактозилцерамид . В его состав входит длинноцепочечная жирная кислота.

Для других тканей более характерен глюкозилцерамид.

Еще одна группа гликолипидов, широко представленных в мозге, – ганглиозиды .

Они образуются из глюкозилцерамида и дополнительно содержат одну или несколь-

ко молекул сиаловой кислоты и моносахаров.

ВНЕШНИЙ ОБМЕН УГЛЕВОДОВ

Ротовая полость

Здесь находится кальций-содержащий фермент α -амилаза . Оптимум ее рН

7,1-7,2, активируется ионами Cl – . Она беспорядочно расщепляет внутренние

α-1-4-гликозидные связи и не влияет на другие типы связей.

В ротовой полости углеводы расщепляются до декстринов и мальтозы. Дисаха-

риды не гидролизуются.

Желудок

Из-за низкой рН амилаза инактивируется, хотя некоторое время расщепление уг-

леводов продолжается внутри пищевого комка.

Кишечник

В полости тонкого кишечника работают совместно панкреатическая α -амилаза ,

разрывающая α-1-4-связи, и олиго-1-6-глюкозидаза , действующая на точки ветвле-ния крахмала и гликогена.

Кроме полостного, имеется еще и пристеночное пищеварение, которое осуще-

    сахаразо-изомальтазный комплекс–в тощей кишке гидролизуетα-1,2-,

α-1,4-, α-1,6-гликозидные связи, расщепляет сахарозу, мальтозу мальтот-

риозу, изомальтозу;

    гликоамилазный комплекс–находится в нижних отделах тонкого кишечни-

ка и расщепляет α-1,4-гликозидные связи в олигосахаридах

    β-гликозидазный комплекс (лактаза) – гидролизует β-1,4-гликозидные свя-зи между галактозой и глюкозой (лактозу). У детей активность лактозы высо-

ка уже до рождения и сохраняется на высоком уровне до 5-7 лет, после чего

снижается.

Нарушения переваривания дисахаридов

Существуют две наиболее встречающиеся формы нарушения переваривания

дисахаридов – дефект лактазы и сахаразы При наследственной патологии лактазы симптомы проявляются после первых

кормлений; патология сахаразы обнаруживается позднее, при введении в рацион сладкого.

Недостаточность лактазы может проявляться не только у младенцев.

Дело в том, что лактаза – это адаптивный фермент, его активность изме-

няется в зависимости от рациона. А человек является единственным млеко-питающим на Земле, которое потребляет молоко во взрослом состоянии. Примерно у 10-12% людей белой расы фермент перестает синтезироваться

уже в детском возрасте и возникает непереносимость молока. У народов Азии и Африки такая проблема есть у 80-95% населения.

Патогенез. Отсутствие гидролиза соответствующих дисахаридов приводит к ос-мотическому эффекту и задержке воды в просвете кишечника. Кроме этого, сахара активно потребляются микрофлорой и метаболизируют с образованием органичских кислот и газов. Из-за этого симптомами лактозной или сахаразной недостаточности являются диарея, рвота, метеоризм, вспучивание живота, его боли и спазмы.

Приобретенные формы недостаточности переваривания углеводов возникаютв результате заболеваний стенок ЖКТ: энтериты, колиты, когда нарушается образо-

вание ферментов и их размещение на щеточной каемке энтероцитов. К тому же

ухудшается всасывание моносахаров.

Диагностика. Дифференциальная диагностика нарушений переваривания и вса-

сывания заключается в контроле уровня глюкозы крови после раздельного приема

обследуемым дисахаридов и эквивалентного количества моносахаридов. Незначи-тельный подъем концентрации глюкозы в первом случае указывает на нехватку

ферментов, во втором – на нарушение всасывания.

Лечение. Исключение из рациона молока или продуктов с добавлением сахара взависимости от типа непереносимого углевода.

Роль целлюлозы в пищеварении

Целлюлоза ферментами человека не переваривается. Но в толстом кишечнике

под действием микрофлоры до 75% ее количества гидролизуется с образованием

целлобиозы и глюкозы. Глюкоза частично используется самой микрофлорой и окис-ляется до органических кислот (масляной, молочной), частично может всасываться в

кровь. Однако основная роль целлюлозы для человека состоит в другом:

    стимулирует перистальтику кишечника,

    формирует каловые массы,

    стимулирует желчеотделение,

    абсорбирует холестерин и другие вещества, что препятствует их всасыва-нию.

ПЕРЕНОС ГЛЮКОЗЫ ЧЕРЕЗ МЕМБРАНЫ

В САСЫВАНИЕ В КИШЕЧНИКЕ

Всасывание моносахаридов происходит по механизму вторичного активного транспорта .Это значит,что затрата энергии при переносе сахаров происходит,нотратится она не непосредственно на транспорт сахара, а на создание градиента

концентрации другого вещества. Используя этот градиент, сахар проникает внутрь

клетки. В случае глюкозы таким ве-ществом является натрий.

Особый фермент – К + ,Na + -АТФаза – постоянно, в обмен

на калий, выкачивает ионы натрия из клетки, именно этот транспорт тре-

бует затрат энергии. В просвете ки-

специфическим белком, имеющим

два центра связывания: один для натрия, другой для сахара. Приме-чательно то, что сахар связывается с белком только после того, как с ним свяжется натрий. Белок-траснпортер свободно мигрирует в толще мембраны. При контакте бел-

ка с цитоплазмой натрий быстро отделяется от него и сразу отделяется сахар. Ре-

зультатом является накопление сахара в клетке, а ионы натрия вновь выкачиваются

К + ,Na + -АТФазой.

Т РАНСПОРТ ЧЕРЕЗ КЛЕТОЧНЫЕ МЕМБРАНЫ

Из крови в клетки глюкоза попадает при помощи облегченной диффузии – по

градиенту концентрации с участием белков -переносчиков (глюкозных транспортеров "ГлюТ"). Различают 5 видов транспортеров глюкозы ГлюТ 1, ГлюТ 2, ГлюТ 3, ГлюТ 4,

ГлюТ 5. Глюкозные транспортеры расположены на мембранах всех влеток.

Например, на поверхности β -клеток островков Лангерганса находится ГлюТ 2, благодаря ему генерируется сигнал для увеличения или снижения вы-

работки инсулина.

В мышцах и жировой ткани находится ГлюТ 4, только эти транспортеры явля-ются чувствительными к влиянию инсулина – при действии инсулина на клетку они

поднимаются к поверхности мембраны и переносят глюкозу внутрь. Данные ткани

получили название инсулинзависимых .

РЕАКЦИИ ВЗАИМОПРЕВРАЩЕНИЯ САХАРОВ

Поскольку в кишечнике всасываются все моносахарид, поступающие с пищей, то

перед организмом встает задача превратить их в глюкозу, так как в реакциях мета-болизма используется в основном глюкоза. Этот процесс получил название взаимо-

превращение сахаров. Цель его – создание только одного субстрата для реакций

мебаболизма, а именно α-D-глюкозы, что позволяет сэкономить ресурсы, не образо-вывать множество ферментов для каждого вида сахара.

Превращение фруктозы

Реакции перехода фруктозы в глюкозу достаточно просты. Сначала происходит активация фруктозы посредством фос-

форилирования 6-го атома углерода, затем изомеризация и,

наконец. отщепление уже ненужного фосфата.

Превращение галактозы

Галактоза, как и фруктоза, сначала подвергается фосфо-рилированию, хотя и по 1-му атому углерода . Еще одним

отличием от обмена фруктозы является изомеризация в глю-

козу не напрямую, а через синтез УДФ-галактозы, собственно, которая и превращается в глюкозу.

Физиологический смысл этого усложения видимо состоит

в использовании УДФ-галактозы в молочной железе для син-теза лактозы. необходимой для образования молока.

Нарушения превращения галактозы

Нарушения обмена галактозы вызваны генетическим де-

фектом нескольких ферментов:

    галактокиназы, частота дефекта 1:500000;

    галактозо-1-фосфат-уридил-трансферазы, частота дефекта 1:40000;

    эпимеразы, частота дефекта менее 1:1000000.

Заболевание, возникающее при этих нарушениях получи-

ло название галактоземия .

Диагностика. Концентрация га-

лактозы в крови возрастает до

11,1-16,6 моль/л (норма

0,3-0,5 ммоль/л), в крови также по-

является галактозо-1-фосфат. К ла-бораторным критериям относятся

также билирубинемия, галактозурия,

протеинурия, гипераминоацидурия, накопление гликозилированного ге-

моглобина. Дети отказываются от

Патогенез. Избыток галактозы

превращается в спирт галактитол (дульцитол), накапливающийся в

хрусталике и осмотически привле-

кающий сюда воду. Изменятся соле-вой состав и белки хрусталика, что

приводит к катаракте в молодом

возрасте. Катаракта возможна даже у плодов матерей с галактоземией,

употреблявших молоко во время бе-ременности.

При дефекте галактозо-1-фосфат-уридил-трансферазы АТФ постоянно расходуется на фосфо-

рилирование галактозы и дефицит энергии "токсически" действует на нейроны, гепа-

тоциты, нефроциты, угнетает активность многих ферментов. Как результат возмож-

ны задержка психо-моторного развития, умственная отсталость, некроз гепатоцитов и цирроз печени. В почках и кишечнике избыток галактозы и ее метаболитов ингиби-

рует транспорт аминокислот.

Лечение: исключение из рациона молока и других источников галактозы позво-ляет предотвратить развитие патологических симптомов. Однако сохранность ин-

теллекта может быть достигнута только при ранней, не позднее первых 2 месяцев

жизни, диагностике и вовремя начатом лечении.

СУДЬБА ГЛЮКОЗЫ В КЛЕТКЕ

Попав в клетку, глюкоза сразу же фосфорилируется. Фосфорилирование глюко-

зы решает сразу несколько задач:

    фосфатный эфир глюкозы не в состоянии выйти из клетки, так как молекула

отрицательно заряжена и отталкивается от фосфолипидной поверхности

мембраны;

    наличие заряженной группы обеспечивает правильную ориентацию молеку-

лы в активном центре фермента;

    уменьшается концентрация свободной (нефосфорилированной) глюкозы, что способствует диффузии новых молекул из крови.

Ф ОСФОРИЛИРОВАНИЕ ГЛЮКОЗЫ

Наибольшие запасы гликогена имеются в печени и скелетных мышцах , но во-обще гликоген способен синтезироваться во всех тканях. Резервы гликогена в клет-

ках используются в зависимости от функциональных особенностей клеток. Гликоген печени расщепляется при снижении концентрации глюкозы в крови,

прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются. В мышцах количество гликогена снижается обычно только после физической нагрузки – длительной и напряженной. Повышение содер-

жания гликогена в мышцах отмечается в период восстановления при приеме богатой

углеводами пищи. В печени гликоген накапливается после еды.

Такие отличия печени и мышц обусловлены наличием различных изоферментов гексокиназы ,фермента,который

фосфорилирует глюкозу в глюкозо-

Для печени характерен изо-

фермент, получивший собственное

название – глюкокиназа . Отличия-ми этого фермента от гексокиназ

других тканей являются:

    в низком сродстве к глюко-зе, что ведет к захвату глюкозы печенью только при ее высокой концентра-

ции в крови (после еды);

    продукт реакции – глюкозо-6-фосфат – не ингибирует фермент, в то время как в других тканях гексокиназа чувствительна к такому влиянию.

Благодаря этим отличиям гепатоцит может эффективно захватывать глюкозу по-

сле еды и метаболизировать ее в любом направлении.

Например, при переполнении запасов гликогена накапливающийся глюкозо-6-фосфат не подавляет глюкокиназу и усвоение глюкозы, а просто идет на

окисление до ацетил- S -КоА и в пентозофосфатный цикл, что в целом увели-

чивает синтез липидов.

Регуляция глюкокиназы: активация–андрогены и инсулин,подавление–глю-кокортикоиды и эстрогены.

МЕТАБОЛИЗМ ГЛИКОГЕНА

М ОБИЛИЗАЦИЯ ГЛИКОГЕНА

Мобилизация (распад) гликогена или гликогенолиз в норме активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа) . При этом уровень глюкозы крови поддерживают только печень и почки , ткани в которых имеется фермент глюкозо-6-фосфатаза, гидролизующий фосфат-ный эфир глюкозы. Образуемая свободная глюкоза выходит через плазматическую мембрану в кровь. Остальные органы используют гликоген только для собственных нужд.

В гликогенолизе непосредственно участвуют три фермента:

    Фосфорилаза гликогена –расщепляетα-1-4-гликозидные связи с образова-

нием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления

α(1-6) не останется 4 остатка глюкозы.

    α (1-4)– α (1-6)-глюкантрансфераза ,фермент переносящий трисахаридный

фрагмент на другую цепь с образованием новой α-1-4-гликозидной связи. При этом

на прежнем месте остается один остаток глюкозы и «открытая» доступная α-1-6-гликозидная связь.

    Амило- α -1-6-глюкозидаза , «деветвящий»фермент–гидролизует

α-1-6-гликозидную связь с высвобождением свободной глюкозы. В результате обра-зуется цепь без ветвлений, служащая субстратом для фосфорилазы.

А КТИВАЦИЯ ФОСФОРИЛАЗЫ

Скорость гликогенолиза лимитируется только скоростью работы фосфорилазы гликогена. Ее активность может изменяться трямя способами.

Ковалентная модификация

Происходит фосфорилирование фермента при действии гормонов на клетку

через аденилатциклазный механизм. Он является так называемым каскадным регу-лированием:

    Молекула гормона взаимодействуя со своим рецептором, активирует фермент

аденилатциклазу .;

    Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ ) – вторичный

посредник или мессенджер;

    цАМФ аллостерически активирует фермент протеинкиназу А ;

    Протеинкиназа А фосфорилирует различные внутриклеточные белки. Одним из этих белков является киназа фосфорилазы , которая при фосфорилировании ак-

тивируется;

    Киназа фосфорилазы фосфорилирует фосфорилазу " b " гликогена , послед-

няя в результате превращается в активную фосфорилазу "а" ;

    Активная фосфорилаза " а" гликогена расщепляет α-1-4-гликозидные связи в гликогене с образованием глюкозо-1-фосфата.

Активация ионами кальция

Второй способ регуляции заключается в активации киназы фосфорилазы не

протеинкиназой, а ионами Ca 2+ и кальмодулином . Этот путь работает при инициа-ции кальций-фосфолипидного механизма. Такой способ оправдывает себя, напри-

мер, при мышечной нагрузке, когда гормональные влияния недостаточны, зато в ци-

топлазму под влиянием нервных импульсов поступают ионы Ca 2+ . Также некоторые

гормоны влияют на углеводный обмен посредством этого механизма.

Активация с помощью АМФ

Третий способ–аллостерическая активация благодаря присоединению АМФ кмолекуле фосфорилазы " b ". Способ работает в любой клетке – при увеличении рас-

хода АТФ и накоплении продуктов его распада.

С ИНТЕЗ ГЛИКОГЕНА

Синтез гликогена начинается с обра-

зования глюкозо -6 -фосфата под действи-ем глюкокиназы в печени или других гек-

сокиназ в остальных тканях. Как уже гово-

рилось, глюкокиназа обладает низким сродством к глюкозе и в гепатоцитах глю-

коза будет задерживаться только при вы-

соких концентрациях ее в клетке. Непосредственно же синтез гликогена

осуществляют следующие ферменты:

    Фосфоглюкомутаза – превращает глюкозо-6-фофат в глюкозо-1-фофат;

    Глюкозо-1-фосфат-уридил-трансфе-

раза – фермент, осуществляющий ключе-вую реакцию синтеза. Необратимость

этой реакции обеспечивается гидролизом

образующегося дифосфата;

    Гликогенсинтаза – образует α-1-4-гликозидные связи;

    Амило-α-1.4-α-1,6-гликозил-транс-фераза, гликоген-ветвящий фермент –

переносит фрагмент с минимальной дли-

ной в 6 остатков глюкозы на эту же или соседнюю цепь с образованием

α-1-6-гликозидной связи.

Р ЕГУЛЯЦИЯ ОБМЕНА ГЛИКОГЕНА

Ферменты метаболизма гликогена активны либо в фосфорилированной, либо в

дефосфорилированной форме:

    фосфорилаза глико-гена активируется

после присоединения фосфатной группы

(см выше),

    синтаза гликогенапосле присоединения

фосфата инактиви-

руется .

Таким образом, осуществ-

ляется реципрокная (взаи-

моисключающая) регуляция:

    при работе клетки

и/или гормональных

влияниях активирует-

ся протеинкиназа и,

как следствие, акти-

вируется фосфори-

лаза гликогена и ин-

гибируется гликоген-

синтаза. Идут реак-ции катаболизма глю-

козы, и образуется

    при отдыхе или в по-

кое работают протеин-фосфатазы, которые освобождают ферменты от фос-

форной кислоты: в результате гликоген-фосфорилаза дефосфорилируется и становится не активной, активируется гликоген-синтаза . Начинается за-пасание глюкозы в виде гликогена.

Г ЛИКОГЕНОВЫЕ БОЛЕЗНИ

Это наследственные заболевания, обусловленные недостаточностью каких-либо

ферментов, отвечающих за метаболизм гликогена. Средняя частота встречаемости составляет 1:40000.

Гликогенозы

Ранее гликогенозы классифицировались по номерам, однако в связи с открытием

новых видов этих болезней появилось много разночтений. В настоящее время глико-

генозы делят по патогенетическому признаку на печеночные , мышечные и сме-шанные формы.Следует отметить,что при гликогенозах количество гликогена не

всегда изменено, изменения могут быть только в структуре его молекулы.

Печеночные гликогенозы

Самый частый гликогеноз I типа или болезнь фон Гирке обусловлен аутосом-

но-рецессивным дефектом глюкозо-6-фосфатазы. Из-за того, что этот фермент есть

только в печени и почках, преимущественно страдают эти органы, и болезнь носит еще одно название – гепаторенальный гликогеноз . Даже у новорожденных детей

наблюдаются гепатомегалия и нефромегалия, обусловленные накоплением гликоге-на не только в цитоплазме, но и в ядрах клеток. Кроме этого, активируется синтез липидов с возникновением стеатоза печени. Так как фермент необходим для де-фосфорилирования глюкозо-6-фосфата с последующим выходом глюкозы в кровь, у больных отмечается гипогликемия, и, как следствие, ацетонемия, метаболический ацидоз, ацетонурия.

Гликогеноз III типа или болезнь Форбса-Кори или лимит-декстриноз –этоаутосомнорецессивный дефект амило- α -1-6-глюкозидазы , «деветвящего» фермен-та, гидролизующего α-1-6 -гликозидную связь. Болезнь имеет более доброкачествен-ное течение и частота ее составляет примерно 25% от всех гликогенозов. Для боль-ных характерна гепатомегалия, умеренная задержка физического развития, в подро-стковом возрасте возможна небольшая миопатия.

Еще два печеночных гликогеноза – гликогеноз IV типа (болезнь Андерсена) ,

связанный с дефектом ветвящего фермента и гликогеноз VI типа (болезнь Херса) , связанный с дефицитом печеночной фосфорилазы гликогена встречаются довольно редко.

Мышечные гликогенозы

Для этой группы гликогенозов характерны изменения ферментов мышечной тка-

ни. Это приводит к нарушению энергообеспечения мышц при физической нагрузке, болям в мышцах, судорогам.

Гликогеноз V типа (болезнь Мак-Ардля) –отсутствие мышечной фосфорила-

зы. При тяжелой мышечной нагрузке возникают судороги, миоглобинурия, хотя лег-кая работа не вызывает каких-либо проблем.

Смешанные гликогенозы

Эти заболевания касаются и печени, и мышц, и других органов.

Гликогеноз II типа (болезнь Помпе) –поражаются все гликогенсодержащие

клетки из-за отсутствия лизосомальной α -1-4-глюкозидазы . Происходит накопле-

ние гликогена в лизосомах и в цитоплазме. Заболевание составляет почти 10% всех гликогенозов и является наиболее злокачественным. Больные умирают в грудном

возрасте из-за кардиомегалии и.тяжелой сердечной недостаточности.

Агликогенозы

Агликогенозы – состояния, связанные с отсутствием гликогена.

В качестве примера агликогеноза можно привести наследственный аутосомно-

рецессивный дефицит гликоген-синтазы. Симптомами является резкая гипогликемия натощак, особенно утром, появляется рвота, судороги, потеря сознания. В результа-те гипогликемии наблюдается задержка психомоторного развития, умственная от-сталость. Болезнь несмертельна при адекватном лечении (частое кормление), хотя и опасна.

ГЛИКОЛИЗ

Путь, по которому глюкоза окисляется до пировиноградной кислоты для получе-

ния энергии, называется гликолизом. В зависимости от дальнейшей судьбы пирува-

та различают аэробный и анаэробный гликолиз .

    аэробном процессе пировиноградная кислота превращается в ацетил-S-КоА и

    анаэробном процессе пировиноградная кислота восстанавливается до молоч-ной кислоты (лактата), поэтому в микробиологии анаэробный гликолиз называют

молочнокислым брожением. Лактат является метаболическим тупиком и далее ни во

что не превращается, единственная возмож-ность утилизовать лактат – это окислить его

обратно в пируват.

Практически все клетки организма способ-ны к анаэробному гликолизу. Для эритроцитов

он является единственным источником энер-

гии. Клетки скелетной мускулатуры за счет бескислородного расщепления глюкозы спо-

собны выполнять мощную, быструю, интенсив-

ную работу, как, например, бег на короткие дистанции, напряжение в силовых видах спор-

Анаэробный гликолиз локализуется в цито-золе и включает 2 этапа из 11 ферментатив-ных реакций.

Первый этап – подготовительный, здесь происходит

затрата энергии АТФ, активация глюкозы и образование

из нее триозофосфатов.

Первая реакция гликолиза,строго говоря,к гликоли-

зу не относится. Это гексокиназная реакция о которой

ранее уже говорилось ("Метаболизм гликогена"). Ее роль сводится к превращению глюкозы в реакционно способ-

ное соединение за счет фосфорилирования 6-го, не

включенного в кольцо, атома углерода.

Для печени характерен изофермент гексокиназы –

глюкокиназа .Низкое сродство этого фермента к глюко-

зе обеспечивает ее захват печенью только после приема пищи, когда создается высокая концентрация глюкозы в

крови. При обычных концентрациях глюкозы в крови пе-

чень ее не потребляет и та достается другим тканям. Вторая реакция –реакция изомеризации–необхо-

дима для выведения еще одного атома углерода из

кольца для его последующего фосфорилирования. В ней образуется фруктозо-6-фосфат.

Третья реакция –фосфорилирование фруктозо-6-

фосфата с образованием почти симметричной молекулы фруктозо-1,6-дифосфата.

В четвертой реакции фруктозо1,6-дифосфат разре-

зается пополам с образование двух фосфорилирован-ных триоз-изомеров, альдозы глицеральдегида (ГАФ) и

кетозы диоксиацетона (ДАФ).

Пятая реакция подготовительного этапа–переходглицеральдегидфосфата и диоксиацетонфосфата друг в

друга. Равновесие реакции сдвинуто в пользу диокси-

ацетонфосфата, его доля составляет 97%, доля глице-ральдегидфосфата – 3%. Эта реакция, при всей ее про-

стоте, является вершителем судьбы глюкозы:

    при нехватке энергии в клетке и активации окис-

ления глюкозы диоксиацетонфосфат превраща-

отправляется на синтез жиров (см "Синтез триацилглицеридов").

Второй этап гликолиза – это освобождение

и запасание ее в форме АТФ.

Шестая реакция гликолиза–окисление глице-

ральдегидфосфата и присоединение к нему фос-

форной кислоты приводит к образованию макроэр-гического соединения 1.3-дифосфоглицериновой

В седьмой реакции энергия фосфоэфирной связи, заключенная в 1,3-дифосфоглицерате тра-

тится на образование АТФ. Реакция получила до-

полнительное название –реакция субстратного фосфорилирования, что уточняет источник энергии

для получения макроэргической связи в АТФ (суб-

страт) в отличие от окислительного фосфорилиро-вания (электрохимический градиент ионов водоро-

да на мембране митохондрий).

Подобных реакций в клетке всего три – 1) ука-занная реакция, 2) пируваткиназная реакция, деся-тая реакция гликолиза (см ниже), 3) тиокиназная

реакция цикла трикарбоновых кислот.

Восьмая реакция –синтезированный в преды-

дущей реакции 3-фосфоглицерат изомеризуется в

2-фосфоглицерат.

Девятая реакция –отрыв молекулы воды от

2-фосфоглицериновой кислоты приводит к образо-

ванию еще одной макроэргической фосфоэфирной связи.

Еще одна реакция субстратного фосфорили-рования десятая реакция гликолиза–заключа-

ется в переносе макроэргического фосфата с фос-

фоенолпирувата на АДФ.

Последняя реакция, одиннадцатая , образова-ние молочной кислоты из пирувата под действием

лактатдегидрогеназы. Важно то, что эта реакция

осуществляется только в анаэробных условиях. Эта реакция необходима клетке, так как НАДН, об-

разующийся в 6-й реакции, в отсутствие кислорода не может поступать и окисляться в митохондриях.

При наличии кислорода пировиноградная ки-

слота превращается в ацетил-S-КоА.

Г ЛИКОЛИТИЧЕСКАЯ ОКСИРЕДУКЦИЯ

Процесс циклического восстановления и окис-

ления НАД в реакциях анаэробного гликолиза полу-

чил название гликолитическая оксиредукция .

В анаэробных условиях образуемый в шестой, ГАФ-дегидрогеназной реакции, НАДН используется

в последней реакции для восстановления пирувата до лактата. Образуемый таким образом НАД опять возвращается в шестую реакцию.

В аэробных условиях НАДН отдает свои атомы водорода на челночные систе-

мы (см ниже)для их передачи в дыхательную цепь митохондрий.

Э НЕРГЕТИЧЕСКИЙ ЭФФЕКТ ОКИСЛЕНИЯ ГЛЮКОЗЫ

На подготовительном этапе

на активацию глюкозы затра-

чивается 2молекулы АТФ,ка-ждая из которых оказывается

на триозе – глицеральдегид-

фосфате и диоксиацетонфос-фате. В следующий второй

этап входит только глицераль-

дегидфосфат, но его уже две молекулы, каждая из которых

окисляется до пирувата с об-

разованием 2-х молекул АТФ

    реакциях субстратного фос-

форилирования. Таким обра-

зом, суммируя, получаем, что

на пути от глюкозы до пирувата

    чистом виде образуется 2

молекулы АТФ.

Однако надо иметь в виду

и глицеральдегидфосфат-

дегидрогеназную реакцию, из которой выходит НАДН. Если

условия анаэробные , то он

используется в лактатдегидро-геназной реакции – окисляется

для образования лактата и в

получении АТФ не участвует.

Если же имеется кислород

– НАДН направляется в мито-хондрию, на процессы окисли-

тельного фосфорилирования, и

там его окисление приносит дивиденды в форме АТФ.

Э ФФЕКТ П АСТЕРА

Эффект Пастера – это снижение потребления глюкозы и прекращение продукции молочной кислоты клеткой в присутствии кислорода.

Луи Пастер, занимавшийся вопросами виноделия, наблюдал подобный фено-мен при производстве вина. Забегая вперед, отметим, что спиртовое броже-ние весьма похоже на гликолиз, только вместо молочной кислоты из пирува-та образуется спирт.

Биохимический механизм эффекта Пастера заключается в конкуренции между

пируватдегидрогеназой ,превращающей пируват в ацетил-S-КоА,и лактатдегид-

рогеназой ,превращающей пируват в лактат.При отсутствии кислорода внутрими-тохондриальные процессы дыхания не идут, цикл трикарбоновых кислот тормозится

и накапливающийся ацетил-S-КоА ингибирует ПВК-дегидрогеназу. В этой ситуации

пировиноградной кислоте не остается ничего иного как превращаться в молочную. При наличии кислорода ингибирование ПВК-дегидрогеназы прекращается и она, об-

ладая большим сродством к пирувату, выигрывает конкуренцию.

Важно то, что пировиноградная кислота является для клетки токсичным

веществом, и клетке необходимо избавиться от нее каким угодно образом. Так как через мембраны она не проходит, то обезвреживание достигается

превращением пирувата 1) в лактат; 2) в ацетил- S -КоА; 3) в аланин (см "Ала-нинаминотрансфераза"), 4) в оксалоацетат.

Иллюстрацией к сказанному служит от-личие изоферментов лактатдегидроге-наз (ЛДГ) друг от друга. Сердечный

изофермент ЛДГ-1 обладает высоким сродством к молочной кислоте и "стре-

мится" поднять концентрацию пирува-та с целью его включения в ЦТК и полу-чения энергии для деятельности мио-

карда. Большое количество митохонд-

рий и поступление сюда лактата из других органов обеспечивает работу сердца при аэробных условиях. При не-хватке кислорода свойства ЛДГ-1 не из-

менятся, он по-прежнему будет сдвигать реакцию в сторону продукции пиро-

виноградной кислоты. Изофермент скелетной мышцы ЛДГ -5 обладает высо-ким сродством к пирувату, при отсутствии кислорода в клетке быстро и эффективно превращает его в лактат, легко проникающий сквозь мембраны. Таким образом, в анаэробных условиях сильнее будет страдать сердечная мышца, что, собственно говоря, и наблюдается в медицинской практике.

Ч ЕЛНОЧНЫЕ СИС-ТЕМЫ

Челночные системы –

механизм доставки обра-

зованных в гликолизе ио-

нов Н + (в составе НАДН)

из цитозоля в митохонд-рию.

Так как сама молекула

НАДН через мембрану не проходит, природа поза-

ботилась о том, чтобы

создать системы, прини-

мающие этот водород в цитоплазме и отдающие его в матриксе митохонд-рий.

Определены две основные челночные системы – глицеролфосфатная и малат-

аспартатная.

Глицеролфосфатный челнок активен в печени и в быстрых мышечных волок-нах. Его ключевыми ферментами являются изоферменты глицерол-3-фосфат-

дегидрогеназы, цитоплазматический и митохондриальный. Они отличаются своими

коферментами: у цитоплазматической формы – НАД, у митохондриальной – ФАД. Метаболиты гликолиза – диоксиацетонфосфат и НАДН образуют глицерол-3-

фосфат, поступающий в матрикс митохондрий, где он окисляется с образованием

Малат-аспартатный челнок более сложен:постоянно идущие в цитоплазме ре-

акции трансаминирования аспартата поставляют оксалоацетат, который под дейст-вием цитозольного пула малатдегидрогеназы восстанавливается до яблочной ки-

слоты. Последняя антипортом с α-кетоглутаратом проникает в митохондрии и, явля-

ясь метаболитом ЦТК, окисляется в оксалоацетат с образованием НАДН. Так как

мембрана митохондрий непроницаема для оксалоацетата, то он аминируется до ас-

парагиновой кислоты, которая в обмен на глутамат выходит в цитозоль.

ГЛЮКОНЕОГЕНЕЗ

Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата. глицерола, метаболитов цикла Кребса, аминокислот. Все аминокислоты,

кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Неко-

торые из них – глюкогенные – полностью включаются в молекулу глюкозы, некото-рые – смешанные – частично.

    организме всегда существует потребность в глюкозе:

      для эритроцитов глюкоза является единственным источником энергии,

      нервная ткань потребляет 120 г глюкозы в сутки, притом эта величина не за-висит от интенсивности ее работы. Только в экстремальных ситуациях (дли-

тельное голодание) она способна получать энергию из неуглеводных источ-

      глюкоза играет весомую роль для поддержания необходимых концентраций

метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацета-

Таким образом, при определенных ситуациях – при низком содержании углево-

дов в пище, голодании, длительной физической работе – организм должен иметь

возможность получить глюкозу. Это достигается процессом глюконеогенеза . Кроме получения глюкозы, глюконеогенез обеспечивает и уборку "шлаков" – лак-

тата, образованного при мышечной работе и в эритроцитах, и глицерола, являюще-

гося продуктом липолиза в жировой ткани.

Глюконеогенез лишь отчасти повторяет реакции окисления глюкозы. Как указы-

валось ранее, в гликолизе существуют три необратимые стадии: пируваткиназная

(десятая), фосфофруктокиназная (третья) и гексокиназная (первая). На этих стадиях существуют энергетические барьеры, которые обходятся с помощью специальных реакций.

Обход десятой реакции гликолиза

На этом этапе глюконеогенеза работают два основных фермента – в митохонд-

риях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа .

Пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Необ-

ходимо отметить, что эта реакция идет в клетке постоянно, являясь анаплеротиче-

и превратиться в фосфоенолпируват. Однако дело осложняется непроницаемостью мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшест-венник оксалоацетата по ЦТК. Так как в условиях недостаточности глюкозы в клетке активируется липолиз и окисление жирных кислот, то повышается количество НАДН в митохондриях. Этот избыток позволяет повернуть малатдегидрогеназную реакцию ЦТК вспять. Малат накапливается, выходит в цитозоль и здесь превращается в ок-салоацетат.

В цитоплазме фосфоенолпируват- карбоксикиназа

осуществляет превращение оксалоацетата в фосфоенол-

пируват, для реакции требуется энергия ГТФ. От молеку-лы отщепляется тот же углерод, что и присоединяется.

Обход третьей реакции гликолиза

Второе препятствие на пути синтеза глюкозы – фос-

фофруктокиназная реакция – преодолевается с помощью

фермента фруктозо-1,6-дифосфатазы. Этот фермент есть в почках, печени, поперечно-полосатых мышцах. Таким

образом, эти ткани способны синтезировать фруктозо-6-

фосфат и глюкозо-6-фосфат.

Обход первой реакции гликолиза

Последняя реакция катализируется глюкозо-6-

фосфатазой. Она имеется только в печени и почках, сле-довательно, только эти ткани могут продуцировать сво-

бодную глюкозу.

Г ЛЮКОЗО - ЛАКТАТНЫЙ И ГЛЮКОЗО - АЛАНИНОВЫЙ ЦИКЛЫ

Глюкозо-лактатный цикл (цикл Кори) –это связь глюконеогенеза в печени и об-

разования лактата эритроцитах или мыш-цах из глюкозы. В эритроцитах молочная

кислота образуется

непрерывно, так как для них анаэробный

гликолиз является

единственным спосо-бом образования энер-

гии. В скелетных мыш-цах накопление лакта-та является следстви-ем гликолиза при очень интенсивной, максимальной мощно-

сти, работе, и чем более такая работа интенсивна, тем менее продолжительна По-

сле нагрузки (во время восстановления) лактат удаляется из мышцы довольно бы-

стро – всего за 0,5-1,5 часа.

Дополнение

Следует отметить, что если продолжи-

тельность нагрузки мала (до 10 секунд),

то количество АТФ пополняется пре-имущественно в

креатинфосфоки-назной реакции. В

таком режиме к при-меру работают мышцы у ттанги-

стов, прыгунов как в длину, так и в высо-

ту, метателей мо-лота, копья и т.п..

Если нагрузка не бо-лее 90 секунд – АТФ синтезируется в основном в реакциях анаэробного глико-

лиза. В спорте это бегуны-спринтеры на 100-500 м, спортсмены силовых ви-дов (борцы, тяжелоатлеты, бодибилдеры). Если напряжение мышцы длится

более двух минут – развивается аэробное окисление глюкозы в реакциях ЦТК

и дыхательной цепи.

Но, хотя мы и говорим об аэробном окислении глюкозы, необходимо знать и помнить, что лактат образуется в мышце всегда: и при анаэробной, и при аэробной работе, однако в разных количествах.

Образовавшийся лактат может утилизоваться только одним способом – превра-

титься в пировиноградную кислоту. Но, как уже указывалось, пируват токсичен для

клеток и должен быть как можно быстрее утилизован. Сама мышца ни при работе, ни во время отдыха не занимается превращением лактата в пируват из-за наличия

специфического изофермента ЛДГ-5.

Если молочная кислота поступила в миокардиоциты, она быстро превраща-ется в пируват, далее в ацетил- S -КоА и вовлекается в полное окисление до

СО B 2 B и Н B 2 B О.

Большая часть лактата захватывается гепатоцитами, окисляется в пировино-

градную кислоту и вступает на путь глюконеогенеза.

Целью глюкозо-аланинового цикла также является уборка пирувата , но, кроме

этого решается еще одна немаловажная задача – уборка лишнего азота из мышцы.

При мышечной работе и в покое в миоците распадаются белки и образуемые амино-кислоты рансаминируются с α-кетоглутаратом. Полученный глутамат взаимодейст-

вует с пируватом. Образующийся аланин является транспортной формой и пирувата

и азота из мышцы в печень. В гепатоците идет обратная реакция трансаминирова-ния, аминогруппа передается на синтез мочевины, пируват используется для синте-за глюкозы

Глюкоза, образованная в печени из лактата или аланина, возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена.

Кроме мышечной работы, глюкозо-аланиновый цикл активируется во время го-

лодания, когда мышечные белки распадаются и многие аминокислоты используются

    качестве источника энергии, а их азот необходимо доставить в печень.

      ЕГУЛЯЦИЯ ГЛИКОЛИЗА И ГЛЮКОНЕОГЕНЕЗА

МЕТАБОЛИЗМ ЭТАНОЛА

С ПИРТОВОЕ БРОЖЕНИЕ

Образование этилового спирта из глюкозы происходит в дрожжах и некоторых видах плесневых грибков. Суммарное

уравнение реакции:

C 6 H 5 О 10 → 2 CО 2 + 2 С 2 Н 5 ОН

До стадии образования пирувата реакции спиртового броже-

ния совпадают с реакциями гликолиза, отличия заключаются

только в дальнейшем превращении пировиноградной кислоты. Цель этих превращений – удалить пируват из клетки и окислить

НАДН, который образовался в 6-й реакции.

О БЕЗВРЕЖИВАНИЕ ЭТАНОЛА

Метаболизм поступающего этанола в организме происходит

в печени двумя путями. Первый путь заключается в окислении

спирта до уксусной кислоты, которая в виде ацетил-S-КоА посту-

пает в ЦТК. Через этот путь проходит от 70% до 90% всего эта-нола. Оставшаяся часть окисляется в микросомах алкогольокси-дазой. При регулярном поступлении этанола доля микросомаль-ного окисления возрастает, количество молекул алкогольоксида-зы увеличивается.

Так как при обезвреживании этанола образуется большое количество НАДН, в клетках печени активируется реакция превращения пирувата в лактат. Это приводит к гипогликемии , так как пировиноградная кислота является субстратом глюконео-генеза. Свободное проникновение молочной кислоты в кровь обуславливает лакта-

цидемию .

Если запасы гликогена в печени изначально невелики (голодание, недоедание, астеническое телосложение) или израсходованы (после физической работы), то при приеме алкоголя натощак гипогликемия наступает быстрее и может

быть причиной потери сознания. К этому стоит добавить сильный диурети-

ческий эффект этанола, ведущий к быстрому обезвоживанию организма и снижению кровоснабжения головного мозга со всеми вытекающими последст-виями.

Этанол является энергетически ценным соединением: при метаболизме 125 г этанола количество образующегося НАДН такое же, как при окислении 500 г глюко-

зы. При полноценном питании и частом потреблении этилового спирта, например, в виде пива, "этанольный" ацетил-S-КоА не столько сгорает в ЦТК, сколько использу-

ется для синтеза холестерина и нейтральных жиров, то есть происходит переход

энергии этанола в запасную форму, что приводит к пивному ожирению и повышает риск атеросклероза.

ПЕНТОЗОФОСФАТНЫЙ ПУНТЬ

Пентозофосфатный путь окисления глюкозы не связан с образованием энергии.

Значение ПФП:

    Образование НАДФН

    для синтеза жирных кислот,

    холестерина и других стероидов,

    для синтеза глутаминовой кислоты из α-кетоглутаровой кислоты (реак-

ция восстановительного аминирования).

    для систем защиты клетки от свободно-радикального окисления (анти-оксидантная защита).

2. Образование рибозо-5-фосфата, необходимого для синтеза нуклеиновых ки-

Наиболее активно реакции ПФП идут в цитозоле клеток печени, жировой ткани, эритроцитах, коре надпочечников, молочной железе при лактации, менее интенсив-

но в скелетных мышцах.

Пентозофосфатный путь включает два этапа – окислительный и неокислитель-ный.

На первом, окислительном , этапе глюкозо-6-фосфат в трех реакциях превра-

щается в рибулозо-5-фосфат, реакции сопровождаются восстановлением двух мо-лекул НАДФ до НАДФН.

Второй этап – этап структурных перестроек , благодаря которым пентозы воз-

вращаются в фонд гексоз. В этих реакциях рибулозо-5-фосфат может изомеризо-ваться до рибозо-5-фосфата и ксилулозо-5-фосфата. Далее под влиянием фермен-

тов транскетолазы и трансальдолазы происходят структурные перестройки с обра-

зованием иных моносахаридов. При реализации всех реакций второго этапа пентозы превращаются во фруктозо-6-фосфат и глицеральдегидфосфат. Из глицеральдегид-

3-фосфата при необходиости могут образоваться гексозы.

Связь пентозофосфатного пути и гликолиза

Судьба полученных фруктозо-6-фосфата и глицеральдегидфосфата различна

в зависимости от ситуации и потребностей клетки. Поэтому метаболизм глюкозо-6-фосфата может идти по 4 различным механизмам.

Механизм 1 . Потребность в НАДФН и рибозо-5-фосфате сбалансирована

(например, при синтезе дезоксирибонуклеотидов). При таких условиях реак-

ции идут обычным порядком – образуется две молекулы NADPH и одна моле-

кула рибозо-5-фосфата из одной молекулы глюкозо-6-фосфата по окисли-тельной ветви пентозофосфатного пути.

Механизм 2 . Потребность в рибозо-5-фосфате значительно превышает потребность в НАДФН (например, синтез РНК) Большая часть глюкозо-6-фосфата превращается во фруктозо-6-фосфат и глицеральдегид-3-фосфат

по гликолитическому пути. Затем две молекулы фруктозо-6-фосфата и одна молекула глицеральдегид-3-фосфата под действием трансальдолазы и

транскетолазы рекомбинируют в три молекулы рибозо-5-фосфата путем обращения реакции 2 этапа пентозофосфатного пути.

Механизм 3 . Потребность в НАДФН значительно превышает потреб-

ность в рибозо-5-фосфате (например, биосинтез холестерола, жирных ки-слот). В этой ситуации по окислительным реакциям пентозофосфатного

пути образуются НАДФН и рибулозо-5-фосфат. Далее, под действием транс-кетолазы и трансальдолазы, рибулозо-5-фосфат превращается в пентозо-5-фосфаты, во фруктозо-6-фосфат и глицеральдегид-3-фосфат. В заключение

происходит ресинтез глюкозо-6-фосфата из фруктозо-6-фосфата и глице-ральдегидфосфата по пути глюконеогенеза. Подключение новых молекул

глюкозо-6-фосфата позволяет поддерживать стехиометрию процесса.

Механизм 4 . Потребность в НАДФН значительно превышает потреб-ность в рибозо-5-фосфате и необходима энергия (например. антиокси-

дантная защита в эритроците). Глюкозо-6- фосфат превращается в рибозо-5-фосфат и далее во фруктозо-6- фосфат и глицеральдегид-3-фосфат, ко-торые (в отличие от механизма 3) вступают на гликолитический путь обме-на, а не подвергаются обратному превращению в глюкозо-6-фосфат. Образо-ванный пируват вступает в ЦТК. В результате происходит одновременное генерирование НАДФН и АТФ.

Недостаточность глюкозо-6-фосфат-дегидрогеназы

Генетическая недостаточность глюкозо-6-фосфат-дегидрогеназы отмечается примерно с частотой 1:60, то есть на Земле имеется около 100 млн человек с этим заболеванием, которое, к счастью, не всегда проявляется. Следствием ферментного дефекта является снижение синтеза НАДФН в клетке. Особенно существенно это влияет на эритроциты , в которых окислительный этап пентозофосфатного цикла является единственным источником НАДФН.

Из разнообразных функций НАДФН для эритроцитов имеет значение одна – уча-

стие в работе антиоксидантной системы, а именно кооперация с глутатион-

пероксидазой, ферментом, восстанавли-

вающим пероксид водорода до воды. Пе-роксид водорода в клетке образуется из

свободных кислородных радикалов (актив-

ных форм кислорода), последние являются обычным продуктом деятельности ряда

ферментов, например, цитохромоксидазы.

При употреблении некоторых лекарст-венных препаратов (сульфаниламиды, (стрептоцид, сульфацил-Na), норсульфа-зол, парацетамол, аспирин, примахин, ме-тиленовый синий, нафталин) в клетках ак-

тивируются процессы свободно-радикального окисления. Обычная клетка, и эритро-

цит в том числе, довольно легко справляются с дополнительной нагрузкой. При не-

достаточности описываемого фермента перекись водорода накапливается в эритро-ците, усиливается повреждение его мембран и гемолиз.

ГОМЕОСТАЗ ГЛЮКОЗЫ В КРОВИ

Концентрация глюкозы в крови изменяется под влиянием многих гормонов. Ос-

новными гормонами являются глюкагон, адреналин, глюкокортикоиды, сомато-

тропный гормон с одной стороны,и инсулин с другой.Инсулин является единст-

венным гормоном организма, действие которого нацелено на снижение уровня глю-козы крови. Все остальные гормоны увеличивают его.

Уменьшение инсулином концентрации глюкозы в крови достигается следующи-

ми путями:

    стимуляция белков-транспортеров на цитоплазматической мембране,

    повышение синтеза глюкокиназы – фермента, получившего название "ло-

вушка для глюкозы",

    активация гликоген-синтазы -и стимуляция ее синтеза, что позволяет пре-

вратить излишки глюкозы в гликоген,

    индукция синтеза глюкозо-6-фосфат-дегидрогеназы и 6-фосфоглюконат-дегидрогеназы,

    стимуляция синтеза ферментов гликолиза – фосфофруктокиназы, пируват-киназы, что позволяет вовлечь глюкозу в окислительные процессы.

    вовлечение глюкозы в синтез триацилглицеринов (см Синтез триацилглице-ролов).

Многие ткани нечувствительны к действию инсулина, их называют инсулинне-

зависимыми .К ним относятся нервная ткань,стекловидное тело,хрусталик,сетчат-ка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты.

Глюкагон , адреналин и глюкокортикоиды повышают содержание глюкозы кро-

ви, активируя мобилизациию гликогена (гликогенфосфорилазу), стимулируя синтез ферментов глюконеогенеза (пируваткарбоксилазу, фосфоенолпируват-

карбоксикиназу, фруктозо-1,6-дифосфатазу и глюкозо-6-фосфатазу). Глюкокорти-

коиды, кроме этого, препятствуют проникновению глюкозы в клетку.

ГИПЕРГЛИКЕМИЧЕСКИЕ СОСТОЯНИЯ

Гипергликемическим является состоянием, при котором концентрация глюкозы в крови более 6 ммоль/л.

По происхождению выделяют две группы таких состояний:

    Физиологические

    алиментарные – связаны с приемом пищи и продолжаются в норме не бо-лее 2 часов после еды.

    нейрогенные – нервное напряжение. Стимулирующее секрецию адреналина

и мобилизацию гликогена в печени,

    гипергликемия беременных – связана с относительной недостаточностью

инсулина при увеличении массы тела и потребностью плода в глюкозе.

    Патологические

    Припри заболеваниях гипофиза, коры и мозгового слоя надпочечников, щи-

товидной железы, при органических поражениях ЦНС и поджелудочной же-

С АХАРНЫЙ ДИАБЕТ

Сахарный диабет (СД) – полиэтиологическое заболевание, связанное:

    со снижением количества β-клеток островков Лангерганса,

    с нарушениями на уровне синтеза инсулина,

    с мутациями, приводящими к молекулярному дефекту гормона,

    со снижением числа рецепторов к инсулину и их аффинности в клетках-

    с нарушениями внутриклеточной передачи гормонального сигнала.

Выделяют два типа сахарного диабета:

    Инсулинзависимый сахарный диабет (ИЗСД)- диабет детей и подростков (юве-

нильный), его доля составляет около 20% от всех случаев СД;

    Инсулиннезависимый сахарный диабет (ИНЗСД) – диабет взрослых, его доля

– около 80%;

Подразделение типов СД на взрослый и ювенильный не всегда корректно, так

как встречаются случаи развития ИНЗСД в раннем возрасте, также ИНЗСД может переходить в инсулинзависимую форму

3. Диабет беременных

Более подробно рассмотрим 1 и 2 ти-

пы СД. Развитие ИЗСД обусловлено не-

достаточным синтезом инсулина в

β-клетках островков Лангерганса подже-

лудочной железы. Среди причин этого в

настоящее время на первый план выдви-

гаются аутоиммунные поражения и инфи-

цирование β-тропными вирусами (вирусы

Коксаки, Эпштейна-Бар, эпидемического паротита).

Дополнение

Имеется опасность использования коровьего молока или молочных смесей для вскармливания младенцев из-за возможного развития иммунного ответа на молочный альбумин и переключения иммунной атаки на β -клетки поджелудоч-ной железы.

Для диабета взрослых ведущей причи-

ной является инсулинорезистентность ,

возникающая из-за функциональных или структурных нарушений инсулиновых ре-

цепторов.

Сравнительная характеристика типов сахарного диабета

ИЗСД

ИНЗСД

Дети, подростки

Средний, пожилой

Острое (несколько дней)

Постепенное (годы)

Внешний вид (до лечения)

Худощавое

У 40% ожирение

Снижение массы тела (до

Обычно есть

Не характерно

Концентрация инсулина в

Снижена в 2-10 раз

В норме или повышена

Концентрация С-пептида

Резко снижена

В норме или повышена

или отсутствует

Семейный анамнез

Отягощен редко

Часто отягощен

Зависимость от инсулина

Только у 20%

Склонность к кетоацидозу

Диагностика.

Диагноз инсулинзависимого сахарного диабета ставится если

    Имеются классические симптомы (полиурия, полидипсия, снижение массы те-

ла) и концентрация глюкозы натощак в нескольких повторных анализах капиллярной

крови более 6,1 ммоль/л.

    Отсутствие соответствующих симптомов при концентрации глюкозы натощак в

нескольких повторных анализах капиллярной крови более 6,1 ммоль/л.

      В сомнительных (и только!) случаях – отсутствие симптомов в сочетании не-однозначностью результатов анализов – рекомендуется нагрузочная проба с глюко-

зой. Она заключается в приеме испытуемым глюкозы из расчета 1,5-2,0 г на кг массы тела. Пробы крови отбирают непосредственно перед приемом глюкозы (нулевая ми-

В норме повышение концентрации

глюкозы составляет 50-75% к 60 ми-

нуте исследования и снижается до исходных величин к 90-120 минутам.

В абсолютных единицах по реко-

мендации ВОЗ подъем уровня глю-козы должен быть не более 7,5

ммоль/л при исходном 4,0-5,0

Дополнение

Иногда пробы берут только на 0 и 120 минутах, однако это нежела-

тельно, так как упускается до-полнительная информация о состоянии организма. Так, по крутизне восходя-

щей части кривой можно судить об активности n . vagus , отвечающего за секрецию инсулина, о всасывающей функции кишечника, о способности печени усваивать глюкозу. К примеру, "голодная" печень с истощенными запасами

гликогена, более активно потребляет глюкозу из крови воротной вены по сравнению с "сытой", и подъем кривой более плавный. Аналогичная кривая на-блюдается при ухудшении всасывания глюкозы вследствие заболевания сли-

зистой кишечника. При циррозе печени отмечается обратная картина.

Довольно часто у взрослых вместо глюкозной нагрузки используется обычный завтрак, и кровь отбирают через 1, 2 или 2,5 часа после него. Если уровень глюкозы в указанное время не возвращается к норме, то подтверждается ди-агноз сахарного диабета.

Гипергликемические кривые

проявляются повышенным в 2-3

раза уровнем глюкозы крови после нагрузки, что свидетельствует о

нарушении гормональных взаимо-

действий. Нормализация показате-лей происходит крайне медленно и

завершается не ранее 150-180 ми-

нут. Наиболее частой причиной та-ких кривых является скрытый са-

харный диабет 1 и 2 типа и повре-ждении паренхимы печени. Избы-

ток катехоламинов при феохромо-цитоме и трийодтиронина при ги-

перфункции щитовидной железы,

гиперкортицизм, заболевания гипоталамуса и гипофиза также проявляются в виде гипергликемической кривой.

Дополнение

При измерении уровня глюкозы после еды у больных с хорошо контролируе-мым сахарным диабетом результаты должны укладываться в диапазон 7,6-

9,0 ммоль/л. Величины большие 9,0 ммоль/л означают, что дозировка инсулина неправильна или диабет не компенсирован.

Гипогликемические кривые

повышение концентрации глюкозы

не более чем на 25% с быстрым возвращением к исходным значе-

ниям. Наблюдаются при аденоме

островков Лангерганса, гипотирео-зе, гипофункции коры надпочечни-

ков, заболеваниях кишечника и

дисбактериозе.

Дополнение

Э ФФЕКТЫ ИНСУЛИНА

Очень быстрые эффекты (секунды)

    Гиперполяризация мембран чувствительных к инсулину клеток;

    Активация na+/h+-обменника, что выхывает выход ионов н+, вход в клетку ио-

    Активация na+/к+-обменника, что выхывает выход ионов na+, вход в клетку ио-нов k+;

    Угнетение ca2+-насоса, приводит к задержке ионов са2+ в клетке;

    Стимуляция транспорта глюкозы в клетку – появление на мембране перенос-чиков глюкозы;

Быстрые эффекты (минуты)

    Стимулирование протеинфосфатаз приводит к активации гликогенсинтазы,

пируватдегидрогеназы, ГМГ-SКоА-редуктазы, ацетил-S-КоА-карбоксилазы;

    Увеличивает липогенез за счет создания благоприятного "биохимического

климата":

    активирует глюкозо-6-фосфатдегидрогеназу и, что вызывает наработку НАДФН,

    глюкокиназу, что ведет к синтезу ацетил-SКоА,

    ацетил-S-КоА-карбоксилазу и синтазу жирных кислот, повышая синтез жир-ных кислот.

Активирует цАМФ-фосфодиэстеразу, снижая тем самым ее активирующее

влияние на протеинкиназу А и реакции катаболизма.

Медленные эффекты (минуты-часы)

  1. Активация синтеза глюкокиназы, АТФ-цитрат-лиазы, ацетил-S-КоА-карбо-

ксилазы, синтазы жирных кислот, пируваткиназы, люкозо-6-фосфатдегидрогеназы, цитолозольной малатдегидрогеназы.;

    Увеличение синтеза тРНК для увеличения скорости транскрипции. Однако на-работку мРНК антагонистических ферментов снижает (например, для ФЕП-

карбоксикиназы);

    Повышает фосфорилирование по серину рибосомального белка S6, что сти-мулирует синтез белка.

Очень медленные эффекты (часы-сутки)

    Повышает синтез соматомедина, зависимый от гормона роста;

    Увеличивает рост и пролиферацию клеток, действуя при этом синергично с

соматомедином;

    Стимулирует тирозиновые киназы., вызывает переход клетки из G1 в S-фазу клеточного цикла.

    ОСЛЕДСТВИЯ ДЕФИЦИТА ИНСУЛИНА

Быстрые последствия

    Гипергликемия –так как отсутствует влияние инсулина и превалирует влия-

ние глюкагона, адреналина, кортизола, гормона роста.

    Глюкозурия –почечный порог для глюкозы,т.е.концентрация глюкозы в кро-

ви при которой она появляется в моче, примерно равен 10,0 ммоль/л. В норме в мо-

че уровень глюкозы 0,8 ммоль/л и до 2,78 ммоль/сут, в других единицах около 0,5

г/сут, при СД количество теряемой глюкозы составляет до 100 г/сут и более.

    Преобладание катаболизма белков над анаболизмом ведет к накоплению

продуктов азотистого об-

мена, в первую очередь мочевины и ее повышен-

ному выведению. Избыток

аминокислот уходит в глю-

конеогенез .

    Глюкоза и мочевина

осмотически удерживают воду в просвете поччного

канальца и возникает по-

лиурия .Объем мочи воз-растает в 2-3 раза.

    Повышенный распад

ТАГ в жировой ткани и пе-чени обуславливает ано-

мально высокое окисление

жирных кислот и накопле-ние их недоокисленных

продуктов – кетоновых тел.

Это приводит к кетонемии ,

кетонурии и кетоацидозу .

При диабете концентрация кетоновых тел возрастает

    100-200 раз и достигает

350 мг% (норма 2 мг% или

0,1-0,6 ммоль/л).

    При полиурии с мо-

чой, кроме воды, теряются соли, в частности карбо-

наты ,имеющие щелочнойхарактер. Это усугубляет ацидоз.

    В результате

П.п.4,5,6 возникает дегид-

ратация (в тяжелых случаях до5л)организма,которая заключается в падении объ-

ема крови, обезвоживанию клеток и их сморщиванию (дряблая кожа, запавшие гла-

за, мягкие глазные яблоки, сухость слизистых), уменьшению артериального давле-ния. Ацидоз вызывает одышку (дыхание Kussmaul, быстрое и глубокое) и дополни-

тельную дегидратацию.

    Активируется центр жажды и начинается полидипсия .

    Дегидратация неминуемо приводит к недостаточности кровообращения в тка-

нях – активируется анаэробный гликолиз, накапливается лактат и в дополнение к ке-

тоацидозу возникает лактацидоз .

    Закисление среды вызывает изменение взаимодействия инсулина с рецепто-

рами, клетки становятся нечувствительными к инсулину – инсулинорезистент-

ность .

    Ацидоз крови уменьшает концентрацию 2,3-дифосфоглицерата в эритроци-

тах. Это, повышая сродство гемоглобина к кислороду, создает тканевую гипоксию и

усугубляет лактацидоз

Отдаленные последствия

Гипергликемия резко повышает потребление глюкозы инсулиннезависимыми тканями (клетки артериальных стенок, эндотелия, клетки Шванна, эритроциты, хру-

сталик и сетчатка глаза, семенники и гломерулярные клетки почек), в них вынужден-но активируется особые пути метаболизма глюкозы. Их интенсивность определяется только доступностью глюкозы:

    Превращение глюкозы в

сорбитол .

Сорбитол плохо проникает через клеточные мембраны, его накопление в цитозоле приводит

    осмотическому набуханию кле-ток и нарушению их функций. Например, возникновение ката-ракты хрусталика и нейропатий (нарушение осязания) в клетках Шванна

    Неферментативное гли-козилирование различных бел-

ков, изменение их свойств и активация их синтеза за счет избытка энергии:

    увеличивается синтез гликопротеинов базальной мембраны почечных клу-бочков. Это приводит к окклюзии капилляров и нарушению фильтрации

    увеличивается синтез гликопротеинов в сетчатке глаза, что вызывает отек

сетчатки и кровоизлияния

    увеличивается синтез гликопротеинов в стекловидном теле

    увеличивается синтез тканевых белков за счет доступности глюкозы и энер-

    гликозилированные белки хрусталика объединяются в крупные агрегаты,

рассеивающие свет. Это вызывает помутнение хрусталика и катаракту.

    гликозилирование гемоглобина в эритроцитах, образование HbA 1 C

    белков свертывающей системы, что увеличивает вязкость крови

    белков ЛПНП, что уменьшает их связывание с рецепторами и повышает концентрацию ХС в крови

    белков ЛПВП, что усиливает их сродство к рецепторам и быструю элимина-

цию из кровотока

Из-за двух последних нарушений возникают макроангиопатии развивается ате-

росклероз сосудов мозга, сердца, почек, конечностей. Характерно в основном для

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ

При калорийности рациона 2000–3000 ккал суточное потребление углеводов составляет 300-450г. С пищей поступает крахмал, сахароза, лактоза, пищевые волокна (клетчатка и др.). Переваривание углеводов начинается в ротовой полости при участии α-амилазы слюны, которая расщепляет в крахмале α-1,4-гликозидные связи. Полное расщепление крахмала здесь не происходит, так как пребывание пищи во рту кратковременно. Из крахмала в ротовой полости образуются крупные фрагменты – декстрины. Желудочный сок не содержит ферментов, расщепляющих углеводы. Дальнейшее переваривание углеводов происходит в тонком кишечнике. Фермент поджелудочной железы α-амилаза расщепляет α-1,4-гликозидные связи крахмала и декстринов, α-1,6-гликозидные связи расщепляются ферментом кишечного сока – амило-1,6-гликозидазой. При действии двух ферментов образуется дисахарид мальтоза. Амилаза поджелудочной железы не расщепляет β-1.4-гликозидные связи, которыми соединены остатки глюкозы в молекуле целлюлозы. Поэтому пищевые волокна не перевариваются, но они должны присутствовать в рационе, так как улучшают перистальтику, ускоряют чувство насыщения и снижают уровень холестерина в крови, поскольку на них происходит адсорбция желчных кислот и выведение их из организма. Пищевые волокна обязательно должны присутствовать в рационе при ожирении, запорах, атеросклерозе, сахарном диабете. Мальтоза, образовавшаяся из крахмала, а также дисахариды пищи – сахароза и лактоза перевариваются ферментами тонкого кишечника – дисахаридазами. Эти ферменты работают не в просвете кишечника, а на поверхности эпителиальных клеток кишечника. Мальтоза расщепляется мальтазой до 2 молекул глюкозы, лактоза – лактазой до глюкозы и галактозы, сахароза – сахаразой до глюкозы и фруктозы (рис.3). Все моносахариды всасываются, сначала путем облегченной диффузии, а затем активным транспортом в симпорте с ионами Nа + .

Рис.3. Катаболизм дисахаридов и патогенез дисахаридозов

В крови воротной вены содержатся три моносахарида: глюкоза, фруктоза и галактоза. Все они попадают в печень, где происходит унификация фруктозы и галактозы, т.е. они превращаются в глюкозу – единственный моносахарид, используемый всеми клетками нашего организма.

Дисахаридозы – нарушение переваривания дисахаридов, связанные с недостаточной активностью дисахаридаз. Недостаточная активность ферментов может быть врожденной и приобретенной. Симптомы врожденных форм проявляются достаточно рано, например, после первого кормления грудным молоком (при дефиците лактазы) или при добавлении в рацион сахара или крахмала. Приобретенные формы могут наблюдаться при заболеваниях кишечника. Нерасщепленные дисахариды вызывают осмотическую диарею, сбраживаются микрофлорой кишечника с образованием углекислого газа, что приводит к метеоризму, коликам.

ОБМЕН ГЛИКОГЕНА

Многие ткани в качестве резервной формы глюкозы синтезируют гликоген. Синтез и распад гликогена обеспечивают постоянство концентрации глюкозы в крови. Синтезгликогена происходит в покое и сытости,как любой анаболический процесс требуетэнергии. Депонируется гликоген главным образом в печени и мышцах. Глюкоза, поступившая в клетку, фосфорилируется при участии гексокиназы за счет АТФ, при этом образуется глюкозо-6-фосфат, который в ходе обратимой реакции под действием фосфоглюкомутазы превращается в глюкозо-1-фосфат. Затем при участии УТФ глюкозо-1-фосфат превращается в УДФ-глюкозу. Эта молекула используется как донор остатков глюкозы при синтезе гликогена.

Так как гликоген в клетке никогда не расщепляется полностью, синтез гликогена осуществляется путем удлинения уже имеющейся молекулы полисахарида, называемой «затравка». К «затравке» последовательно присоединяются остатки глюкозы из УДФ-глюкозы α- 1,4-гликозидной связью при участии фермента гликогенсинтазы. Разветвленная структура гликогена образуется при участии «фермента ветвления» (рис.4). Регуляторными ферментами в синтезе гликогена являются гликогенсинтаза и гексокиназа. Синтез гликогена увеличивается под влиянием инсулина, а тормозится глюкагоном, катехоламинами, глюкокортикостероидами.

Рис.4. Обмен гликогена печени

Распад гликогена происходит путем последовательного отщепления остатков глюкозы в виде глюкозо-1-фосфата. Гликозидная связь расщепляется с присоединением неорганического фосфата, поэтому процесс называется фосфоролизом, а фермент – фосфорилазой. Образовавшийся глюкозо-1-фосфат затем изомеризуется фосфоглюкомутазой до глюкозо-6-фосфата. В печени (но не в мышцах) глюкозо-6-фосфат может гидролизоваться с образованием глюкозы, которая выделяется в кровь. Эту реакцию катализирует глюкозо-6-фосфатаза. Мышечный гликоген не используется для поддержания уровня глюкозы в крови, так как в мышцах нет фермента глюкозо-6-фосфатазы и образование свободной глюкозы там невозможно, а глюкозо-6-фосфат не может проникать через мембрану клеток. Таким образом, печень запасает глюкозу в виде гликогена не столько для собственных нужд, сколько для поддержания постоянной концентрации глюкозы в крови. Функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии.

Регуляторными ферментами распада гликогена являются фосфорилаза и глюкозо-6-фосфатаза. Процесс распада усиливают катехоламины, глюкагон, глюкокортикостероиды; тормозит инсулин.

Важнейшими химическими соединениями живых организмов являются углеводы. Они широко распространены в природе, в растительном мире они составляют 70-80% из расчета на сухое вещество, у животных содержание значительно меньше - 2% массы тела.

Роль их чрезвычайно важна, что и подтверждается разнообразными функциями, выполняемыми углеводами...

Энергетическая - главный вид клеточного топлива, основной источник энергии для организма. Углеводы служат основным источником энергии для организма, обеспечивая его на 60%. Для деятельности мозга - единственным поставщиком энергии является глюкоза. Пластическая - входят в состав оболочек клеток и субклеточных образований, содержатся во всех органах и тканях. Функция запасных питательных веществ: углеводы обладают способностью накапливаться в организме в виде крахмала у растений и гликогена (печень, мышцы) у животных.

Защитная функция - вязкие секреты, выделяемые различными железами предохраняют стенки полых органов от механических повреждений и проникновения патогенных бактерий.

Регуляторная функция - такой углевод как клетчатка участвует в перистальтике кишечника.

Специфическая функция - проведение нервных импульсов, образование антител.

По химической природе углеводы это органические вещества состоящие из углерода, кислорода и водорода в соотношении 1:2:1. Их разделяют на:

  • - моносахариды - простые сахара, состоящие из одной молекулы. Среди них различают триозы, тетрозы, пентозы, гексозы;
  • - олигосахариды - молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями (сахароза);
  • - полисахариды - высокомолекулярные углеводы, состоящие из большого числа моносахаридов (крахмал, гликоген).

Полисахариды разделяются на гомо- и гетеро- полисахариды:

  • - Гомополисахариды имеют в своем составе моносахариды только одного вида;
  • - Гетерополисахариды - это комплексы различных видов моносахаридов и их производных (например, мукополисахариды).

С точки зрения функционального назначения полисахариды также могут быть разделены на структурные (целлюлоза) и резервные (крахмал, гликоген).

Рассмотрим более подробно эти группы...

К простейшим углеводам, имеющим биологическое значение, относятся простые сахара или моносахариды, имеющие формулу С6Н12О6, например, глюкоза и фруктоза.

Эти два простых сахара слегка различаются между собой по расположению составляющих их молекулы атомов, и это различие обуславливает некоторую разницу в их химических свойствах.

Соединения с одинаковой молекулярной формулой, но различным расположением атомов называют изомерами.

Это внутреннее строение молекулы отражается с помощью структурных формул, в которых атомы представлены своими символами (С, Н, О и т. д.), а химические связи, или силы, удерживающие атомы вместе - линиями соединяющими символы.

Свойства соединения зависят от его конформации, т. е., его пространственной структуры (молекулы имеют трехмерную структуру).

В растворе молекулы глюкозы и других простых сахаров не вытянуты в виде прямых цепей, а свернуты в плоские кольца, образованные в результате соединения двух несмежных углеродных атомов через атом кислорода.

Глюкоза - единственный моносахарид, содержащийся в нашем организме в сколько-нибудь значительном количестве. Все другие, потребляемые нами углеводы превращаются в печени в глюкозу.

Глюкоза - абсолютно необходимая составная часть крови. В норме ее содержание в крови и тканях млекопитающих составляет около 0,1% по массе. Некоторое увеличение содержания глюкозы в организме не причиняет особого вреда, уменьшение же его повышает возбудимость некоторых клеток головного мозга, так что они начинают реагировать на очень слабые стимулы. Импульсы, получаемые от этих клеток мышцами могут вызвать судороги, привести к потере сознания и даже к смерти.

Глюкоза необходима для метаболизма клеток головного мозга и для этого необходим определенный уровень содержания ее в крови. Надлежащая концентрация глюкозы в крови поддерживается при помощи чрезвычайно сложного механизма, в котором участвуют нервная система, печень, поджелудочная железа, гипофиз и надпочечники.

Олигосахариды - содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями.

Молекулы дисахаридов имеют общую формулу С12Н22О11, они как бы составлены из двух молекул моносахаридов, соединившихся в результате отщепления одной молекулы воды. Тростниковый и свекловичный сахара представляют собой сахарозу - соединение одной молекулы глюкозы с одной молекулой фруктозы. Известны и другие дисахариды, все они имеют одну формулу, но различаются расположением атомов в молекуле и в связи с этим и некоторыми химическими и физическими свойствами. Мальтоза, или солодовый сахар, состоит из двух молекул глюкозы, лактоза (молочный сахар), содержащийся в молоке всех млекопитающих, образована одной молекулой глюкозы и одной молекулой галактозы.

Эти сахара заметно различаются между собой по степени сладости. Самый сладкий из обычных сахаров - фруктоза. Она более чем в 10 раз слаще наименее сладкого сахара - лактозы. Сахароза занимает промежуточное положение. Сахарин - синтетическое вещество, которое значительно слаще любого из сахаров, им пользуются, если надо придать пище сладкий вкус без употребления сахара, а также больные сахарным диабетом.

Полисахариды.

Углеводы, имеющие самые большие молекулы, - это полисахариды, в том числе крахмал и целлюлоза, молекулы которых состоят из большого числа моносахаридных группировок, либо соединенных в одну прямую длинную цепь (амилаза), либо образующих разветвленную структуру (амилопектин). Число молекул сахара, соединенных в одной молекуле крахмала, точно не известно, оно неодинаково в разных молекулах, поэтому формулу крахмала можно написать так: (С6Н10О5).

Особые ферменты - амилазы - гидролизуют крахмал и полисахариды, расщепляя их сначала на более короткие цепочки из простых сахаров, а затем на свободные моносахариды.

Эти ферменты катализируют реакции, в которых молекулы воды как бы вклиниваются между моносахаридными остатками, разрывая ангидридные связи. Крахмалы различаются между собой по числу и типу моносахаридных групп и являются обычными компонентами как растительных, так и животных клеток.

Животный крахмал - гликоген, отличается от растительного чрезвычайно сильной разветвленностью молекулы и большой растворимостью в воде. Растения накапливают углеводы в форме крахмалов, животные в форме гликогена;накопить глюкозу как таковую невозможно, ибо ее небольшие молекулы диффундировали бы из клеток. Более крупные и менее растворимые молекулы крахмала и гликогена не проходят через плазматическую мембрану. У человека и других высших животных гликоген накапливается главным образом в печени и мышцах.

Четыре фермента, действуя в определенной последовательности, легко превращают гликоген печени в глюкозу, которая затем доставляется кровью к другим частям тела. Клетки большинства растений обладают прочными наружными стенками из целлюлозы - нерастворимого полисахарида, молекула которого, как и молекула крахмала, составлена из множества молекул глюкозы. Однако в молекуле крахмала последовательные молекулы глюкозы соединены гликозидными связями, а в молекуле целлюлозы они соединены гликозидными связями и не расщепляются ферментами, переваривающими крахмал.

В клетке углеводы играют роль легко мобилизуемого “топлива” для снабжения метаболических процессов энергией. Глюкоза в конечном счете расщепляется до углекислоты и воды с выделением энергии.

Некоторые углеводы, соединяясь с белками и липидами образуют структурные компоненты клеток и их оболочек. Рибоза и дезоксирибоза, сахара, содержащие по 5 атомов углерода входят в состав рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот.

Углеводный обмен в организме человека складывается в основном из следующих процессов:

  • 1. Расщепление в желудочно-кишечном тракте до моносахаридов, поступающих с пищей ди- и поли- сахаридов. Всасывание в кровь в кишечнике;
  • 2. Синтез и распад гликогена (печень);
  • 3. Анаэробное расщепление глюкозы: гликолиз - без потребления кислорода;
  • 4. Взаимопревращение гексоз;
  • 5. Аэробный метаболизм пирувата- с потреблением кислорода, цикл Кребса;
  • 6. Глюконеогенез - образование углеводов из неуглеводных продуктов.

Рассмотрим этапы углеводного обмена.

До 90% всосавшихся моносахаридов (глюкоза главным образом) через капилляры кишечных ворсинок попадают в кровеносную систему и с током крови через воротную вену доставляются в печень, остальное количество моносахаридов поступает по лимфатическим путям в венозную систему.

В печени глюкоза превращается в гликоген. Благодаря способности к отложению гликогена создаются условия для накопления в норме некоторого резерва углеводов. При повышении энергетических затрат в организме в результате возбуждения ЦНС обычно происходит усиление распада гликогена и образование глюкозы.

При недостатке кислорода углеводы распадаются по анаэробному типу, а при насыщении кислородом - по аэробному.

Гликолиз - расщепление глюкозы без потребления кислорода, сложный ферментативный процесс, протекающий в тканях человека и животных. В результате глюкоза превращается в молочную кислоту с образованием богатых энергией фосфорных соединений - АТФ:

Процесс гликолиза катализируется 11 ферментами и протекает в цитоплазме клетки.

Биологическое значение гликолиза - образование богатых энергией фосфорных соединений.

В первой стадии гликолиза затрачивается 2 молекулы АТФ (1 и3 реакции). Во второй стадии образуются 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза составляет 2 молекулы АТФ на 1 молекулу глюкозы, изменение свободной энергии при расщеплении 1 молекулы глюкозы (глюкоза молочная кислота) КПД составляет около 0,4. В процессе гликолиза ряд последовательных реакций начинается с «активации» глюкозы. Взаимодействие глюкозы с АТФ, в результате которого образуется глюкозо-6-фосфат и АДФ, катализируется ферментом гексокиназой.

При этом переносится только концевая фосфатная группа аденозинтрифосфата и остается аденозиндифосфат (АДФ).

После этой подготовительной реакции происходит перестройка молекулы с образованием фруктозо-6-фосфата, затем - перенос второй фосфатной группы с образованием фруктозо-1,6-дифосфата (фруктоза с фосфатными группами при 1 и 6 атомах углерода) и АДФ.

Фруктозо-1,6-дифосфат, расщепляется ферментом альдолазой на два углеродных сахара: 3-фосфоглицериновый альдегид и диоксиацетонфосфат, которые могут превращаться друг в друга под влиянием фермента триозофосфатизомеразы.

3-фосфоглицериновый альдегид реагирует с соединением, содержащим SH-группу, при этом образуется группировка, способная отдавать водород молекуле НАД. Продукт этой реакции - фосфоглицериновая кислота, связанная с SH-группой фермента, затем реагирует с неорганическим фосфатом, образуя 1,3-дифосфоглицериновую кислоту и свободный фермент с SH-группой. Другой продукт - 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту, после чего происходит образование макроэргического фосфата путем отщепления молекулы воды (дегидратация). Продукт этой реакции - фосфопировиноградная кислота - может отдавать свою фосфатную группу молекуле АДФ с образованием АТФ и свободной пировиноградной кислоты. Это вторая макроэргическая фосфатная связь, образовавшаяся на уровне субстрата при превращении глюкозы в пировиноградную кислоту. Из каждой молекулы глюкозы образуются по 2 молекулы 3-фосфоглицеринового альдегида и таким образом, в процессе превращения глюкозы в пировиноградную кислоту образуются 4 макроэргические связи. Однако две из них используются в самом этом процессе. Поэтому в конечном итоге мы получаем 2 макроэргические связи.

1 и 3 реакции лимитируют (определяют) скорость гликолиза, ингибируются АТФ.

В анаэробных условиях, в отсутствие кислорода, служащего конечным акцептором электронов, реакции переноса электронов прекращаются, как только все промежуточные акцепторы перейдут в восстановленное состояние, “приняв” все возможное количество электронов. Метаболизм глюкозы в этих условиях ведет к накоплению пировиноградной кислоты, которая принимает атомы водорода от восстановленных пиридиннуклеотидов с образованием молочной кислоты и окисленного НАД+, эту реакцию катализирует лактатдегидрогеназа, действующая в обратном направлении. В результате превращения глюкозы в молочную кислоту образуются 2 макроэргические фосфатные связи и таким путем клетки даже в отсутствие кислорода могут получать небольшое количество энергии. В клетках дрожжей пировиноградная кислота превращается в ацетальдегид, который может принимать атомы водорода от восстановленного НАДН с образованием НАД+ и этилового спирта.

Синтез гликогена из глюкозы протекает в несколько этапов.

Сначала глюкоза фосфорилируется за счет АТФ и превращается в глюкозо-6-фосфат. Эта реакция катализируется глюкокиназой.

Далее глюкозо-6-фосфат переходит в глюкозо-1-фосфат (фосфоглюкомутаза). Глюкозо-1-фосфат реагирует с уридинтрифосфатом (УТФ), при этом образуется уридинфосфоглюкоза. Глюкозный остаток УДФ глюкозы используется для удлинения молекулы гликогена, а освободившийся УДФ фосфорилируется за счет АТФ и превращается в УТФ. Таким образом, процесс синтеза гликогена протекает с затратой энергии, освобождающейся при распаде АТФ.

Преобладающим путем распада является фосфоролитический путь.

Гликогенолиз - распад гликогена до глюкозо-6-фосфата, который может включаться в процесс гликолиза:

  • 1) гликоген распадается до глюкозо-1-фосфата. При участии фермента фосфорилазы;
  • 2) Далее глюкозо-1-фосфат под действием фосфоглюкомутазы превращается в глюкозо-6-фосфат дальнейшие превращения идут в двух направлениях.

Поступающая в печень фруктоза фосфорилируется за счет АТФ при участии фруктокиназы, в результате образуется фруктозо-1-фосфат, далее под действием альдолазы он расщепляется на две триозы и затем превращается в пировиноградную кислоту.

Распад и синтез гликогена в печени, эти 2 процесса обеспечивают постоянство концентрации сахара в крови.

Соотношение между синтезом и распадом регулируется нейро-гуморальным путем. АКТГ, глюкокортикоиды и инсулин увеличивают содержание гликогена в печени.

Адреналин, глюкагон, соматотропный гормон гипофиза и тироксин стимулируют распад гликогена. углевод биологический анаэробный

Механизм действия этих гормонов неодинаков...

Инсулин угнетает глюкозо-6-фосфатазу, способствуя накоплению гликогена.

Глюкокортикоиды увеличивают количество гликогена в печени косвенным путем, способствуя превращению белков и жиров в углеводы.

АКТГ стимулирует синтез гликогена через кору надпочечников.

Адреналин и глюкогон вызывают распад гликогена, активируя фосфорилазу.

Соматотропный гормон гипофиза уменьшает количество гликогена в печени косвенно стимулируя выделение глюкогона поджелудочной железой.

Глюконеогенез - это синтез глюкозы из неуглеводных компонентов, например молочной или пировиноградной кислот.

Протекает в клетках печени и почек.

Большинство реакций глюконеогенеза представляет собой обращение реакций гликолиза.

Процесс окисления аминокислот начинается с их дезаминирования, т. е., отщепления аминогруппы.

Оставшаяся углеродная цепь подвергается дальнейшим превращениям и в конце концов вступает в цикл Кребса.

Так, например, аланин, после дезаминирования дает пировиноградную кислоту. Глутаминовая кислота кетоглутаровую, а аспарагиновая - щавелевоуксусную. Эти 3 аминокислоты вовлекаются в цикл Кребса непосредственно другие аминокислоты, помимо реакции дезаминирования должны пройти еще несколько дополнительных реакций, прежде чем они смогут участвовать в цикле Кребса.

Литература

  • 1. Мецлер Д. Биохимия. Т. 1, 2, 3. “Мир”, 2000.
  • 2. Ленинджер Д. Основы биохимии. Т. 1, 2, 3. “Мир”, 2002.
  • 3. Фримель Г. Иммунологические методы. М. “Медицина”, 2007.
  • 4. Медицинская электронная аппаратура для здравоохранения, М., 2001.
  • 5. Резников А.Г. Методы определения гормонов. Киев “Наукова думка”, 2000.
  • 6. Бредикис Ю.Ю. Очерки клинической электроники. М. “Медицина”, 1999.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины