Углеводы. Виды углеводов. Гликемический индекс. Роль углеводов в организме

Углеводы. Виды углеводов. Гликемический индекс. Роль углеводов в организме

Для полноценной работы и поддержания жизнедеятельности человеческому организму необходимы белки, жиры и углеводы. Причем их состав должен быть сбалансированным. Углеводы являются важным источником энергии, они необходимы для стабильной работы всех систем организма. Однако функции углеводов не ограничиваются только обеспечением энергии.

Углеводы и их классификация

Углеводами принято считать органические вещества, которые состоят из углерода, водорода и кислорода. Иначе их еще называют сахаридами. Они получили широкое распространение в природе: так, растительные клетки на 70-80% состоят из углеводов в пересчете на сухое вещество, животные - всего на 2%. Функции углеводов в организме предполагают, что они играют важную роль в энергетическом балансе. В большей степени они откладываются в печени в виде гликогена и при необходимости расходуются.

В зависимости от величины молекулы углеводы делят на 3 группы:

  • Моносахара - состоят из 1 молекулы углевода (еще их называют кетозами или альдозами). Кстати, всем известные глюкоза и фруктоза являются моносахарами.
  • Олигосахара - состоят из 2-10 молекул или моносахаров. Это лактоза, сахароза и мальтоза.
  • Полисахара - содержат в своем составе более 10 молекул. К полисахарам относят крахмал, гиалуроновую кислоту и другие.

Чтобы лучше понять значение этих веществ для организма, необходимо выяснить, какие функции углеводов есть.

Энергетическая функция

Углеводы - это один из важных источников энергии для организма. Энергия выделяется при окислении под влиянием ферментов. Так, при расщеплении 1 грамма углеводов образуется 17,6 кДж энергии. В результате окисления и освобождения энергии образуется также вода и углекислый газ. Такой процесс играет большую роль в энергетической цепочке живых организмов, поскольку углеводы могут расщепляться с выделением энергии как в присутствии кислорода, так и без него. А это очень важно при дефиците кислорода. Источниками служат гликоген и крахмал.

Строительная функция

Структурная или строительная функция углеводов в клетке состоит в том, что они являются строительным материалом. Клеточные стенки растений состоят из целлюлозы на 20-40%, а она, как известно, придает высокую прочность. Вот почему клетки растений хорошо поддерживают свою форму и защищают таким образом внутриклеточные соки.

Хитин также является строительным материалом и является главным компонентом оболочек грибов и внешнего скелета членистоногих. Некоторые олигосахара присутствуют в составе цитоплазмы клеток животных и образуют гликокаликс. Углеводсодержащие компоненты играют роль рецептора и принимают сигналы из окружающей среды, затем передают информацию клеткам.

Защитная функция

Слизь (вязкий секрет), которая образуется разными железами, содержит большое количество углеводов и его производных. В комплексе они защищают дыхательные пути, половые органы, органы пищеварения и другие от воздействий окружающей среды (химических, механических факторов, проникновения патогенных микроорганизмов). Гепарин предотвращает свертывание крови и входит в состав противосвертывающей системы. Таким образом, защитные функции углеводов просто необходимы живому организму.

Запасающая функция

Полисахариды являются запасным питательным веществом любого организма, они играют роль главного поставщика энергии. Поэтому запасающая и энергетическая функции углеводов в организме тесно взаимодействуют.

Регуляторная функция

Продукты, которыми питается человек, содержат много клетчатки. Благодаря грубой структуре она раздражает слизистую ткань желудка и кишечника, при этом обеспечивая перистальтику (продвижение пищевого комка). В крови содержится глюкоза. Она регулирует осмотическое давление в крови и поддерживает стабильность гомеостаза.

Все перечисленные функции углеводов играют важную роль в жизнедеятельности организма, без которых просто невозможна жизнь.

В каких продуктах больше углеводов

Самыми известными считаются глюкоза и фруктоза. Рекордное количество содержится в натуральном меде. По сути, мед - это совместный продукт растительного и животного мира.

В продуктах животного происхождения меньше углеводов. Самым ярким представителем является лактоза, больше известная как молочный сахар. Она содержится в молоке и молочных продуктах. Лактоза необходима при заселении кишечника полезными бактериями, а они, в свою очередь, предотвращают опасные для здоровья процессы брожения в кишечнике.

Человек основную массу углеводов получает с пищей растительного происхождения. Например, много глюкозы в вишне, винограде, малине, персиках, тыкве, сливе и яблоках. Источником фруктозы служат все вышеперечисленные ягоды и фрукты, а также смородина. Сахарозу мы получаем из свеклы, земляники, моркови, слив, дыни и арбуза. Плоды и овощи также богаты полисахаридами, особенно много их в оболочке. Источником мальтозы являются кондитерские лакомства и хлебобулочные изделия, а также крупы, мука и пиво. А рафинад, к которому мы все так привыкли, представляет собой сахарозу почти в 100% виде. Это результат жесткой очистки. Углеводы выполняют функции, обеспечивающие нормальную работу всех органов, поэтому важно употреблять достаточное количество овощей и фруктов, чтобы не нарушить естественный баланс.

Мнение диетологов

Такие свойства полисахаридов, как медленное расщепление крахмала, плохая усвояемость грубых волокон и наличие пектина привлекают внимание диетологов. Большинство из них рекомендует включать в рацион до 80% полисахаридов. Если уж хочется булочек и выпечки - то только из муки грубого помола, ягоды следует употреблять в свежем виде. Ну а кондитерские изделия лучше позволять себе только по праздникам, поскольку в них содержится большое количество «быстрых» углеводов, которые могут привести к резкому увеличению массы тела. Иными словами, пирожные и торты - это верный путь к лишним килограммам. Все, что не потратилось, организм откладывает в печени в виде гликогена. Избыток углеводов в организме может вызвать серьезное заболевание - сахарный диабет. Поэтому диетологи советуют употреблять все в меру: и сладкое, и мучное. Только так удастся сохранить баланс, функция углеводов в клетке и в организме в целом не нарушится. Если не забывать об этом, питание всегда будет правильным и сбалансированным.

Таким образом, функции углеводов играют важную роль в жизни организма, главное - научиться понимать «язык» своего тела и стремиться к здоровому образу жизни.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Вместе с продуктами питания наш организм получает множество веществ, нужных для полноценной жизнедеятельности органов и систем. Так, каждому человеку необходимо систематическое поступление белков, жиров и углеводов, а также минералов, витаминов и прочих полезных элементов. Каждое из этих веществ выполняет свои функции в нашем теле. Темой нашего сегодняшнего разговора станут свойства углеводов и применение их на благо человека. Также обсудим какие у углеводов функции в организме человека.

Углеводы являются органическими соединениями, которые имеют в своем составе углерод, водород, а также кислород. В организм они попадают вместе с продуктами питания. Всего существует несколько разновидностей углеводов, представленных моносахаридами, олигосахаридами, а также сложными углеводами и волокнистыми либо неусвояемыми углеводами, которые определяют как пищевую клетчатку.

К моносахаридам (самым простым формам углеводам) в свою очередь относят глюкозу, фруктозу, рибозу, а также эритрозу. Олисахариды (вмещают от двух до десятка остатков моносахаридов) представлены сахарозой, лактозой и мальтозой. Сложные углеводы (имеют в своем составе множество остатков глюкозы) – это крахмал с гликогеном. А представители волокнистых углеводов – это целлюлоза.

Основные функции в организме углеводов

Углеводы выполняют в организме функции разного характера, их много. Одна из основных – энергетическая, ведь углеводы – это ценный энергетический материал. Именно они обеспечивают больше половины суточной энергии, нужной человеку. Основным источником энергии является глюкоза, также организм может запасать углеводы в форме гликогена и использовать их для удовлетворения энергетических потребностей.

Еще одна функция углеводов – пластическая. Эти вещества организм использует при построении нуклеотидов (в том числе АТФ и АДФ), а кроме того нуклеиновых кислот.

Еще углеводы всходят в состав клеточной мембраны. А продукты переработки глюкозы – это составляющие компоненты полисахаридов, а еще сложных белков различных тканей (к примеру, хрящевых). В сочетании с белками углеводы становятся ферментами и гормонами, секретом слюнных и прочих желез, формирующих слизь.

Также углеводы выполняют накопительную функцию, они накапливаются организмом в форме гликогена. При систематической мышечной деятельности объем таких запасов увеличивается, благодаря чему энергетические возможности организма возрастают.

Еще одна известная функция углеводов – специфическая. Ведь такие вещества принимают участие в обеспечении специфичности различных групп крови. Кроме того они могут играть роль факторов свертывания крови (антикоагулянтов) и даже оказывать противоопухолевое воздействие.

Также углеводы выполняют защитную функцию. Они являются составляющей частью ряда компонентов иммунитета. К примеру, мукополисахариды входят в состав слизистых тканей, покрывающих поверхности дыхательных путей, пищеварительного тракта, путей мочевыделения. Такие углеводы помогают предупредить проникновение в организм агрессивных микроорганизмов и защищают вышеназванные участки от механических повреждений.

Еще одной известной функцией углеводов считается регуляторная. Как известно, клетчатка не способна расщепляться в кишечнике, тем не менее, она играет важную роль в полноценной работе пищеварительного тракта. Что касается ферментов, используемых в желудке и кишечнике, то они необходимы для полноценного пищеварения и для усвоения питательных элементов.

Какие у углеводов свойства ?

Различные углеводы характеризуются разными свойствами. Так, одно из наиболее известных веществ такого типа – это глюкоза. Это главный источник энергии для тела каждого читателя «Популярно о здоровье». Глюкоза с легкостью и высокой скоростью усваивается организмом, так как обладает очень простой структурой. Нехватка глюкозы чревата возникновением раздражительности, плохой работоспособности и усталости.

Также известным углеводом является фруктоза. Это вещество обладает такими же свойствами, что и глюкоза. Но при этом для ее усвоения организму не нужен инсулин.

Еще один простой углевод – это лактоза. Человеку углевод лактоза поступает в организм вместе с молокопродуктами. Особенно много лактозы присутствует в грудном молоке, и обычно она легко усваивается организмом новорожденного, полностью покрывая его энергетические потребности.

Более сложные углеводы после попадания в организм могут расщепляться на исходные. Так, сахароза расщепляется на глюкозу, а также фруктозу. Эти вещества с легкостью усваиваются, но не обеспечивают организм энергией надолго.

Пектины и клетчатка практически не могут усвоиться организмом. Тем не менее, они крайне важны для полноценного пищеварения и выведения из организма токсинов и вредных веществ. Продукты, имеющие их в своем составе, отлично и надолго насыщают.

Крахмал также медленно усваивается, расщепляясь при этом до глюкозы. Дает долгое чувство насыщения.

Наконец, гликоген, очень долго усваивается, откладываясь у человека в организме в печени. Именно это вещество может быть использовано для восполнения дефицита глюкозы.

Применение углеводов

Все углеводы человеку полезны, так как являются основным источником энергии для него. Тем не менее, нужно помнить о том, что применение простых углеводов в избыточном количестве позволяет быстро насытиться, но после этого также быстро наступает чувство голода. Поэтому диетологи советуют использовать в своем питании преимущественно сложные углеводы, которые долго усваиваются организмом и позволяют надолго насытиться. Простые же углеводы стоит есть при постоянных физических либо умственных нагрузках, когда организм нуждается в энергетической подпитке.

Углеводы альдозы , а кетонную – кетозы

Функции углеводов в организме.

Основные функции углеводов в организме:

1. Энергетическая функция. Углеводы являются одним из основных источников энергии для организма, обеспечивая не менее 60 % энергозатрат. Для деятельности мозга, почек, крови практически вся энергия поставляется за счет окисления глюкозы. При полном распаде 1 г углеводов выделяется 17,15 кДж/моль или 4,1 ккал/моль энергии.

2. Пластическая или структурная функция . Углеводы и их производные обнаруживаются во всех клетках организма. В растениях клетчатка служит основным опорным материалом, в организме человека кости и хрящи содержан сложные углеводы. Гетерополисахариды, например, гиалуроновая кислота, входят в состав клеточных мембран и органоидов клетки. Участвуют в образовании ферментов, нуклеопротеидов (рибоза, дезоксирибоза) и др.

3. Защитная функция . Вязкие секреты (слизь), выделяемые различными железами, богаты углеводами или их производными (мукополисахаридами и др.) они защищают внутренние стенки половых органов ЖКТ, воздухоносных путей и др. от механических и химических воздействий, проникновения патогенных микробов. В ответ на антигены в организме синтезируются иммунные тела, которые являются гликопротеидами. Гепарин предохраняет кровь от свертывания (входит в противосвертывающую систему) и выполняет антилипидемическую функцию.

4. Регуляторная функция. Пища человека содержит большое количество клетчатки, грубая структура которой вызывает механическое раздражение слизистой оболочки желудка и кишечника, участвуя, таким образом, в регуляции акта перистальтики. Глюкоза в крови участвует в регуляции осмотического давления и поддержании гомеостаза.

5. Специфические функции. Некоторые углеводы выполняют в организме особые функции: участвуют в проведении нервных импульсов, обеспечении специфичности групп крови и т.д.

Классификация углеводов.

Углеводы классифицируют по величине молекул на 3 группы:

1. Моносахариды – содержат 1 молекулу углевода (альдозы или кетозы).

· Триозы (глицериновый альдегид, диоксиацетон).

· Тетрозы (эритроза).

· Пентозы (рибоза и дезоксирибоза).

· Гексозы (глюкоза, фруктоза, галактоза).

2. Олигосахариды - содержат 2-10 моносахаридов.

· Дисахариды (сахароза, мальтоза, лактоза).

· Трисахариды и т.д.

3. Полисахариды - содержат более 10 моносахаридов.

· Гомополисахариды – содержат одинаковые моносахариды (крахмал, клетчатка, целлюлоза состоят только из глюкозы).

· Гетерополисахариды- содержат моносахариды разного вида, их пароизводные и неуглеводные компоненты (гепарин, гиалуроновая кислота, хондроитинсульфаты).

Схема № 1. Классификация углеводов.

Углеводы

Моносахариды Олигосахариды Полисахариды


1. Триозы 1. Дисахариды 1. Гомополисахариды

2. Тетрозы 2. Трисахариды 2. Гетерополисахариды

3. Пентозы 3. Тетрасахариды

4. Гексозы

Свойства углеводов.

1. Углеводы – твердые кристаллические белые вещества, практические все сладкие на вкус.

2. Почти все углеводы хорошо растворимы в воде, при этом образуются истинные растворы. Растворимость углеводов зависит от массы (чем больше масса, тем менее растворимо вещество, например, сахароза и крахмал) и строения (чем разветвленнее структура углевода, тем хуже растворимость в воде, например крахмал и клетчатка).

3. Моносахариды могут находится в двух стереоизомерных формах : L–форма (leavus – левый) и D- форма (dexter – правый). Эти формы обладают одинаковыми химическими свойствами, но отличаются, расположением гидроксидных групп относительно оси молекулы и оптической активностью, т.е. вращают на определенный угол плоскость поляризованного света, который проходит через их раствор. Причем плоскость поляризованного света вращается на одну величину, но в противоположных направлении. Рассмотрим образование стереоизомеров на примере глицеринового альдегида:

СНО СНО

НО -С-Н Н-С-ОН

СН2ОН СН2ОН

L – форма D – форма

При получении моносахаридов в лабораторных условиях, стереоизомеры образуются в соотношении 1:1, в организме синтез происходит под действием ферментов, которые строго отличают L – форму и D – форму. Поскольку синтезу и распаду в организме подвергаются исключительно D-сахара, в эволюции постепенно исчезли L-стереоизомеры (на этом основано определение сахаров в биологических жидкостях с помощью поляриметра).

4. Моносахариды в водных растворах могут взаимопревращаться, такое свойство называют муторатацией.

НО-СН2 О=С-Н

С О НО-С-Н

Н Н Н Н-С-ОН

С С НО-С-Н

НО ОН Н ОН НО-С-Н

С С СН2-ОН

НО-СН2

Н Н ОН

НО ОН Н Н

Бетта-форма.

В водных растворах мономеры, состоящие из 5 и более атомов, могут находится в циклической (кольцевой) альфа- или бетта-формах и незамкнутой (открытой) формах, причем их соотношение 1:1. Олиго- и полисахариды состоят из мономеров в циклической форме. В циклической форме углеводы устойчивы и молоактивны, а в открытой обладают высокой реакционной способностью.

5. Моносахариды могут восстанавливаться до спиртов.

6. В открытой форме могут взаимодействовать с белками, липидами, нуклеотидами без участия ферментов. Эти реакции получили название - гликирования. В клинике применяют исследование уровня гликозилированного гемоглобина или фруктозамина для постановки диагноза сахарный диабет.

7. Моносахариды могут образовывать эфиры. Наибольшее значение имеет свойство углеводов образовывать эфиры с фосфорной кислотой, т.к. чтобы включиться в обмен углевод должен стать фосфорным эфиром, например, глюкоза перед окислением превращается в глюкозо-1-фосфат или глюкозо-6-фосфат.

8. Альдолазы обладают способностью восстанавливать в щелочной среде металлы из их окислов в закиси или в свободное состояние. Это свойство используют в лабораторной практике для обнаружения альдолоз (глюкозы) в биологических жидкостях. Чаще всего используют реакцию Троммера при которой альдолоза восстанавливает окись меди в закись, а сама окисляется в глюконовую кислоту (окисляется 1 атом углерода).

CuSO4 + NaOH Cu(OH)2 + Na2SO4

Голубой цвет

C5H11COH + 2Cu(OH)2 C5H11COOH + H2O + 2CuOH

Кирпично-красный цвет

9. Моносахариды могут окисляться до кислот не только в реакции Троммера. Например, при окислении 6 углеродного атома глюкозы в организме образуется глюкуроновая кислота, которая соединяется с ядовитыми и плохо растворимыми веществами, обезвреживает их и переводит в растворимые, в таком виде эти вещества выводятся из организма с мочой.

10.Моносахариды могут соединяться между собой и образовывать полимеры. Связь, которая при этом возникает называется гликозидной , она образуется за счет ОН-группы первого углеродного атома одного моносахарида и ОН-группой четвертого (1,4-гликозидная связь) или шестого углеродного атома (1,6-гликозидная связь) другого моносахарида. Кроме этого могут образовываться альфа-гликозидная связь (между двумя альфа-формами углевода) или бетта-гликозидная связь (между альфа- и бетта- формами углевода).

11.Олиго- и полисахариды могут подвергаться гидролизу с образованием мономеров. Реакция идет по месту гликозидной связи, причем этот процесс ускоряется в кислой среде. Ферменты в организме человека могут различать альфа- и беттагликозидные связи, поэтому крахмал (имеет альфагликозидные связи) переваривается в кишечнике, а клетчатка (имеет беттагликозидные связи) нет.

12.Моно- и олигосахариды могут подвергаться брожению: спиртовому, молочнокислому, лимоннокислому, маслянокислому.

Общая характеристика углеводов.

Углеводы – органические соединения, которые являются альдегидами или кетонами многоатомных спиртов. Углеводы, содержащие альдегидную группу, называются альдозы , а кетонную – кетозы . Большинство из них (но не все!например, рамноза С6Н12О5) соответствуют общей формуле Сn(Н2О)m, отчего и получили свое историческое название - углеводы. Но есть ряд веществ, например, уксусная кислота С2Н4О2 или СН3СООН, которые хоть и соответствует общей формуле, но не относится к углеводам. В настоящее время принято другое название, которое наиболее верно отражает свойства углеводов – глюциды (сладкий), но историческое название так прочно вошло в жизнь, что им продолжают пользоваться. Углеводы очень широко распространены в природе, особенно в растительном мире, где составляют 70-80 % массы сухого вещества клеток. В животном организме на их долю приходится всего около 2 % массы тела, однако и здесь их роль не менее важна. Доля их участия в общем энергетическом балансе оказывается весьма значительной, превышающей почти в полтора раза долю белков и липидов вместе взятых. В организме углеводы способны откладываться в виде гликогена в печени и расходоваться по мере необходимости.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов

Функции углеводов многообразны, а именно:

1.Они являются здоровым источником энергии, отсутствие которого в организме может привести к слабости, недоеданию, нехватке витаминов и минералов, а избыток - к ожирению. Важно соблюдать сбалансированное употребление в правильном сочетании с белками и жирами, чтобы наше тело оставалось молодым и бодрым. В процессе переваривания углеводов глюкоза высвобождается в кровь и хранится в печени в виде гликогена. Когда начинается нехватка гликогена, мобилизуются жиры и аминокислоты (расщепленные белки) для получения энергии. Именно поэтому большинство диет предлагает отказ от многих типов еды, как способ активировать использование собственных запасов. Тем не менее, любой фитнес-эксперт скажет вам, что лучшая идея сжечь калории и развить мышцы, это употребление некоторых углеводных форм (например, полбанана перед тренировкой). Без энергии продуктивной тренировки не получится.

2.Необходимы для компенсации потребностей центральной нервной системы. Нормальное функционирование которой в значительной степени зависит от поступаемой глюкозы. Адекватное потребление углеводов гарантирует ее правильную работоспособность. Вы можете заметить, что когда начинаете голодать (в случае низкоуглеводной диеты), то склонны чувствовать себя слабым, забывчивым, не в состоянии сосредоточиться. Появляется общая слабость, быстрая утомляемость. Это прямые последствия нехватки глюкозы в организме. Такое состояние преследует людей, страдающих от низкого уровня сахара в крови.

.Обеспечивают энергией мышцы. Хотя для развития, функционирования и роста мышечных волокон необходим белок, основа этих изменений закладывается за счет углеводов. Только при их наличии, белки могут быть использованы для их главного - строительного предназначения. Расщепление последнего для покрытия нужд жизнедеятельности при дефиците привычных продуктов, приводит к потере мышечной массы и общему расстройству. Поэтому, когда сокращаются углеводные поступления, дело доходит до других составляющих тканей. Для поддержания запаса гликогена и развития нужно регулярно заниматься спортом. Если не получать достаточной физической активности, наступает деградация.

.Нормализуют работу желудочно-кишечного тракта. Пищевые волокна (клетчатка) присутствуют во всех углеводах, в большей степени в сложных. Хотя целлюлоза не может быть переварена организмом самостоятельно, она обеспечивает объем, который помогает в стимуляции перистальтики. В свою очередь это облегчает вывод токсинов и ликвидацию отходов из кишечника. Происходит детоксикация, в результате человек чувствует себя обновленным и свежим. Дополнительно лактоза способствует росту особых полезных бактерий в тонком кишечнике, что вызывает синтез некоторых групп витаминов, улучшается поглощение кальция.

.Окисление (предотвращение кетоза) - еще одна важная функция. Кетоз - очень серьезное состояние, возникающее, когда рацион человека беден углеводами. Болезнь приводит к повышенному уровню химических веществ (кетонов) в кровотоке. Нарушается механизм окисления жиров. Щавелевоуксусная кислота (продукт распада углеводов) необходима для окисления ацетата, который является продуктом распада жиров. При ее отсутствии ацетат превращается в кетоновые тела, накапливающиеся в организме, и человек страдает от "токсического состояния". Кетоз возникает при диабете и голодании, когда клетки должны использовать собственные запасы в качестве источника сил. Выражение «жир сгорает в огне углеводов» подчеркивает их значимость.

.Неотъемлемый кирпичик, участвующий в обмене веществ и имеющий непосредственное влияние на все аспекты этого сложного процесса. Углеводы задействованы при синтезе гормонов, секрета желез, регулируют осмотическое давление.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.

Литература

1.Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2.Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

Ленинджер А. Основы биохимии // М.: Мир, 1985

Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины