Разрушение эритроцитов в печени. Эритроциты (RBC) в общем анализе крови, норма и отклонения

Разрушение эритроцитов в печени. Эритроциты (RBC) в общем анализе крови, норма и отклонения

14.04.2019

Старение эритроцитов.

Основные клетки крови человека - эритроциты циркулируют в крови максимум 120 суток, в среднем 60-90 дней. Процесс старения, а в дальнейшем - разрушение эритроцитов у здорового человека связано с угнетением образования в них количества специфического вещества - АТФ в ходе метаболизма глюкозы в этой этих форменных элементах. Сниженное образование АТФ, ее дефицит нарушает в клетке процессы, которые обеспечивают ее энергией, - к ним относятся: восстановление формы эритроцитов, транспорт катионов через их мембрану и защиту содержимого эритроцитов от процессов окисления, их мембрана утрачивает сиаловые кислоты. Старение и разрушение эритроцитов вызывает также изменение мембраны эритроцитов: из первоначальных дискоцитов они превращаются в так называемые эхиноциты, т. е. эритроциты, на поверхности которых образуются многочисленные специфические выступы, и выросты.

Причиной образования эхиноцитов помимо снижения воспроизводства молекул АТФ в клетке эритроцита при его старении является усиленное образование вещества лизолецитина в плазме крови человека, и повышенное содержание в ней жирных кислот. Указанные факторы изменяют соотношение поверхности внутреннего и внешнего слоев мембраны клетки эритроцита за счет увеличения поверхности ее внешнего слоя, что и ведет к появлению выростов эхиноцитов.

По степени выраженности преобразования мембраны и приобретенной формы эритроцитов различают эхиноциты I, II, III классов, а также сфероэхиноциты I и II классов. Во время старении клетка последовательно проходит все этапы превращения в клетку-эхиноцит III класса, она теряет способность изменять и восстанавливать присущую ей дисковидную форму, в конечном итоге превращается в сфероэхиноцит и происходит окончательное разрушение эритроцитов. Устранение дефицита глюкозы в клетке эритроцита легко возвращает эхиноциты I-II классов к исходной форме дискоцита. Клетки эхиноциты начинают появляться по результатам общего анализа крови, например, в консервированной крови, которая сохраняется в течение нескольких недель при температуре 4°С. Это связано с процессом уменьшением образования АТФ внутри консервированных клеток, с появлением в плазме крови вещества лизолецитина, который также ускоряет старение и разрушение эритроцитов. Если произвести отмывание эхиноцитов в свежей плазме, то уровень АТФ в клетке восстанавливается, и уже через несколько минут эритроциты возвращают себе форму дискоцитов.

Разрушение эритроцитов. Место разрушения эритроцитов.

Стареющие эритроциты утрачивают свою эластичность, вследствие чего подвергаются разрушению внутри сосудов (происходит внутрисосудистый гемолиз эритроцитов) или же они становятся добычей макрофагов в селезенке, которые захватывают и разрушают их, и купферовских клетках печени и в костном мозге (это уже внесосудистый или внутриклеточный гемолиз эритроцитов). С помощью внутриклеточного гемолиза в сутки разрушается от 80 до 90 % старых эритроцитов, которые содержат примерно 6-7 г гемоглобина, из них освобождается в макрофагами до 30 мг железа. После процесса отщепления от гемоглобина содержащийся в нем гем превращается в желчный пигмент, называемым билирубином (определяемым биохимическим анализом крови), который поступает с желчью в просвет кишечника и под влиянием его микрофлоры превращается в стеркобилиноген. Это соединение выводится из организма с калом, под влиянием воздуха и света превращаясь в стеркобилин. При преобразовании 1 г гемоглобина образуется около 33 мг билирубина.

Разрушение эритроцитов в 10-20 % происходит с помощью внутрисосудистого гемолиза. В этом случае гемоглобин поступает в плазму, где образует с плазменным гаптоглобином биохимический комплекс гемоглобин-гаптоглобин. В течение десяти минут 50 % данного комплекса поглощается из плазмы клетками паренхимы печени, что предотвращает поступление свободного гемоглобина в почки, где может вызвать тромбирование их нефронов. У здорового человека в составе плазме содержится около 1 г/л гаптоглобина, несвязанный с ним в плазме крови гемоглобин не более 3-10 мг. Молекулы гема, которые высвободились из связи с глобином во время внутрисосудистого гемолизе, связываются уже белком плазмы - гемопексином, которым транспортируются в печень и также поглощаются паренхиматозными клетками этого органа, и подвергаются ферментному преобразованию до билирубина.

Старение эритроцитов.

Основные клетки крови человека - эритроциты циркулируют в крови максимум 120 суток, в среднем 60-90 дней. Процесс старения, а в дальнейшем - разрушение эритроцитов у здорового человека связано с угнетением образования в них количества специфического вещества - АТФ в ходе метаболизма глюкозы в этой этих форменных элементах. Сниженное образование АТФ, ее дефицит нарушает в клетке процессы, которые обеспечивают ее энергией, - к ним относятся: восстановление формы эритроцитов, транспорт катионов через их мембрану и защиту содержимого эритроцитов от процессов окисления, их мембрана утрачивает сиаловые кислоты. Старение и разрушение эритроцитов вызывает также изменение мембраны эритроцитов: из первоначальных дискоцитов они превращаются в так называемые эхиноциты, т. е. эритроциты, на поверхности которых образуются многочисленные специфические выступы, и выросты.

Причиной образования эхиноцитов помимо снижения воспроизводства молекул АТФ в клетке эритроцита при его старении является усиленное образование вещества лизолецитина в плазме крови человека, и повышенное содержание в ней жирных кислот. Указанные факторы изменяют соотношение поверхности внутреннего и внешнего слоев мембраны клетки эритроцита за счет увеличения поверхности ее внешнего слоя, что и ведет к появлению выростов эхиноцитов.

По степени выраженности преобразования мембраны и приобретенной формы эритроцитов различают эхиноциты I, II, III классов, а также сфероэхиноциты I и II классов. Во время старении клетка последовательно проходит все этапы превращения в клетку-эхиноцит III класса, она теряет способность изменять и восстанавливать присущую ей дисковидную форму, в конечном итоге превращается в сфероэхиноцит и происходит окончательное разрушение эритроцитов. Устранение дефицита глюкозы в клетке эритроцита легко возвращает эхиноциты I-II классов к исходной форме дискоцита. Клетки эхиноциты начинают появляться по результатам общего анализа крови, например, в консервированной крови, которая сохраняется в течение нескольких недель при температуре 4°С. Это связано с процессом уменьшением образования АТФ внутри консервированных клеток, с появлением в плазме крови вещества лизолецитина, который также ускоряет старение и разрушение эритроцитов. Если произвести отмывание эхиноцитов в свежей плазме, то уровень АТФ в клетке восстанавливается, и уже через несколько минут эритроциты возвращают себе форму дискоцитов.

Разрушение эритроцитов. Место разрушения эритроцитов.

Стареющие эритроциты утрачивают свою эластичность, вследствие чего подвергаются разрушению внутри сосудов (происходит внутрисосудистый гемолиз эритроцитов) или же они становятся добычей макрофагов в селезенке, которые захватывают и разрушают их, и купферовских клетках печени и в костном мозге (это уже внесосудистый или внутриклеточный гемолиз эритроцитов). С помощью внутриклеточного гемолиза в сутки разрушается от 80 до 90 % старых эритроцитов, которые содержат примерно 6-7 г гемоглобина, из них освобождается в макрофагами до 30 мг железа. После процесса отщепления от гемоглобина содержащийся в нем гем превращается в желчный пигмент, называемым билирубином (определяемым биохимическим анализом крови), который поступает с желчью в просвет кишечника и под влиянием его микрофлоры превращается в стеркобилиноген. Это соединение выводится из организма с калом, под влиянием воздуха и света превращаясь в стеркобилин. При преобразовании 1 г гемоглобина образуется около 33 мг билирубина.

Разрушение эритроцитов в 10-20 % происходит с помощью внутрисосудистого гемолиза. В этом случае гемоглобин поступает в плазму, где образует с плазменным гаптоглобином биохимический комплекс гемоглобин-гаптоглобин. В течение десяти минут 50 % данного комплекса поглощается из плазмы клетками паренхимы печени, что предотвращает поступление свободного гемоглобина в почки, где может вызвать тромбирование их нефронов. У здорового человека в составе плазме содержится около 1 г/л гаптоглобина, несвязанный с ним в плазме крови гемоглобин не более 3-10 мг. Молекулы гема, которые высвободились из связи с глобином во время внутрисосудистого гемолизе, связываются уже белком плазмы - гемопексином, которым транспортируются в печень и также поглощаются паренхиматозными клетками этого органа, и подвергаются ферментному преобразованию до билирубина.

pathanatom.ru

ЭРИТРОЦИТЫ | Энциклопедия Кругосвет

Также по теме

ЭРИТРОЦИТЫ – красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2–7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5–6 млн. эритроцитов. Они составляют 44–48% общего объема крови.

Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде ок. 34%. [В пересчете на сухой вес содержание гемоглобина в эритроцитах – 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12–16 г (12–16 г%), причем у мужчин оно несколько выше, чем у женщин.] Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом. Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела.

В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз – образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника).

Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро – за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг. Срок созревания эритроцитов в костном мозге – от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания – составляет 4–5 дней. Срок жизни зрелого эритроцита в периферической крови – в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться.

Бóльшая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин – красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).

www.krugosvet.ru

Состав крови

Плазма крови – это прозрачная бесцветная жидкость, на 90% состоящая из воды, в которой растворены органические и неорганические соединения.

Состав плазмы по содержанию солей близок к морской воде. Важнейшие соли плазмы – хлориды Na, K и Ca. В нормальных условиях общая концентрация солей в плазме и в клетках крови одинакова.

Повышение или понижение содержания Na опасно для здоровья и жизни человека. Долго находящийся в море и лишенный пресной воды человек погибает от того, что в его крови увеличивается содержание солей. Вода из клеток и тканей устремляется в кровь, и организм обезвоживается.

Эритроциты – красные кровяные клетки – очень малы, в 1мм в кубе крови содержится до 5 млн. эритроцитов. Зарождаются в красном костном мозге, живут около 120 дней и разрушаются в селезенке и печени.

Эритроциты – безъядерные клетки в виде уплощенных дисков диаметром 7-8 мкм, толщиной 2 мкм. Они доставляют кислород из легких к клеткам, забирают у последних углекислый газ и переносят его в легкие. Количество эритроцитов у мужчин – 4,5-5,0 триллионов на литр, у женщин – 4,0-4,5 триллионов на литр.

Снаружи эритроцит покрыт мембраной, которая легко пропускает газы, воду, глюкозу и др. вещества. Внутри эритроцита содержится особый белок – гемоглобин, в состав которого входит железо. Именно гемоглобин придает крови красный цвет.

Диаметр отдельного эритроцита равен 7,2-7,5 мкм, толщина - 2,2 мкм, а объем – около 90 мкм3. Общая поверхность всех эритроцитов достигает 3000 м2, что в 1500 раз превышает поверхность тела человека. Такая большая поверхность эритроцитов обусловлена их большим числом и своеобразной формой. Они имеют форму двояковогнутого диска и при поперечном разрезе напоминают гантели. При такой форме в эритроцитах нет ни одной точки, которая бы отстояла от поверхности более чем на 0,85 мкм. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов.

В крови у мужчин содержится в среднем 5х1012/л эритроцитов (6 000 000 в 1 мкл), у женщин – около 4,5х1012/л (4500000 в 1 мкл). Такое количество эритроцитов, уложенное цепочкой, 5 раз обовьют Земной Шар по экватору.

Лейкоциты – белые (бесцветные) кровяные клетки – состоят из цитоплазмы и ядра. В 1 мм в кубе крови содержится 4 - 9 тыс. лейкоцитов. Образуются в костном мозге. Способны сами активно двигаться, могут проникать сквозь стенку капилляров и выходить в межклеточное пространство. По способу движения напоминает амебу.

Лейкоциты (лимфоциты, моноциты, гранулоциты) имеют шаровидную форму и участвуют в защитной функции организма. Существует несколько разновидностей лейкоцитов. У взрослого человека в 1 л крови насчитывается 4,0-9,0 миллиардов лейкоцитов.

Лейкоциты выполняют важную функцию защиты организма от проникновения болезнетворных микробов. При любом повреждении кожи в ранку попадают бактерии. В этом случае лейкоциты устремляются к поврежденному участку. Лейкоцит захватывает и переваривает микробину. Этот процесс называют фагоцитозом, а белые кровяные клетки – фагоцитами. Они обеспечивают иммунитет.

У взрослых кровь содержит 4-9x109/л (4000-9000 в 1 мкл) лейкоцитов, т. е. их в 500-1000 раз меньше, чем эритроцитов. Увеличение их количества называют лейкоцитозом, а уменьшение – лейкопенией.

Лейкоциты делят на 2 группы: гранулоциты (зернистые) и агранулоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы, а в группу агранулоцитов – лимфоциты и моноциты.

Установлено, что 1 фагоцит может захватить 10 - 15 бактерий. Если он поглащает больше, чем может переварить, то он гибнет. Смесь погибших и живых фагоцитов называется гноем.

К группе лейкоцитов относят также лимфоциты – белые кровяные клетки, находящиеся преимущественно в лимфе. Лимфоциты также играют важную роль в защитных реакциях организма.

Тромбоциты отвечают за процесс свертывания крови. 1 л крови содержит 180,0-320,0 миллиардов тромбоцитов.

В организме мужчины содержится 5,0-5,5 л крови, женщины – 4,0-4,5 л (6-8% от массы тела). Потеря 50% крови и более приводит к смерти.

Лимфоциты составляют 20 -40% белых кровяных телец. У взрослого человека содержится 1012 лимфоцитов общей массой 1,5 кг. Лимфоциты в отличие от всех других лейкоцитов способны не только проникать в ткани, но и возвращаться обратно в кровь. Они отличаются от других лейкоцитов и тем, что живут не несколько дней, а 20 и более лет (некоторые на протяжении всей жизни человека).

Лимфоциты представляют собой центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и осуществляют функцию иммунного надзора в организме, обеспечивая защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Лимфоциты обладают удивительной способностью различать в организме свое и чужое вследствие наличия в их оболочке специфических участков – рецепторов, активирующихся при контакте с чужеродными белками. Лимфоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, иммунную память, уничтожение собственных мутантных клеток и др.

Все лимфоциты делят на 3 группы: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.

Форменные элементы

Строение клетки

Место образования и содержание в 1 мм3 крови

Продолжи- тельность функциони-

Место отмирания

Эритроциты Красные безъядерные клетки крови двояковогнутой формы, содержащие белок – гемоглобин Красный костный мозг; 4,5-5 млн. Селезенка. Гемоглобин разрушается в печени Перенос О2 из легких в ткани и CO2 из тканей в легкие
Лейкоциты Белые кровяные амебообразные клетки, имеющие ядро Красный костный мозг, селезенка, лимфатические узлы; 6-8 тыс. Печень, селезенка, а также места, где идет воспалительный процесс Защита организма от болезнетворных микробов путем фагоцитоза. Вырабатывают антитела, создавая иммунитет
Тромбоциты Кровяные безъядерные тельца Красный костный мозг; 300-400 тыс. Селезенка Участвуют в свертывании крови при повреждении кровеносного сосуда, способствуя преобразованию белка фибриногена в фибрин – волокнистый кровяной сгусток

Плазма крови по объему составляет 55-60% (форменные элементы – 40-45%). Это желтоватая полупрозрачная жидкость. Белки плазмы регулируют распределение воды между кровью и тканевой жидкостью, придают вязкость крови, играют роль в водном обмене. Некоторые из них ведут себя как антитела, обезвреживающие ядовитые выделения болезнетворных микроорганизмов.

Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом, белков и солей. В плазме находится ряд белков, отличающихся по своим свойствам и функциональному значению, -альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот (мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма). Половина общего количества небелкового азота в плазме – так называемого остаточного азота – приходится на долю мочевины. При недостаточности функции почек содержание остаточного азота в плазме крови увеличивается.

Белок фибриноген играет важную роль в свертывании крови. Плазма, лишенная фибриногена, называется сывороткой.

Гемоглобин

Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным пигментом. Он находится внутри эритроцитов, а не в плазме крови, что обеспечивает уменьшение вязкости крови и предупреждает потерю организмом гемоглобина вследствие его фильтрации в почках и выделения с мочой.

По химической структуре гемоглобин состоит из 1 молекулы белка глобина и 4 молекул железосодержащего соединения гема. Атом железа гема способен присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т. е. оно остается двухвалентным.

В крови здоровых мужчин содержится в среднем 14,5% гемоглобина (145 г/л). Эта величина может колебаться в пределах от 13 до 16 (130-160 г/л). В крови здоровых женщин содержится в среднем 13 г гемоглобина (130 г/л). Эта величина может колебаться в пределах от 12 до 14.

Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.

Соединение гемоглобина с газами

В норме гемоглобин содержится в виде 2-х физиологических соединений.

Гемоглобин, присоединивший кислород, превращается в оксигемо-глобин – НbО2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным – Нb. Он находится в венозной крови, которая имеет более темный цвет, чем артериальная.

Гемолизом называют разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной.

В естественных условиях в ряде случаев может наблюдаться так называемый биологический гемолиз, развивающийся при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т. п.

sch119comp5.narod.ru

Образование эритроцитов

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

“Ярославский государственный университет им. П.Г. Демидова”

Реферат на тему

Образование, продолжительность жизни и разрушение эритроцитов

Ярославль 2014

Процесс образования эритроцитов в организме, протекающий в кроветворной ткани костного мозга, называется эритропоэзом. Эритроциты образуются в кроветворных тканях – желточном мешке у эмбриона, печени и селезенке у плода и красном костном мозгу плоских костей у взрослого. Во всех этих органах содержатся так называемые плюрипотентные стволовые клетки–общие предшественники всех клеток крови. Первоначально происходит процесс пролиферации (разрастания ткани путем размножения клетки). Затем из стволовых гемопоэтических клеток (клеток – родоначальниц кроветворения) формируется мегалобласт (крупное красное тельце, содержащее ядро и большое количество гемоглобина), из которого в свою очередь образуется эритробласт (ядросодержащая клетка), а потом и нормоцит (тельце, наделенное нормальными размерами). Как только нормоцит утрачивает свое ядро, он тут же превращается в ретикулоцит – непосредственного предшественника красных кровяных клеток. Ретикулоцит попадает в кровеносное русло и трансформируется в эритроцит. На его трансформацию уходит около 2 - 3 часов. Созревшие эритроциты циркулируют в крови в течение 100–120 дней, после чего фагоцитируются клетками ретикулоэндотелиальной системы костного мозга (а при патологии–также печени и селезенки). Однако не только эти органы, но и любая другая ткань способна разрушать кровяные тельца, о чем свидетельствует постепенное исчезновение «синяков» (подкожных кровоизлияний). В организме взрослого человека насчитывается 25–1012 эритроцитов, и каждые 24 ч обновляется примерно 0,8% их числа. Это означает, что за 1 мин образуется 160 106 эритроцитов.

После кровопотери и при патологическом укорочении жизни эритроцитов скорость эритропоэза может возрастать в несколько раз. Мощным стимулятором эритропоэза служит снижение парциального давления O2 (т. е. несоответствие между потребностью ткани в кислороде и его поступлением). При этом возрастает содержание в плазме особого вещества, ускоряющего эритропоэз,–эритропоэтина. У человека эритропоэтин представляет собой термостабильный гликопротеин с молекулярной массой около 34000 и содержанием сахара 30%. Белковая часть эритропоэтина включает 165 аминокислотных остатков; недавно была установлена его аминокислотная последовательность. Главную роль в синтезе эритропоэтина играют почки; при двусторонней нефрэктомии концентрация эритропоэтина в крови резко снижается. Синтез эритропоэтина угнетается также при различных почечных заболеваниях. Раньше считалось, что почки сами по себе не вырабатывают эритропоэтин, а выделяют некий фермент, расщепляющий глобулин плазмы с образованием этого гормона. Однако недавно было показано, что в почках содержится как активный эритропоэтин, так и матричная РНК (мРНК), управляющая его синтезом. В небольших количествах эритропоэтин образуется и в других органах–в основном в печени.

Эритропоэтин стимулирует дифференцировку и ускоряет размножение предшественников эритроцитов в костном мозгу. Все это приводит к возрастанию числа гемоглобин–образующих эритробластов. Действие эритропоэтина усиливается многими другими гормонами, в том числе –андрогенами, тироксином и гормоном роста. Различия в числе эритроцитов и содержании гемоглобина в крови мужчин и женщин обусловлены тем, что андрогены усиливают эритропоэз, а эстрогены его тормозят.

Ретикулоциты. Подсчет ретикулоцитов в крови может дать важную для диагностики и лечения информацию о состоянии эритропоэза. Эти клетки служат непосредственными предшественниками эритроцитов. В отличие от эритроцитов, в которых при световой микроскопии не выявляются клеточные структуры, в ретикулоцитах методом прижизненного окрашивания (например, бриллиантовым крезоловым синим) можно обнаружить гранулярные или нитевидные структуры. Эти юные клетки крови выявляются как в костном мозгу, так и в периферической крови. В норме ретикулоциты составляют 0,5–1% общего числа эритроцитов крови; при ускорении эритропоэза доля ретикулоцитов возрастает, а при его замедлении снижается. В случаях усиленного разрушения эритроцитов число ретикулоцитов может превышать 50%. При резко ускоренном эритропоэзе в крови иногда появляются даже нормобласты.

Эритроциты как понятие появляются в нашей жизни чаще всего в школе на уроках биологии в процессе знакомства с принципами функционирования человеческого организма. Те, кто не обратил внимания в то время на тот материал, впоследствии могут вплотную столкнуться с красными кровяными клетками (а это и есть эритроциты) уже в поликлинике при обследовании.

Вас отправят на , а в результатах будет интересовать уровень эритроцитов, поскольку этот показатель относится к главным показателям здоровья.

Основная функция этих клеток – снабжение кислородом тканей тела человека и выведение из них углекислот. Нормальное их количество обеспечивает полноценную работу организма и его органов. При колебаниях уровня красных клеток появляются различные нарушения и сбои.


Справочно. Чем больше суммарная поверхность красных кровяных клеток, тем лучше для организма.
Если бы эритроциты были обычной для клеток шарообразной формы, то площадь их поверхности была на 20 % меньше существующей.

Благодаря своей необычной форме красные клетки могут:

  • Транспортировать большее количество кислорода и углекислого газа.
  • Проходить через узкие и изогнутые капиллярные сосуды. Способность проходить в самые отдаленные участки человеческого тела эритроциты теряют с возрастом, а также при патологиях, связанных с изменением формы и размеров.

Один кубический миллиметр крови здорового человека содержит 3,9-5 миллионов красных кровяных клеток.

Химический состав эритроцитов выглядит так:

  • 60% – вода;
  • 40% – сухой остаток.

Сухой остаток телец состоит из:

  • 90-95 % – гемоглобин, красный пигмент крови;
  • 5-10 % – распределяются между липидами, белками, углеводами, солями и ферментами.

Такие клеточные структуры как ядро и хромосомы у кровяных телец отсутствуют. К безядерному состоянию эритроциты приходят в ходе последовательных преобразований в жизненном цикле. То есть жесткая составляющая клеток уменьшена до минимума. Спрашивается, зачем?

Справочно. Природа так создала красные клетки, чтобы, имея стандартный размер 7-8 мкм, они проходили через мельчайшие капилляры диаметром 2-3 мкм. Отсутствие жесткого ядра как раз и позволяет “протискиваться” сквозь тончайшие капилляры, чтобы донести до всех клеток кислород.

Образование, жизненный цикл и разрушение красных клеток

Образуются эритроциты от предшествующих клеток, которые происходят от стволовых. Зарождаются красные тельца в костном мозге плоских костей – черепе, позвоночнике, грудине, ребрах и костях таза. В случае, когда по причине болезни костный мозг не в состоянии синтезировать красные кровяные тельца, они начинают вырабатываться другими органами, которые отвечали за их синтез во внутриутробном развитии (печень и селезенка).

Заметим, что, получив результаты общего анализа крови, вы можете столкнуться с обозначением RBC – это английская аббревиатура red blood cell count – количество красных кровяных телец.

Справочно. Эритроциты (RBC) производятся (эритропоэз) в костном мозге под контролем гормона эритропоэтина (ЭПО). Клетки в почках производят ЭПО в ответной реакции на уменьшение доставки кислорода (как при анемии и гипоксии), а также при повышении уровня андрогенов. Здесь важно, что в дополнение к ЭПО, для производства эритроцитов требуется поставка составляющих, главным образом железа, витамина B 12 и фолиевой кислоты, которые поставляются либо с пищей, либо в качестве добавок.

Живут эритроциты около 3-3,5 месяцев. Каждую секунду в теле человека их распадается от 2 до 10 миллионов. Старение клеток сопровождается изменением их формы. Разрушаются эритроциты чаще всего в печени и селезенке, образуя при этом продукты распада – билирубин и железо.

Кроме естественного старения и смерти, распад красных кровяных телец (гемолиз) может происходить и по другим причинам:

  • из-за внутренних дефектов – к примеру, при наследственном сфероцитозе.
  • под воздействием различных неблагоприятных факторов (например, токсинов).

При разрушении содержимое красной клетки уходит в плазму. Обширный гемолиз может привести к снижению общего числа перемещающихся в крови эритроцитов. Это называется гемолитической анемией.

Задачи и функции эритроцитов


  • Перемещение кислорода из легких к тканям (с участием гемоглобина).
  • Перенос углекислого газа в обратном направлении (при участии гемоглобина и ферментов).
  • Участие в обменных процессах и регуляции водно-солевого баланса.
  • Перенесение в ткани жироподобных органических кислот.
  • Обеспечение питания тканей (эритроциты поглощают и переносят аминокислоты).
  • Непосредственное участие в свертываемости крови.
  • Защитная функция. Клетки способны всасывать вредные вещества и переносить антитела – иммуноглобулины.
  • Способность к подавлению высокой иммунореактивности, что может использоваться для лечения различных опухолей и аутоиммунных заболеваний.
  • Участие в регуляции синтеза новых клеток – эритропоэза.
  • Кровяные тельца помогают поддерживать кислотно-щелочной баланс и осмотическое давление, которые необходимы для осуществления биологических процессов в организме.

По каким параметрам характеризуют эритроциты

Основные параметры развернутого анализа крови:

  1. Уровень гемоглобина
    Гемоглобин - это пигмент в составе эритроцитов, который помогает осуществлению газообмена в организме. Повышение и снижение его уровня чаще всего связано с количеством кровяных телец, но случается, что эти показатели меняются независимо друг от друга.
    Нормой для мужчин является от 130 до 160 г/л, для женщин – от 120 до 140 г/л и 180–240 г/л для младенцев. Недостаток гемоглобина в крови называют анемией. Причины повышения уровня гемоглобина аналогичны причинам снижения числа красных клеток.
  2. СОЭ – скорость оседания эритроцитов.
    Показатель СОЭ может повышаться при наличии воспалений в организме, а снижение его обусловлено хроническим нарушением кровообращения.
    В клинических исследованиях показатель СОЭ дает представление об общем состоянии организма человека. В норме СОЭ должен составлять 1-10 мм/час у мужчин, и 2-15 мм/час у женщин.

При сниженном количестве красных телец в крови СОЭ растет. Снижение СОЭ происходит при различных эритроцитозах.

Современные гематологические анализаторы, кроме гемоглобина, эритроцитов, гематокрита и других обычных анализов крови, могут снимать и другие показатели, называемые эритроцитарными индексами.

  • MCV – средний объем эритроцитов.

Очень важный показатель, который определяет вид анемии по характеристике красных клеток. Высокий уровень MCV показывает гипотонические нарушения в плазме. Низкий уровень говорит о гипертоническом состоянии.

  • МСН – среднее содержание гемоглобина в эритроците. Нормальное значение показателя при исследовании в анализаторе должно составлять 27 – 34 пикограммов (пг).
  • МСНС – средняя концентрация гемоглобина в эритроцитах.

Показатель взаимосвязан с MCV и МСН.

  • RDW - распределение эритроцитов по объему.

Показатель помогает дифференциации анемий в зависимости от его значений. Показатель RDW совместно с расчетом MCV снижается при микроцитарных анемиях, но его необходимо изучать одновременно с гистограммой.

Эритроциты в моче

Также причиной гематурии могут быть микротравмы слизистой мочеточников, уретры или мочевого пузыря.
Максимальный уровень кровяных клеток в моче у женщин - не более 3 единиц в поле зрения, у мужчин - 1-2 единицы.
При анализе мочи по Нечипоренко считаются эритроциты в 1 мл мочи. Нормой является показатель до 1000 ед/мл.
Показатель более 1000 ед/мл может указывать на наличие камней и полипов в почках или мочевом пузыре и других состояниях.

Нормы содержания эритроцитов в крови

Общее количество эритроцитов, содержащихся в теле человека в целом, и количество красных телец, курсирующих по системе кровообращения – понятия различные.

В общее число входят 3 вида клеток:

  • те, которые еще не покинули костный мозг;
  • находящиеся в «депо» и ожидающие своего выхода;
  • курсирующие по кровяным каналам.

Совокупность всех трех видов клеток носит название – эритрон. В нем содержится от 25 до 30 х 1012/л (Тера/литр) красных кровяных телец.

Время разрушения кровяных телец и замена их новыми зависит от ряда условий, одним из которых является содержание кислорода в атмосфере. Низкий уровень содержания кислорода в крови дает команду костному мозгу к выработке большего количества эритроцитов, чем их распадается в печени. При высоком содержании кислорода происходит обратное действие.

Внимание. В целом, количество красных клеток может варьироваться в зависимости от возраста человека и состояния его здоровья.

Повышение их уровня в крови чаще всего возникает при:

  • недостатке кислорода в тканях;
  • заболеваниях легких;
  • врожденных пороках сердца;
  • курении;
  • нарушении процесса образования и созревания эритроцитов из-за опухоли или кисты.

Пониженное содержание эритроцитов говорит об анемии.

Нормальный уровень кровяных телец:

  • У мужчин – 4-5,5х10¹² /л.

Высокий уровень красных клеток у мужчин связан с выработкой мужских половых гормонов, которые стимулируют их синтез.

  • У женщин – 3,9-4,9 х10¹² /л.

Уровень клеток в крови у женщин ниже, чем у мужчин. И гемоглобина у них тоже меньше.

Это связано с физиологической потерей крови во время менструальных дней.

  • У новорожденных детей наблюдается наиболее высокий уровень красных телец – в пределах 4,3-7,6 x 10¹²/л.
  • Содержание кровяных телец у двухмесячного ребенка составляет 2,7-4,9 x 10¹²/л.

К году их количество постепенно снижается до 3,6-4,9 x 10¹² /л, а в период от 6 до 12 лет составляет 4-5,2 миллиона.
У подростков после 12-13 лет уровень гемоглобина и эритроцитов совпадает с нормой взрослых людей.
Суточное колебание числа кровяных телец может составлять до полумиллиона в 1 мкл крови.

Физиологическое увеличение количества кровяных телец может быть связано с:

  • интенсивной работой мышц;
  • эмоциональным перевозбуждением;
  • потерей жидкости при повышенном выделении пота.

Понижение уровня может возникать после приема пищи или при обильном питье.

Сдвиги эти носят временный характер и связаны с перераспределением кровяных телец в теле человека или разжижением либо сгущением крови. Выработка дополнительного числа эритроцитов в систему кровообращения происходит за счет клеток, сохраняемых в селезенке.

Повышение уровня эритроцитов (эритроцитоз)

Основными симптомами эритроцитоза являются:

  • головокружения;
  • головные боли;
  • кровь из носа.

Причинами эритроцитоза могут быть:

  • обезвоживание организма при жаре, лихорадке, поносе или сильной рвоте;
  • нахождение в горной местности;
  • физическая активность и спорт;
  • эмоциональное возбуждение;
  • заболевания легких и сердца с нарушением транспорта кислорода – хронический бронхит, астма, порок сердца.

Если же никаких явных причин для роста эритроцитов нет, то нужно обязательно записаться к специалисту-гематологу. Подобное состояние может возникнуть при некоторых наследственных заболеваниях или опухоли.

Крайне редко уровень кровяных телец повышается из-за наследственной болезни истинной полицитемии. При этой болезни костный мозг начинает синтезировать слишком много красных клеток. Болезнь не поддается лечению, можно лишь подавлять ее проявления.

Понижение уровня эритроцитов (эритропения)

Понижение уровня кровяных телец называется эритропенией.

Она может возникать при:

  • острой кровопотере (при травме или операции);
  • хронической кровопотере (обильные месячные или внутреннее кровотечение при язве желудке, геморрое и прочих болезнях);
  • нарушениях эритропоэза;
  • дефиците железа, поступающего с едой;
  • плохом усвоении или недостатке витамина В12;
  • избыточном потреблении жидкости;
  • слишком быстром разрушении эритроцитов под действием неблагоприятных факторов.

Низкий уровень красных телец и низкое содержание гемоглобина являются признаками анемии.

Любая анемия может привести к ухудшению дыхательной функции крови и к кислородному голоданию тканей.
Подведя итоги можно сказать, что эритроциты – это кровяные клетки, имеющие в своем составе гемоглобин. Нормальное значение их уровня составляет 4-5,5 миллиона в 1 мкл крови. Уровень клеток повышается при обезвоживании, физических нагрузках и перевозбуждении, а понижается при кровопотерях и дефиците железа.

Провести анализ крови на уровень эритроцитов можно практически в любой поликлинике.

Гемолиз – именно так в медицине определяется процесс разрушения эритроцитов. Это постоянное явление, которое характеризуется завершением жизненного цикла эритроцитов, что длится около четырех месяцев. Плановое разрушение транспортировщиков кислорода не проявляется никакой симптоматикой, однако, если гемолиз происходит под воздействием определенных факторов и является вынужденным процессом, то такое патологическое состояние может быть опасно не только для здоровья, но и для жизни в целом. Для того, чтобы предотвратить патологию, следует придерживаться профилактических мероприятий, а в случае возникновения – своевременно выяснить симптоматику и причину недуга, а главное, иметь понимание, где именно происходит процесс разрушения эритроцитов.

Во время гемолиза происходит повреждение эритроцитов, что приводит к выходу гемоглобина в плазму. В результате чего происходят внешние изменения крови – она становится более красной, но при этом намного прозрачнее.

Происходит разрушение вследствие воздействия бактериального токсина либо же антитела. Процесс разрушения эритроцитов происходит таким образом:

  1. Определенный раздражитель способен влиять на эритроцит, вследствие чего происходит увеличение его размеров.
  2. Клетки эритроцитов не имеют эластичность, поэтому не предназначены к растягиванию.
  3. Увеличенный эритроцит разрывается, а все его содержимое попадает в плазму.

Чтобы наглядно увидеть, как происходит процесс разрушения, следует пересмотреть видеоролик.

Видео — Гемолиз эритроцита

Особенности гемолиза

Процесс разрушения активизируется по причинам:

  • генетическая неполноценность клеток;
  • волчанка;
  • аутоиммунные пороки;
  • агрессивная реакция антител к своим клеткам;
  • лейкоз в острой форме;
  • желтуха;
  • чрезмерное количество эритромициновых клеток;
  • миелома.

Внимание! Процесс разрушения эритроцитов может быть вызван искусственным путем под воздействием ядов, неправильно выполненной операции по переливанию крови, как следствие влияния определенных кислот.

Место разрушения эритроцитов

Если рассматривать природный процесс гемолиза, то в результате старения эритроцитов, их эластичность теряется и они разрушаются внутри сосудов. Определяется данный процесс, как внутрисосудистый гемолиз. Внутриклеточный процесс гемолиза подразумевает разрушение внутри купферовских печёночных клеток. Таким образом, за одни сутки может разрушиться до 90% старых эритроцитов (в них содержится до семи грамм гемоглобина). Остальные 10% разрушаются внутри сосудов, вследствие чего в плазме образуется гаптоглобин.

Механизмы гемолиза

Процесс разрушения в организме эритроцитов может происходить несколькими путями.

Механизм гемолиза Характеристика
Естественный Это непрерывный естественный процесс, что является вполне нормальным явлением, которое характерно для завершения жизненного цикла транспортировщиков кислорода
Осмотический Развитие процесса происходит в гипотонической среде под воздействием веществ, что оказывают негативное влияние непосредственно на оболочку клеток
Термический Когда возникают условия с температурным влиянием на кровь, то эритроциты начинают распадаться
Биологический Негативное влияние на эритроциты могут оказать биологические токсины либо неправильное переливание крови
Механический Гемолиз запускается под механическим воздействием, что приводит к повреждениям клеточной оболочки

Первопричины и симптоматика

В медицине выделяют несколько причин, по которым могут активироваться разрушительные процессы эритроцитов, основные из них подразумевают:

  • если в кровь попадают соединения тяжелых металлов;
  • при отравлении человека мышьяком;
  • при воздействии на организм уксусной кислоты;
  • при хронических недугах;
  • при сепсисе острого характера;
  • если развивается ДВС-синдром;
  • как последствие сильных ожогов;
  • при неподходящих резус-факторах, когда происходит смешивание крови во время переливания.

Начальные стадии гемолиза абсолютно ничем не характеризуются, поэтому патологический процесс должен определять специалист. Проявления, заметные для самого пациента возникают в период острой стадии. Течение данной стадии происходит очень быстро, поэтому необходимо вовремя среагировать. Клинические характеристики процесса разрушения эритроцитов проявляются следующим образом:

  1. Возникает чувство тошноты, что нередко заканчивается рвотой.
  2. Болезненные ощущения в животе.
  3. Изменение цвета кожного покрова.

Если проявляется осложненная форма, то у больного могут возникать судороги, сильное недомогание, побледнение, одышка. Результаты анализов показывают малокровие. Объективная особенность данного состояния характеризуется появлением шумов в сердце. При этом одними из самых явных признаков разрушения эритроцитов являются увеличенные в размере органы (к примеру, селезенка).

Обратите внимание! Если происходит внутрисосудистый вид гемолиза, то дополнительным признаком будет изменение показателей цвета мочи.

Разрушение эритроцитов в острой форме

Острые проявления патологического состояния определяются, как острый гемолиз. Возникать патологический процесс может на фоне малокровия, несовместимости крови при переливании, под воздействием ядовитых веществ. Отличается стремительно развивающейся анемией и значительным повышением концентрации билирубина. Как результат острого гемолиза происходит разрушение большого количества эритроцитов с выходом гемоглобина.

Кризис возникает, когда у пациента наблюдается следующая симптоматика:

  • человека лихорадит;
  • возникает тошнота, что сопровождается рвотными позывами;
  • подымается температура;
  • одышка становится усиленной;
  • болезненный синдром в виде болевых схваток в области живота и поясницы;
  • тахикардия.

Более тяжелая форма приводит к развитию анурии, а прежде, значительным снижением артериального давления.

Это важно! В период острого состояния будет наблюдаться значительное увеличение селезенки.

Гемолитическая анемия и процесс гемолиза

В большинстве случаев данные понятия связаны между собой. Объясняется это тем, что при гемолитической анемии возникает моментальный распад эритроцитов с выделением билирубина. Когда человек страдает малокровием, то жизненный цикл транспортировщиков кислорода уменьшается и ускоряется процесс их разрушительного действия.

Выделяют два типа анемии:

  1. Врожденный. Человек рождается с аномальным строением мембран эритроцитов либо с неправильной формулой гемоглобина.
  2. Приобретенный. Возникает, как последствие воздействия ядовитых веществ.

Если патология имеет приобретенный характер, то развивается следующая симптоматика:

  • резко повышается температура;
  • болевые ощущения в области желудка;
  • кожные покровы желтеют;
  • головокружения;
  • болезненный синдром в суставах;
  • чувство слабости;
  • усиленное сердцебиение.

Справка! При токсической форме анемии страдает один из внутренних органов – это печень или одна из почек. Аутоиммунная форма характеризуется повышенной чувствительностью к слишком низкой температуре.

Процесс распада эритроцитов у новорожденных

Уже в первые часы жизни у малыша может наблюдаться процесс распада эритроцитов. Первопричина такой патологии заключается в отрицательности резус-фактора с материнским. Данное состояние сопровождается пожелтением кожных покровов, анемией и отечностью. Опасность такого патологического состояния заключается в возможном смертельном исходе, поскольку в плазму крови высвобождается чрезмерное количество билирубина.

В этой части речь идет о разрушении эритроцитов, об образовании эритроцитов, о разрушении и образовании лейкоцитов, о нервной регуляции кроветворения, о гуморальной регуляции кроветворения. На схеме созревание форменных элементов крови.

Разрушение эритроцита.

Клетки крови постоянно разрушаются в организме. Особенно быстрой смене подвергаются эритроциты. Вычислено, что в сутки разрушается около 200 млрд. эритроцитов. Их разрушение происходит во многих органах, но в особо большом количестве - в печени и селезенке. Эритроциты разрушаются путем разделения на все более мелкие и мелкие участки - фрагментации, гемолиза и путем эритрофагоцитоза, суть которого заключается в захватывании и переваривании эритроцитов особыми клетками - эритрофагоцитами. При разрушении эритроцитов образуется желчный пигмент билирубин, который после некоторых превращений удаляется из организма с мочой и калом. Железо, освобождающееся при распаде эритроцитов (около 22 мг в сутки), используется для построения новых молекул гемоглобина.

Образование эритроцитов.

У взрослого человека формирование эритроцитов - эритропоэз - происходит в красном костном мозге (см. схему, щелкните мышью по изображению для увеличения). Недифференцированная клетка его - гемоцитобласт - превращается в родоначальную клетку красной крови - эритробласт, из которой образуется нормобласт, дающий начало ретикулоциту - предшественнику зрелого эритроцита. Уже в ретикулоците отсутствует ядро. Превращение ретикулоцита в эритроцит заканчивается в крови.

Разрушение и образование лейкоцитов.

Все лейкоциты после некоторого периода циркуляции их в крови покидают ее и переходят в ткани, откуда обратно в кровь не возвращаются. Находясь в тканях и выполняя свою фагоцитарную функцию, они гибнут.

Зернистые лейкоциты (гранулоциты) образуются в косном мозге из миелобласта, который дифференцируется из гемоцитобласта. Миелобласт до превращения его в зрелый лейкоцит проходит через стадии промиелоцита, миелоцита, метамиелоцита и палочкоядерного нейтрофила (см. схему, щелкните мышью по изображению для увеличения).

Незернистые лейкоциты (агранулоциты) также дифференцируются из гемоцитобласта.

Лимфоциты образуются в зобной железе и лимфатических узлах. Родоначальной клеткой их является лимфобласт, превращающийся в пролимфоцит, дающий уже зрелый лимфоцит.

Моноциты образуются не только из гемоцитобласта, но и из ретикулярных клеток печени, селезенки, лимфатических узлов. Первичная его клетка - монобласт - превращается в промоноцит, а последний - в моноцит.

Исходной клеткой, из которой формируются тромбоциты, является мегакариобласт костного мозга. Непосредственным предшественником тромбоцита является мегакариоцит - крупная клетка, имеющая ядро. От ее цитоплазмы отшнуровываются тромбоциты.

Нервная регуляция кроветворения.

Еще в позапрошлом столетии С.П.Боткин - русский клиницист - поднял вопрос о ведущей роли нервной системы в регуляции кроветворения. Боткиным описаны случаи внезапного развития анемии после психического потрясения. В дальнейшем последовало бесчисленное множество работа, свидетельствующих, что при всяком воздействии на центральную нервную систему меняется картина крови. Так, например, введение различных веществ в подоболочные пространства мозга, закрытые и открытые травмы черепа, введение воздуха в желудочки мозга, опухоли мозга и целый ряд других нарушений функций нервной системы неизбежно сопровождаются изменениями состава крови. Зависимость периферического состава крови от деятельности нервной системы стала совершенно очевидной после установления В.Н.Черниговским существования во всех кроветворных и кроверазрушающих органах рецепторов. Они передают информацию в центральную нервную систему о функциональном состоянии этих органов. В соответствии с характером поступающей информации центральная нервная система посылает импульсы к кроветворным и кроверазрушающим органам, изменяя их деятельность в соответствии с требованиями конкретной ситуации в организме.

Предположение Боткина и Захарьина о влиянии функционального состояния коры головного мозга на деятельность кроветворных и кроверазрушающих органов является теперь экспериментально установленным фактом. Образование условных рефлексов, выработка различных видов торможения, любое нарушение динамики корковых процессов неизбежно сопровождаются изменениями состава крови.

Гуморальная регуляция кроветворения.

Гуморальная регуляция образования всех клеток крови осуществляется гемопэтинами. Их делят на эритропоэтины, лейкопоэтины и тромбопоэтины.

Эритропоэтины - вещества белково-углеводной природы, которые стимулируют образование эритроцитов. Эритропоэтины воздействуют непосредственно в костный мозг, стимулируя дифференциацию гемоцитобласта в эритробласт. Установлено, что под их влиянием усиливается включение железа в эритробласты, увеличивается число их митозов. Предполагают, что эритропоэтины образуются в почках. Недостаток кислорода в среде является стимулятором образования эритропоэтинов.

Лейкопоэтины стимулируют образование лейкоцитов путем направленной дифференциации гемоцитобласта, усиления митотической активности лимфобластов, ускорения их созревания и выхода в кровь.

Тромбоцитопоэтины наименее изучены. Известно лишь, что они стимулируют образование тромбоцитов.

В регуляции кроветворения существенное значение имеют витамины. Специфическое действие на формирование эритроцитов оказывают витамин В 12 и фолиевая кислота. Витамин В 12 в желудке образует комплекс с внутренним фактором Кастла, который секретируется главными железами желудка. Внутренний фактор необходим для транспорта витамина В 12 через мембрану клеток слизистой оболочки тонкой кишки. После перехода этого комплекса через слизистую он распадается и витамин В 12 , попадая в кровь, связывается с ее белками и переносится ими в печень, почки и сердце - органы, являющиеся депо этого витамина. Всасывание витамина В 12 происходит на всем протяжении тонкого кишечника, но больше всего - в подвздошной кишке. Фолиевая кислота всасывается также в током кишечнике. В печени она под влиянием витамина В 12 и аскорбиновой кислоты превращается соединение, активирующее эритропоэз. Витамин В 12 и фолиевая кислота стимулируют синтез глобина.

Витамин С необходим для всасывания в кишечнике железа. Этот процесс усиливается под его влиянием В 8-10 раз. Витамин В 6 способствует синтезу гема, витамин В 2 - построению мембраны эритроцита, витамин В 15 необходим для формирования лейкоцитов.

Особое значение для кроветворения имеют железо и кобальт. Железо необходимо для построения гемоглобина. Кобальт стимулирует образование эритропоэтинов, так как он входит в состав витамина В 12. Образование клеток крови стимулируется также нуклеиновыми кислотами, образующимися при распаде эритроцитов и лейкоцитов. Для нормальной функции кроветворения важно полноценное белковое питание. Голодание сопровождается уменьшением митотической активности клеток костного мозга.

Уменьшение количества эритроцитов носит название анемии, количества лейкоцитов - лейкопении и тромбоцитов - тромбоцитопении. Изучение механизма формирования клеток крови, механизма регуляции кроветворения и кроверазрушения позволило создать множество различных лекарственных препаратов, которые восстанавливают нарушенную функцию кроветворных органов.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины