Примеры антидотов непрямого действия. Классификация антидотов, используемых при отравлении. Прямое химическое взаимодействие

Примеры антидотов непрямого действия. Классификация антидотов, используемых при отравлении. Прямое химическое взаимодействие

19.07.2019
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТЯ РФ»

Кафедра Мобилизационной подготовки здравоохранения и медицины катастроф

Реферат на тему: «Механизм действия антидотов».
Самара 2012

I.Характеристика антидотов …………………………. 3

II.Механизмы действия антидотов ……………..….....5

1) Механизм связывания яда…………………..…….. 6

2) Механизм вытеснения яда…………………………..8

3) Механизм возмещения биологически активных веществ……………………………………………..…. 9

4) Механизм возмещения биологически активных веществ ………………………………………………………..…10

Список использованной литературы………………....11

Характеристика антидотов

Антидоты (противоядия) - применяемые при лечении отравлений лекарства, в основе механизма действия которых лежит обезвреживание яда или предупреждение и устранение вызываемого им токсического эффекта.

В качестве противоядий используют те или иные вещества или смеси, в зависимости от характера яда (токсина ):


  • этанол может быть использован при отравлении метиловым спиртом

  • атропин - используют при отравлении M-холиномиметиками (мускарин и ингибиторами ацетилхолинэстеразы (фосфорорганические яды).

  • глюкоза - вспомогательный антидот при многих видах отравлений, вводится внутривенно или перорально. Способна связывать синильную кислоту .

  • налоксон - используют при отравлении и передозировке опиоидами
Антидоты, наиболее часто используемые при острых отравлениях это:

  • Унитиол - низкомолекулярный донатор SH-групп, универсальный антидот. Обладает широким терапевтическим действием, малотоксичен. Применяется как антидот при острых отравленияхлюизитом , солями тяжелых металлов ( , медь , свинец ), при передозировке сердечныхгликозидов , отравлении хлорированными углеводородами .

  • ЭДТА -тетацин-кальций, Купренил - относится к комплексонам (хелатообразователям ). Образует легко растворимые низкомолекулярные комплексы с металлами , которые быстро выводятся из организма через почки. Применяется при острых отравлениях тяжелыми металлами (свинец , медь ).

  • Оксимы (аллоксим , дипироксим ) - реактиваторы холинэстераз . Используются при отравлениях антихолинэстеразными ядами, такими как ФОВ . Наиболее эффективны в первые 24 часа.

  • Атропина сульфат - антагонист ацетилхолина . Применяется при острых отравлениях ФОВ , когда в избытке накапливается ацетилхолин. При передозировке пилокарпина , прозерина ,гликозидов , клофелина , бета-блокаторов ; а также при отравлении ядами, вызывающимибрадикардию и бронхорею .

  • Этиловый спирт - антидот при отравлении метиловым спиртом , этиленгликолем .

  • Витамин В6 - антидот при отравлении противотуберкулезными препаратами (изониазид ,фтивазид ); гидразином .

  • Ацетилцистеин - антидот при отравлении дихлорэтаном . Ускоряет дехлорирование дихлорэтана, обезвреживает его токсичные метаболиты . Применяется также при отравлениипарацетамолом .

  • Налорфин - антидот при отравлении морфином , омнопоном , бенздиазепинами .

  • Цитохром-С - эффективен при отравлении окисью углерода .

  • Липоевая кислота - применяется при отравлении бледной поганкой как антидот аманитина .

  • Протаминсульфат - антагонист гепарина .

  • Аскорбиновая кислота - антидот при отравлении перманганатом калия . Используется длядетоксикационной неспецифической терапии при всех видах отравлений.

  • Тиосульфат натрия - антидот при отравлении солями тяжелых металлов и цианидами .

  • Противозмеиная сыворотка - используется при укусах змей .

  • B 12 - антидот при отравлении цианидами и при передозировке нитропруссидом натрия.
Механизм действия антидотов

Действие антидотов может заключаться:

1) в связывании яда (путем химических и физико-химических реакций);

2) в вытеснении яда из его соединений с субстратом;

3) в возмещении биологически активных веществ, разрушенных под влиянием яда;

4) в функциональном антагонизме, противодействии токсическому эффекту яда.

Механизм связывания яда

Антидотная терапия широко применяется в комплексе лечебных мероприятий при профессиональных отравлениях. Так, для предупреждения всасывания яда и его удаления из желудочно-кишечного тракта используются антидоты физико-химического действия, например активированный уголь, адсорбирующий па своей поверхности некоторые яды (никотин, таллий и др.). Другие антидоты оказывают обезвреживающее действие, вступая с ядом в химическую реакцию, путем нейтрализации, осаждения, окисления, восстановления или связывания яда. Так, метод нейтрализации используется при отравлениях кислотами (вводят, например, раствор окиси магния - жженой магнезии) и щелочами (назначают слабый раствор уксусной кислоты).

Для осаждения некоторых металлов (при отравлениях ртутью, сулемой, мышьяком) применяют белковую воду, яичный белок, молоко, переводящие растворы соли в нерастворимые альбуминаты, или специальное противоядие против металлов (Antidotum metallorum), в состав которого входит стабилизированный сероводород, образующий практически нерастворимые сульфиды металлов.

Примером противоядия, действующего путем окисления, может служить калия перманганат, активный при отравлениях фенолом.

Принцип химического связывания яда лежит в основе антидотного действия глюкозы и тиосульфата натрия при отравлении цианидами (происходит превращение синильной кислоты соответственно в циангидрины или в роданиды).

При отравлении тяжелыми металлами для связывания уже всосавшегося яда широко используются комплексообразующие вещества, например унитиол, тетацин-кальций, пентацин, тетоксации, образующие с ионами многих металлов стойкие нетоксичные комплексные соединения, выводимые с мочой.

С лечебной целью тетацин и пентацин применяются при профессиональных интоксикациях свинцом. Комплексонотерапия (тетацин, тетоксацин) способствует также выведению из организма некоторых радиоактивных элементов и радиоактивных изотопов тяжелых металлов, например иттрия, церия.

Введение комплексонов рекомендуется и в диагностических целях, например в том случае, когда имеется подозрение на свинцовую интоксикацию, но концентрация свинца в крови и моче не увеличена. Резкое усиление выведения свинца с мочой после внутривенной инъекции комплексона указывает на наличие яда в организме.

На принципе комплексообразования основан антидотный эффект дитиолов при отравлениях некоторыми органическими и неорганическими соединениями тяжелых металлов и другими веществами (иприт и его азотистые аналоги, йодацетат и др.), относящимися к группе так называемых тиоловых ядов. Из числа изученных в настоящее время дитиолов наибольшее практическое применение нашли унитиол и сукцимер. Эти средства являются эффективными антидотами мышьяка, ртути, кадмия, никеля, сурьмы, хрома. В результате взаимодействия дитиолов с солями тяжелых металлов образуются прочные водорастворимые циклические комплексы, легко выводимые почками.

Антидотом при отравлении мышьяковистым водородом служит мекаптид. В последнее время показан высокий антидотный эффект комплексообразователя а-пеницилламина при отравлении соединениями свинца, ртути, мышьяка и некоторыми тяжелыми металлами. Тетацинкальций включают в состав мазей и паст, применяемых для защиты кожных покровов рабочих, имеющих контакт с хромом, никелем, кобальтом.

С целью уменьшения всасывания из желудочно-кишечного тракта свинца, марганца и некоторых других металлов, которые попадают в кишечник с заглатываемой пылью, а также в результате выведения с желчью, эффективно использование пектина.

Для профилактики и лечения отравлений сероуглеродом рекомендуется глутаминовая кислота, вступающая в реакцию с ядом и усиливающая его выведение с мочой. В качестве антидотного лечения рассматривается применение средств, которые тормозят превращение яда в высокотоксичные метаболиты.

Механизм вытеснения яда

Примером противоядия, действие которого сводится к вытеснению яда из его соединения с биологическим субстратом, может быть кислород при отравлениях окисью углерода. При повышении концентрации кислорода в крови окись углерода вытесняется. При отравлениях нитритами, нитробензолом, анилином. прибегают к воздействию на биологические процессы, участвующие в восстановлении метгемоглобина в гемоглобин. Ускоряют процесс деметгемоглобинизации метиленовый синий, цистамин, никотиновая кислота, липамид. Эффективными антидотами при отравлении фосфорорганическими пестицидами является группа средств, способных реактивировать блокированную ядом холинэстеразу (например, 2-ПАМ, токсогонин, дипироксима бромид).

Роль антидотов могут играть некоторые витамины и микроэлементы, вступающие во взаимодействие с каталитическим центром ферментов, ингибированных ядом, и восстанавливающие их активность.

Механизм возмещения биологически активных веществ

Противоядием может служить средство, которое не вытесняет яд из его соединения с субстратом, а путем взаимодействия с каким-либо иным биологическим субстратом делает последний способным связывать яд, экранируя другие жизненно важные биологические системы. Так, при отравлении цианидами применяются метгемоглобинобразующие вещества. При этом метгемоглобин, связываясь с цианом, образует цианметгемоглобин и тем самым предохраняет от инактивации ядом железосодержащие тканевые ферменты.

Функциональный анатагонизм

Наряду с антидотами в терапии острых отравлений часто используют функциональные антагонисты ядов, т. е. вещества, влияющие на те же функции организма, что и яд, но прямо противоположным образом. Так, при отравлениях аналептиками и другими веществами, стимулирующими ЦНС, в качестве антагонистов используют средства для наркоза. При отравлениях ядами, вызывающими угнетение холинэстеразы (многие фосфорорганические соединения и др.), широко используются холинолитические препараты, которые являются функциональными антагонистами ацетилхолина, например атропин, тропацин, пептафен.

В отношении некоторых лекарственных веществ имеются специфические антагонисты. Например, налорфин является специфическим антагонистом морфина и других наркотических анальгетиков, а кальция хлорид - антагонистом магния сульфата.

Список использованной литературы


  1. Куценко С.А. - Военная токсикология, радиобиология и медицинская защита "Фолиант" 2004 266стр.

  2. Нечаев Э.А. - Инструкция по неотложной помощи при острых заболеваниях, травмах 82стр.

  3. Кирюшин В.А, Моталова Т.В. - Токсикология химически-опасных веществ и мероприятия в очагах химического поражения "РГМУ" 2000 165стр

  4. Электронный источник

Учебные вопросы:

1. Понятие об антидотах. Классификация.

2. Требования к лечебным и профилактическим антидотам. Требования к антидотам первой медицинской помощи.

3. Особенности профилактики и лечения острых отравлений.

4. Радиопротекторы и средства раннего лечения ОЛБ.

5. Радиопротекторы (радиозащитные средства).

6. Табельные радиопротекторы и средства раннего лечения.

7. Разрабатываемые перспективные радиопротекторы.

9. Средства предупреждения и купирования первичной лучевой радиации.

При применении антидотов необходимо, с одной стороны, при по­мощи специальных химических препаратов воспрепятствовать действию ядов на организм, а с другой - нормализовать или, по крайней мере, затормозить развивающиеся при этом неблагоприятные функциональные сдвиги в различных органах и системах.

Единого, общепринятого определения "антидота" до настоящего времени нет. Наиболее приемлемое следующее: противоядия (антидоты) - медицинские средства, способные обезвреживать яд в организме путем физического или химического взаимодействия с ним или же обеспечивающие артогонизм с ядом в действии на ферменты и рецепторы.

Для оценки действия антидотных средств используется большое количество критериев: разовая и суточная доза, продолжительность действия, фармакологические свойства, тератогенный, мутагенный и т.д. эффекты. Как и любые лекарственные препараты - антидоты ха­рактеризуются по этим признакам. Однако с учетом специфики их ис­пользования обычно применяются и другие характеристики, в част­ности, лечебная (профилактическая) эффективность, продолжитель­ность действия антидота, время его защитного действия, коэффици­ент защиты.

Существует несколько классификаций антидотных средств. Наи­более удовлетворяющей современным требованиям является классифи­кация антидотов, предложенная С.Н.Голиковым в 1972 г.

3. 1. Классификация антидотов:

- антидоты местного действия, обезвреживающие яд при резорб­ции тканями организма путем физических или химичес­ких процессов взаимодействия с ним;

- антидоты общерезорбтивного действия, применение которых основано на реакциях химического антагонизма между противоядиями и токсическим веществом или его метаболитами, циркулирующими в крови, лимфе, находящимися (депонированными) в тканях организма;

- антидоты конкурентного действия , вытесняющие и связывающие яд в безвредные соединения, в результате более выраженного хими­ческого сродства противоядия с ферментом, рецепторами, структур­ными элементами клеток;

- антидоты физиологические антагонисты ОВ , действие которых противоположно действию яда на ту или иную физиологическую систе­му организма, позволяют устранить вызванные ядом нарушения, нор­мализовать функциональное состояние;

- антидоты иммунологические , предусматривающие использование специфических вакцин и сывороток при отравлении.

Основные критерии оценки действия антидотов.

1. Лечебная (профилактическая) эффективность определяется количеством смертельных доз яда, признаки отравления которыми удается предупредить (для профилактических антидотов) или устра­нить (антидот медицинской помощи) в оптимальных условиях приме­нения препарата (рецептуры) или в соответствии с принятым регла­ментом.

2. Продолжительность действия антидота (применяется только в отношении антидотов, предназначенных для оказания медицинской помощи).

3. Время в течение которого проявляется лечебное действие пре­парата у отравленных (в зависимости от степени тяжести интокси­кации).

3. Время защитного действия антидота. Определяется временем с момента применения антидота до отравления, в течение которого предупреждаются клинические признаки интоксикации.

Мероприятия неотложной помощи при острых отравлениях строятся на общих принципах:

1. Прекращение дальнейшего поступления «яда» в организм.

2. Применение антидотов.

3. Восстановление и поддержание нарушенных жизненно важных функций (дыхания, кровообращения).

4. Детоксикация.

5. Купирование ведущих синдромов интоксикации.

Характеризуя мероприятия, направленные на прекращение поступления токсиканта в организм при ЧС, безусловно, следует иметь в виду использование технических средств защиты (противогазов, защитных костюмов) и проведение специальной (санитарной) обработки. Скорейшая эвакуация пораженных из очага - также преследует цель прекращения дальнейшего воз-действия токсиканта.

Кроме этого следует помнить, что токсичное вещество может достаточно длительно находиться в желудочно-кишечном тракте. Поэтому к ме-роприятиям, направленным на прекращение дальнейшего поступления ток-сичного вещества в кровь, следует отнести и методы удаления не всосавше-гося токсиканта из желудочно-кишечного тракта. К числу таких лечебных мероприятий относятся зондовое промывание желудка с введением сорбента, высокая сифонная клизма, кишечный лаваж.

Антидот (от anti dotum - "даваемое против") - (1) применяемое при лечении острого отравления лекарственное средство, способное (2.1) обезвреживать токсичное вещество, (2.2) предупреждать или (2.3) устра­нять вызываемый им токсический эффект.

Условия, для отнесения лекарства к антидотам.

1) терапевтическая эффектив­ность лекарственного средства при лечении острого отравления за счет

2) механизмов антидотного действия, основными из которых являются

2.1) способность «нейтрализовать» токсичное вещество непосредственно во внутренних средах организма;

2.2) способность антидота защищать структуру-мишень от действия токсиканта;

2.3) способность купировать (устранять) либо снижать тяжесть последствий от повреждения структуры-мишени, что проявляется более легким течением интоксикации.

Условно можно выделить следующиемеханизмы действия антидо­тов (по С.А. Куценко, 2004):

1) химический,

2) биохимический,

3) физиоло­гический,

4) модификация процессов метаболизма токсичного вещества (ксе­нобиотика).

Химический механизм действия антидотов основан на способности антидота «нейтрализовать» токсикант в биосредах. Антидоты непосредст­венно связываясь с токсикантом, образуют нетоксичные или малотоксичные соединения, которые достаточно быстро выводятся из организма. Антидоты связываются не только со «свободно» расположенным в биосредах токсикан­том (например, циркулирующим в крови) или находящемся в депо, но могут вытеснять токсикант из его связи со структурой-мишенью. К числу таких ан­тидотов относятся, например, комплексообразователи, используемые при от­равлениях солями тяжелых металлов, с которыми они образуют водораство­римые малотоксичные комплексы. Антидотный эффект унитиола при отрав­лении люизитом также основан на химическом механизме.



Биохимический механизм антидотного действия можно условно раз­делить на следующие виды:

I) вытеснение токсиканта из его связи с биомо­лекулами-мишенями, что приводит к восстановлению поврежденных биохи­мических процессов (например, реактиваторы холинэстеразы, используемы при острых отравлениях фосфорорганическими соединениями);

2) поставка ложной мишени (субстрата) для токсиканта (например, использование метгемоглобинобразователей для создания больших количеств Fe при остром отравлении цианидами);

3) компенсация нарушенного токсикантом количе­ства и качества биосубстрата.

Физиологический механизм подразумевает способность антидота нор­мализовать функциональное состояние организма. Эти препараты не вступа­ют с ядом в химическое взаимодействие и не вытесняют его из связи с фер­ментами. Основными видами физиологического действия антидотов являют­ся:

1) стимуляция противоположной (уравновешивающей) функции (напри­мер, применение холиномимтетиков при отравлений холинолитиками и на­оборот);

2) «протезирование» утраченной функции (например, при отравле­нии угарным газом проведение оксигенобарогерапии для восстановления доставки кислорода тканям за счет резкого увеличения кислорода, раство­ренного в плазме.

Модификаторы метаболизма либо

1) препятствуют процессу токсификации ксенобиотика - превращению в организме индифферентного ксено-биотика в высокотоксичное соединение («летальный синтез»); либо наоборот –



2) резко ускоряют биодетоксикацию вещества. Так, с целью блокирования процесса токсификации используется этанол при остром отравлении метанолом. Примером антидота, способного ускорять процессы детоксикации, может выступать тиосульфат натрия при отравлении цианидами.

Тема занятия: Медицинские средства профилактики и оказания помощи при химических радиационных поражениях

Цели занятия:

1. Дать представление об антидотах, радиопротекторах и механизме их действия.

2. Ознакомить с принципами оказания неотложной помощи при острых интоксикациях, при лучевых поражениях в очаге и на этапах медицинской эвакуации.

3. Показать достижения отечественной медицины по изысканию и разработке новых антидотов и радиопротекторов.

Вопросы к практическому занятию:

6. Средства профилактики общей первичной реакции на облучение, ранней преходя-

7. Основные принципы оказания первой, доврачебной и первой врачебной помощи при острых отравлениях и лучевых поражениях.

Вопросы для конспектирования в рабочей тетради

1. Антидоты, механизмы антидотного действия.

2. Характеристика современных антидотов.

3.Общие принципы оказания неотложной помощи при острых интоксикациях.

Порядок применения противоядий.

4. Радиопротекторы. Показатели защитной эффективности радиопротекторов.

5. Механизмы радиозащитного действия. Краткая характеристика и порядок примене-

ния. Средства длительного поддержания повышенной радиорезистентности организма.

7. Средства профилактики общей первичной реакции на облучение, ранней преходя-

щей недееспособности. Средства догоспитального лечения ОЛБ.

Антидоты, механизмы антидотного действия

Антидотом (от греч. Antidotum – даваемое против) называются лекарственные вещества, применяемые при лечении отравлений и способствующее обезвреживанию яда или предупреждению и устранению вызываемого им токсического эффекта.

Более расширенное определение дают эксперты международной программы химической безопасности ВОЗ (1996 г.). Они считают, что антидотом является препарат, способный устранить или ослабить специфическое действие ксенобиотиков за счет его иммобилизации (хелатообразователи), уменьшения проникновения яда к эффекторным рецепторам путем снижения его концентрации (адсорбенты) или противодействия на уровне рецептора (физиологические и фармакологические антагонисты).

Антидоты по своему действию подразделяются на неспецифические и специфические. Неспецифические антидоты – это соединения, которые обезвреживают многие ксенобиотики путем физического или физико-химического воздействия. Специфические антидоты действуют на определенные мишени, вызывая тем самым обезвреживание яда или устраняя его эффекты.


Специфические антидоты существуют для небольшого количества высокотоксичных химических веществ и они различны по механизмам своего действия. Следует отметить, что их назначение является далеко не безопасным мероприятием. Некоторые антидоты вызывают серьезные побочные реакции, поэтому риск их назначения должен быть сопоставлен с вероятной пользой от их применения. Период полувыведения многих из них меньше, чем яда (опиаты и налоксон), поэтому после первоначального улучшения состояния больного может наступить повторное его ухудшение. Отсюда ясно, что даже после применения антидотов необходимо продолжать тщательное наблюдение за больными. Эти антидоты более эффективно применять в начальной токсикогенной стадии отравления, чем в более поздний период. Однако некоторые из них оказывают прекрасное действие и в соматогенной стадии отравления (антитоксическая сыворотка «антикобра»).

В токсикологии, как и в других областях практической медицины, для оказания помощи используют этиотропные, патогенетические и симптоматические средства. Поводом для введения этиотропных препаратов является знание непосредственной причины отравления, особенностей токсикокинетики яда. Симптоматические и патогенетические вещества назначают ориентируясь на проявления интоксикации.

Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

Антидоты бывают прямого и непрямого действия.

Антидот прямого действия.

Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия.

Основные варианты – сорбентные препараты и химические реагенты.

Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами , что приводит к ослаблению токсичного эффекта.

Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!).

Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция ), из крови (гемосорбция , плазмосорбция ). Если яд уже проник в ткани, то применение сорбентов не эффективно.

Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn , ионообменные смолы.

1 грамм активного угля связывает несколько сотен мг стрихнина.

Химические противоядия – в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях.

Примеры химических противоядий:

для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K 2 CO 3, NaHCO3, MgO .

при отравлении растворимыми солямисеребра(например AgNO 3) используют NaCl , который образует с солями серебра нерастворимый AgCl .

при отравлении ядами, содержащими мышьяк используют MgO , сульфат железа, которые химически связывают его

при отравлении марганцовокислым калием KMnO 4 , который является сильным окислителем, используют восстановитель - перекись водорода H 2 O 2

при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)

отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO 4, при реакции получается мало растворимый CaF 2

при отравлении цианидами (солями синильной кислоты HCN ) применяются глюкоза и тиосульфат натрия, которые связывают HCN . Ниже приведена реакция с глюкозой.

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (- SH ) группами белков:


Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.

Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH -групп). Механизм их действия представлен на схеме.


Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи).

Они образуют прочные комплексные соединения с токсичными катионами Hg , Co , Cd , Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

Антидот непрямого действия.

Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).

1) Защита рецепторов от токсичного воздействия.

Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы . Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. Если фермент блокирован, то создается избыток ацетилхолина.

Ацетилхолин соединяется с рецепторами, что подает сигнал к сокращению мышц . При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти.

Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина. В присутствии ацетилхолина мышцы не сокращюется , судорог не происходит.

2) Восстановление или замещение поврежденной ядом биоструктуры .

При отравлениях фторидами и HF , при отравлениях щавелевой кислотой H 2 C 2 O 4 происходит связывание ионов Са2 + в организме. Противоядие – CaCl 2.

3) Антиоксиданты.

Отравление четыреххлористым углеродом CCl 4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например витамин Е.

4) Конкуренция с ядом за связывание с ферментом.

Отравление метанолом:


При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза.

Летальный синтез – превращение в организме в процессе метаболизма менее токсичных соединений в более токсичные .

Этиловый спирт C 2 H 5 OH лучше связывается с ферментом алкогольдегидрогеназой . Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH 3 OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины