Органические вещества: примеры. Примеры образования органических и неорганических веществ. Химическая организация клетки. Неорганические вещества. Органические вещества

Органические вещества: примеры. Примеры образования органических и неорганических веществ. Химическая организация клетки. Неорганические вещества. Органические вещества


1 Органические и неорганические вещества

I. Неорганические соединения.

1.Вода, её свойства и значение для биологических процессов.

Вода - универсальный растворитель. Она имеет высокую теплоёмкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для подержания теплового равновесия организма.

Благодаря полярности своих молекул вода выступает в роли стабилизатора структуры.

Вода - источник кислорода и водорода, она является основной средой где протекают биохимические и химические реакции, важнейшим реагентом и продуктом биохимических реакций.

Для воды характерна полная прозрачность в видимом участке спектра, что имеет значение для процесса фотосинтеза, транспирации.

Вода практически не сжимается, что очень важно для придания формы органам, создания тургора и обеспечения определённого положения органов и частей организма в пространстве.

Благодаря воде возможно осуществление осмотических реакций в живых клетках.

Вода - основное средство передвижения веществ в организме (кровообращение, восходящий и нисходящий токи растворов по телу растения и т.д.).

2. Минеральные вещества.

В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы.

Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.).

Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром).

Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

II. Роль и функция отдельных элементов.

Азот у автотрофных растений является исходным продуктом азотного и белкового обмена. Атомы азоты входят в состав многих других небелковых, однако важнейших соединений: пигментов (хлорофилл, гемоглобин), нуклеиновых кислот, витаминов.

Фосфор входит в состав многих жизненно важных соединений. Фосфор входит в состав АМФ, АДФ, АТФ, нуклеотидов, фосфосфорилированных сахаридов, некоторых ферментов. Многие организмы содержат фосфор в минеральной форме (растворимые фосфаты клеточного сока, фосфаты костной ткани).

После отмирания организмов фосфорные соединения минерализуются. Благодаря корневым выделениям, деятельности почвенных бактерий осуществляется растворение фосфатов, что делает возможным усвоение фосфора растительными, а потом и животными организмами.

Сера участвует в построении серусодержащих аминокислот (цистина, цистеина), входит в состав витамина B1 и некоторых ферментов. Особенно большое значение имеет сера и её соединения для хемосинтезирующих бактерий. Соединения серы образуются в печени как продукты обеззараживания ядовитых веществ.

Калий содержится в клетках только в виде ионов. Благодаря калию цитоплазма имеет определённые коллоидные свойства; калий активирует ферменты белкового синтеза обусловливает нормальный ритм сердечной деятельности, участвует в генерации биоэлектрических потенциалов, в процессах фотосинтеза.

Натрий (содержится в ионной форме) составляет значительную часть минеральных веществ крови и благодаря этому играет важную роль в регуляции водного обмена организма. Ионы натрия способствуют поляризации клеточной мембраны; нормальный ритм сердечной деятельности зависит от наличия в питательной среде в необходимом количестве солей натрия, калия, а также кальция.

Кальций в ионном состоянии является антагонистом калия. Он входит в состав мембранных структур, в виде солей пектиновых веществ склеивает растительные клетки. В растительных клетках часто содержится в виде простых, игловидных или сросшихся кристаллов оксалата кальция.

Магний содержится в клетках в определённом соотношении с кальцием. Он входит в состав молекулы хлорофилла, активирует энергетический обмен и синтез ДНК.

Железо является составной частью молекулы гемоглобина. Оно участвует в биосинтезе хлорофилла, поэтому при недостатке железа в почве у растений развивается хлороз. Основная роль железа - участие в процессах дыхания, фотосинтеза путём перенесения электронов в составе окислительных ферментов - каталазы, ферредоксина. Определённый запас железа в организме животных и человека сохраняется в желесодержащем белке ферритине, содержащемся в печени, селезёнке.

Медь встречается в организмах животных и растений, где она играет важную роль. Медь входит в состав некоторых ферментов(оксидаз). Установлено значение меди для процессов кроветворения, синтеза гемоглобина и цитохромов.

Ежесуточно в организм человека с пищей поступает 2 мг меди. У растений медь входит в состав многих ферментов, которые участвуют в темновых реакциях фотосинтеза и других биосинтезах. У больных недостатком меди животных наблюдается анемия, потеря аппетита, заболевания сердца.

Марганец - микроэлемент, при недостаточном количестве которого у растений возникает хлороз. Большая роль принадлежит марганцу и в процессах восстановления нитратов в растениях.

Цинк входит в состав некоторых ферментов, активизирующих расщепление угольной кислоты.

Бор влияет на ростовые процессы, особенно растительных организмов. При отсутствии в почве этого микроэлемента у растений отмирают проводящие ткани, цветки и завязь.

В последнее время микроэлементы достаточно широко применяются в растениеводстве (предпосевная обработка семян), в животноводстве (микроэлементные добавки к корму).

Другие неорганические компоненты клетки чаще всего находятся в виде солей, диссоциированных в растворе на ионы, или в нерастворённом состоянии (соли фосфора костной ткани, известковые или кремниевые панцири губок, кораллов, диатомовых водорослей и др.).

III. Органические соединения.

Углеводы (сахариды). Молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.

Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.

Моносахариды (монозы) - соединения, которые не могут гидролизоваться. Сахариды могут полимеризоваться, образуя более высокомолекулярные соединения - ди-, три- , и полисахариды.

Олигосахариды. Молекулы этих соединений построены из 2 - 4 молекул моносахаридов. Эти соединения также могут кристаллизоваться, легко растворимы в воде, сладкие на вкус и имеют постоянную молекулярную массу. Примером олигосахаридов могут быть дисахариды сахароза, мальтоза, лактоза, тетрасахарид стахиоза и др.

Полисахариды (полиозы) - нерастворимые в воде соединения (образуют коллоидный раствор), не имеющие сладкого вкуса, Как и предыдущая группа углеводов способны гидролизоваться (арабаны, ксиланы, крахмал, гликоген). Основная функция этих соединений - связывание, склеивание клеток соединительной ткани, защита клеток от неблагоприятных факторов.

Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде. Структурными единицами молекул липидов могут быть либо простые углеводородные цепи, либо остатки сложных циклических молекул.

В зависимости от химической природы липиды разделяют на жиры и липоиды.

Жиры (триглицериды, нейтральные жиры) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.

Встречаются в живых клетках и свободные жирные кислоты: пальмитиновая, стеариновая, рициновая.

Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.

Ферменты. Это биологические катализаторы белковой природы, способные ускорять биохимические реакции. Ферменты не разрушаются в процессе биохимических превращений, поэтому сравнительно небольшое их количества катализируют реакции большого количества вещества. Характерным отличием ферментов от химических катализаторов является их способность ускорять реакции при обычных условиях.

По химической природе ферменты делятся на две группы - однокомпонентные (состоящие только из белка, их активность обусловлена активным центром - специфической группы аминокислот в белковой молекуле (пепсин, трипсин)) и двухкомпонентные (состоящие из белка (апофермента - носителя белка) и белкового компонента (коферментом), причём химическая природа коферментов бывает разной, так как они могут состоять из органических (многие витамины, НАД, НАДФ) или неорганических (атомы металлов: железа, магния, цинка)).

Функция ферментов заключается в снижении энергии активации, т.е. в снижении уровня энергии, необходимой для придания реакционной способности молекуле.

Современная классификация ферментов основывается на типах катализируемых ими химических реакций. Ферменты гидролазы ускоряют реакцию расщепления сложных соединений на мономеры (амилаза (гидролизует крахмал), целлюлаза (разлагает целлюлозу до моносахаридов), протеаза (гидролизует белки до аминокислот)).

Ферменты оксидоредуктазы катализируют окислительно-восстановительные реакции.

Трансферазы переносят альдегидные, кетонные и азотистые группы от одной молекулы к другой.

Лиазы отщепляют отдельные радикалы с образованием двойных связей или катализируют присоединение групп к двойным связям.

Изомеразы осуществляют изомеризацию.

Лигазы катализируют реакции соединения двух молекул, используя энергию АТФ или другого триофасфата.

Пигменты - высокомолекулярные природные окрашенные соединения. Из нескольких сотен соединений этого типа важнейшими являются металлопорфириновые и флавиновые пигменты.

Металлопорфирин, в состав которого входит атом магния, образует основание молекулы зелёных растительных пигментов - хлорофиллов. Если на месте магния стоит атом железа, то такой металлопорфирин называют гемом.

В состав гемоглобина эритроцитов крови человека, всех других позвоночных и некоторых беспозвоночных входит окисное железо, которое и придаёт крови красный цвет. Гемеритрин придаёт крови розовый цвет (некоторые многощетинковые черви). Хлорокруорин окрашивает кровь, тканевую жидкость в зелёный цвет.

Наиболее распространенными дыхательными пигментами крови являются гемоглобин и гемоциан (дыхательный пигмент высших ракообразных, паукообразных, некоторых моллюсков спрутов).

К хромопротеидам относятся также цитохромы, каталаза, пероксидаза, миоглобин (содержится в мышцах и создаёт запас кислорода, что позволяет морским млекопитающим длительное время пребывать под водой).

Органические соединения.

Органические вещества – важные и необходимые компоненты клетки, они являются поставщиками энергии, без которой невозможно проявление любой формы жизнедеятельности; они образуют структуры клетки.

Белки - полимеры аминокислот.

Существует 20 независимых аминокислот, входящих в белки.

Функции белков:

Строительная

Каталитическая

Сигнальная

Энергетическая

Защитная

Двигательная

Транспортная

Белки - обязательная составная часть всех клеток. В жизни всех организмов белки имеют первостепенное значение. В состав белка входят углерод, водород, азот, некоторые белки содержат еще и серу. Роль мономеров в белках играют аминокислоты. У каждой аминокислоты имеется карбоксильная группа (-СООН) и аминогруппа (-NH2). Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Между соединившимися аминокислотами возникает связь называемая пептидной, а образовавшееся соединение нескольких аминокислот называют пептидом. Соединение из большого числа аминокислот называют полипептидом. В белках встречаются 20 аминокислот, отличающихся друг от друга своим строением. Разные белки образуются в результате соединения аминокислот в разной последовательности. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся у них белков.

В строении молекул белков различают четыре уровня организации:

Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.

Вторичная структура - полипептидная цепь, закрученная в виде спирали. В ней между соседними витками возникают мало прочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.

Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается мало прочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также ковалентными S-S-связями возникающими между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.

Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков.

Нарушение природной структуры белка называют денатурацией. Она может возникать под действием высокой температуры, химических веществ, радиации и т.д. Денатурация может быть обратимой (частичное нарушение четвертичной структуры) и необратимой (разрушение всех структур).

Функции белков:

1. каталитическая (ферментативная) - расщепление питательных веществ в пищеварительном тракте, фиксация углерода при фотосинтезе, участие в реакциях матричного синтеза;

2. транспортная - транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа гемоглобином, транспорт жирных кислот сывороточным альбумином;

3. защитная - антитела, обеспечивающие иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь;

4. структурная - кератин волос и ногтей, коллаген хрящей, сухожилий, соединительных тканей;

5. сократительная- сократимые белки мышц: актин и миозин;

6. рецепторная - примером могут служить фитохром - светочувствительный белок, регулирующий фотопериодическую реакцию в растениях, и опсин - составная часть родопсина - пигмента, находящегося в клетках сетчатки глаза.

ТЕСТЫ ПО ОБМЕНУ ВЕЩЕСТВ ДЛЯ 10 КЛАССА. 1 ВАРИАНТ.

1А. Организмы, образующие органические вещества из неорганических:

1.гетеротрофы

2.автотрофы

2А. В темновую фазу фотосинтеза происходит:

1.образование АТФ

2.образование НАДФ Н

3.выделение кислорода

4.образование углеводов

3А. При фотосинтезе происходит образование кислорода, выделяющегося при разложении молекул:

1.углекислого газа

2.глюкозы

4.углекислого газа и воды

4А. В результате фотосинтезе происходит превращение энергии света в:

1.электрическую энергию

2.химическую энергию органических соединений

3.тепловую энергию

4.химическую энергию неорганических соединений

5А. Фотолиз воды в живых организмах протекает в процессе:

1.дыхания

2.фотосинтеза

3.брожения

4.хемосинтеза

6А. Конечными продуктами окисления органических веществ в клетке являются:

1.АДФ и вода

2.аммиак и углекислый газ

3.вода и углекислый газ

1.белков до аминокислот

2.крахмала до глюкозы

3.ДНК до нуклеотидов

8А. Обеспечивают гликолиз ферменты:

2.цитоплазмы

3.митохондрий

4.пластид

9А. При гликолизе моль глюкозы запасает в форме АТФ:

10А.Три моль глюкозы подверглось полному окислению в клетке животного, при этом выделилось углекислого газа:

11А. В процессе хемосинтеза организмы преобразуют энергию химических связей:

1.липидов

2.полисахаридов

4.неорганических веществ

12А. Каждой белковой молекуле в ДНК соответствует:

1.триплет

4.нуклеотид

13А.Генетический код является общим для всех живых организмов, это свойство:

1.непрерывность

2.избыточность

3.универсальность

4.специфичность

14А. В генетическом коде один триплет соответствует только одной аминокислоте, в этом проявляется его:

1.непрерывность

2.избыточность

3.универсальность

4.специфичность

15А. Если нуклеотидный состав ДНК – АТТ-ГЦГ-ТАТ, то нуклеотидный состав и-РНК:
1.ТАА-ЦГЦ-УТА

2.ТАА-ГЦГ-УТУ

3.УАА-ЦГЦ-АУА

4.УАА-ЦГЦ-АТА

1.возбудителя туберкулеза

2.мухомора

4.бактериофага

17А. Антибиотик:

1.подавляет синтез белка возбудителя болезни

4.является защитным белком крови

18А. Участок молекулы ДНК, с которого происходит транскрипция, имеет 30.000 нуклеотидов(обе цепи). Для транскрипции потребуется:

1.всегда одну

2.всегда две

3.всегда три

20А. Участок и-РНК, с которого происходит трансляция, содержит 153 нуклеотида, на данном участке закодирован полипептид из:

1.153 аминокислот

2.51 аминокислоты

3.49 аминокислот

4.459 аминокислот

В1.Установите соответствие между характеристикой и видом обмена веществ в клетке:

В.удваиваются молекулы ДНК

1)пластический обмен

2)энергетический обмен

В2. Установите соответствие между характеристикой и фазой процесса фотосинтеза:

Б.используется энергия АТФ

Г.происходит фотолиз воды

1)световая

2)темновая

В3. Кислородный этап энергетического обмена характеризуется:

А.синтезом энергии в виде АТФ

В.расщеплением глюкозы

Г.расщеплением молекул жиров

Д.образованием углекислого газа

Е.осуществлением в цитоплазме

В4. Постройте последовательность реакций биосинтеза белка, выписав цифры в необходимом порядке:

1)снятие информации с ДНК

4)поступление и-РНК на рибосомы

2 ВАРИАНТ

1А. Организмы, образующие органические вещества только из органических:

1.гетеротрофы

2.автотрофы

3.хемотрофы

4.миксотрофы

2А. В световую фазу фотосинтеза происходит:

1.образование АТФ

2.образование глюкозы

3.выделение углекислого газа

4.образование углеводов

3А. При фотосинтезе происходит образование кислорода, выделяющегося в процессе:

1.биосинтеза белка

2.фотолиза

3.возбуждения молекулы хлорофилла

4.соединения углекислого газа и воды

4А. В результате фотосинтеза энергии света превращается в:

1. тепловую энергию

2.химическую энергию неорганических соединений

3. электрическую энергию тепловую энергию

4.химическую энергию органических соединений

5А. Дыхание у анаэробов в живых организмах протекает в процессе:

1.кислородного окисления

2.фотосинтеза

3.брожения

4.хемосинтеза

6А. Конечными продуктами окисления углеводов в клетке являются:

1.АДФ и вода

2.аммиак и углекислый газ

3.вода и углекислый газ

4.аммиак, углекислый газ и вода

7А. На подготовительном этапе расщепления углеводов происходит гидролиз:

1. целлюлозы до глюкозы

2. белков до аминокислот

3.ДНК до нуклеотидов

4.жиров до глицерина и карбоновых кислот

8А. Обеспечивают кислородное окисление ферменты:

1.пищеварительного тракта и лизосом

2.цитоплазмы

3.митохондрий

4.пластид

9А. При гликолизе 3моль глюкозы запасает в форме АТФ:

10А.Два моль глюкозы подверглось полному окислению в клетке животного, при этом выделилось углекислого газа:

11А. В процессе хемосинтеза организмы преобразуют энергию окисления:

1.соединений серы

2.органических соединений

3.крахмала

12А. Одному гену соответствует информация о молекуле:

1.аминокислоты

2.крахмала

4.нуклеотида

13А.Генетический код состоит из трех нуклеотидов, значит он:

1. специфичен

2.избыточен

3.универсален

4.триплетен

14А. В генетическом коде одной аминокислоте соответствует 2-6 триплетов, в этом проявляется его:

1.непрерывность

2.избыточность

3.универсальность

4.специфичность

15А. Если нуклеотидный состав ДНК – АТТ-ЦГЦ-ТАТ, то нуклеотидный состав и-РНК:
1.ТАА-ЦГЦ-УТА

2.УАА-ГЦГ-АУА

3.УАА-ЦГЦ-АУА

4.УАА-ЦГЦ-АТА

16А. Синтез белка не происходит на собственных рибосомах у:

1.вируса табачной мозаики

2.дрозофилы

3.муравья

4.холерного вибриона

17А. Антибиотик:

1. является защитным белком крови

2.синтезирует новый белок в организме

3.является ослабленным возбудителем болезни

4.подавляет синтез белка возбудителя болезни

18А. Участок молекулы ДНК, на котором происходит репликация, имеет 30.000 нуклеотидов (обе цепи). Для репликации потребуется:

19А.Сколько разных аминокислот может транспортировать одна т-РНК:

1.всегда одну

2.всегда две

3.всегда три

4.некоторые могут транспортировать одну, некоторые – несколько.

20А. Участок ДНК, с которого происходит транскрипция, содержит 153 нуклеотида, на данном участке закодирован полипептид из:

1.153 аминокислот

2.51 аминокислоты

3.49 аминокислот

4.459 аминокислот

В1. Установите соответствие между характеристикой и фазой процесса фотосинтеза:

А.молекула углекислого газа образует глюкозу

Б.используется энергия АТФ

В.возбуждается молекула хлорофилла

Г.происходит фотолиз воды

Д.из молекул АДФ образуется АТФ

1)световая

2)темновая

В2. Постройте последовательность реакций биосинтеза белка, выписав цифры в необходимом порядке:

1)транскрипция на ДНК

2)узнавание антикодоном т-РНК своего кодона на и-РНК

3)отщепление аминокислоты от т-РНК

4)соединение и-РНК с рибосомой

5)присоединение аминокислоты к белковой цепи.

В3. Бескислородный этап энергетического обмена характеризуется:

А.синтезом энергии в виде АТФ

Б.осуществлением в митохондриях

В.расщеплением глюкозы

Г.расщеплением молекул жиров

Д.образованием ПВК

Е.осуществлением в цитоплазме

В4.Установите соответствие между характеристикой и видом обмена веществ в клетке:

А.осуществляется биосинтез белка

Б.фотосинтез в клетках растений

В.удваиваются молекулы ДНК

Г.жиры расщепляются до глицерина и жирных кислот

Д.конечными продуктами обмена являются углекислый газ и вода

1)пластический обмен

2)энергетический обмен

ОТВЕТЫ: 1 ВАРИАНТ

В3 – А,Б,Д

В4 – 1,4,2,5,3

ОТВЕТЫ: 2 ВАРИАНТ

В2 – 1,4,2,5,3

27 августа 2017

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации 20 аминокислот.

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Видео по теме

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и неорганических веществ. Вторые всегда происходят из минералов - неживых природных тел, которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим примером неорганических веществ является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,- калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,- микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках - до 95%, в старых - 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» - вода, «филее» - люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» - страх) - жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + - низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов - Fe, Р, Mg, Со, Zn - блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО 4 2- , Н 2 РO 4 — , Cl — , HCO 3 —

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества в комплексе образуют около 20-30% состава клетки.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые - моносахариды (от греч. «монос» - один) и сложные - полисахариды (от греч. «поли» - много).

Моносахариды (их общая формула С n Н 2n О n) - бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам - соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар - из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений - крахмал и клетчатка (целлюлоза). Последняя состоит из 150-200 молекул глюкозы.

Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO 2 и Н 2 O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений - крахмал, у животных - гликоген).

Липиды - это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO 2 и Н 2 O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки - наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров - 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (- NH 2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера - белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура - полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S - S (эс - эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией . Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде первичной структуры - полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки - это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов - ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок - активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки - антитела - выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» - ядро) впервые обнаружены в ядре. Они бывают двух типов - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которой являются нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода - дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г - только Ц. Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» - дополнение) друг другу. Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц - три.

Удвоение молекулы ДНК - ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а четвертое - иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ - аденозинтрифосфорная кислота - важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод - рибоза и три молекулы фосфорной кислоты. АТФ - неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины