Теория строения органических соединений применима для мти. Теория строения органических соединений А.М. Бутлерова

Теория строения органических соединений применима для мти. Теория строения органических соединений А.М. Бутлерова

29.09.2019

Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из одного соединения в другое. Такое понятие о радикалах сохранилось, но большинство других положений теории радикалов оказались неправильными.

Согласно теории типов (Ш. Жерар) все органические вещества можно разделить на типы, соответс­твующие определенным неорганическим веществам. Например, спирты R-OH и простые эфиры R-O-R рассматривались как представители типа воды H-OH, в которой атомы водорода замещены радикалами. Теория типов создала классификацию органических веществ, некоторые принципы которой применяются в настоящее время.

Современная теория строения органических соединений создана выдающимся русским учёным А.М. Бутлеровым.

Основные положения теории строения органических соединений а.М. Бутлерова

1. Атомы в молекуле располагаются в определенной последовательности согласно их валентности. Валентность атома углерода в органических соединениях равна четырем.

2. Свойства веществ зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от того, в каком порядке они соединены между собой.

3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга, от чего зависят химическая активность и реакционная способность молекул.

4. Изучение свойств веществ позволяет определить их химичес­кое строение.

Взаимное влияние соседних атомов в молекулах является важнейшим свойством органических соединений. Это влияние передается или по цепи простых связей или по цепи сопряженных (чередующихся) простых и двойных связей.

Классификация органических соединений основана на анализе двух аспектов строения молекул – строения углеродного скелета и наличия функциональных групп.

Органические соединения

Углеводороды Гетероциклические соединения

Предель- Непре- Арома-

ные дельные тические

Алифатические Карбоциклические

Предельные Непредельные Предельные Непредельные Ароматические

(Алканы) (Циклоалканы) (Арены)

С п Н 2 п +2 С п Н 2 п С п Н 2 п -6

алкены полиены и алкины

С п Н 2 п полиины С п Н 2 п -2

Рис. 1. Классификация органических соединений по строению углеродного скелета

Классы производных углеводородов по наличию функциональных групп:

Галогенопроизводные R–Гал: СН 3 СН 2 Cl (хлорэтан), С 6 Н 5 Br (бромбензол);

Спирты и фенолы R–ОН: СН 3 СН 2 ОН (этанол), С 6 Н 5 ОН (фенол);

Тиолы R–SH: СН 3 СН 2 SН (этантиол), С 6 Н 5 SН (тиофенол);

Эфиры простые R–О–R: СН 3 СН 2 –О–СН 2 СН 3 (диэтиловый эфир),

сложные R–СО–О–R: СН 3 СН 2 СООСН 2 СН 3 (этиловый эфир уксусной кислоты);

Карбонильные соединения: альдегиды R–СНО:

кетоны R–СО–R: СН 3 СОСН 3 (пропанон), С 6 Н 5 СОСН 3 (метилфенилкетон);

Карбоновые кислоты R-СООН: (уксусная кислота), (бензойная кислота)

Сульфокислоты R–SО 3 Н: СН 3 SО 3 Н (метансульфокислота), С 6 Н 5 SО 3 Н (бензолсульфокислота)

Амины R–NH 2: СН 3 СН 2 NH 2 (этиламин), СН 3 NHСН 3 (диметиламин), С 6 Н 5 NH 2 (анилин);

Нитросоединения R–NO 2 СН 3 СН 2 NО 2 (нитроэтан), С 6 Н 5 NО 2 (нитробензол);

Металлорганические (элементорганические) соединения: СН 3 СН 2 Nа (этилнатрий).

Ряд сходных по строению соединений, обладающих близ­кими химическими свойствами, в котором отдельные члены ряда отли­чаются друг от друга лишь количеством групп -СН 2 -, называется гомологическим рядом, а группа -СН 2 - гомологической разностью. У членов гомологического ряда подавляющее большинство реакций протекает одинаково (исключение составляют только первые члены рядов). Следовательно, зная химические реак­ции лишь одного члена ряда, можно с большой степенью вероятности утверждать, что такого же типа превращения протекают и с осталь­ными членами гомологического ряда.

Для любого гомологического ряда может быть выведена общая формула, отражающая соотношение между атомами углерода и водо­рода у членов этого ряда; такая формула называется общей формулой гомологического ряда. Так, С п Н 2 п +2 – формула алканов, С п Н 2 п +1 ОН – алифатических одноатомных спиртов.

Номенклатура органических соединений: тривиальная, рациональная и систематическая номенклатура. Тривиальная номенклатура представляет собой совокупность исторически сложившихся названий. Так, по названию сразу понятно, откуда были выделены яблочная, янтарная или лимонная кислота, каким способом была получена пировиноградная кислота (пиролиз виноградной кислоты), знатоки греческого языка легко догадаются, что уксусная кислота – это что-то кислое, а глицерин – сладкое. По мере синтеза новых органических соединений и развития теории их строения создавались другие номенклатуры, отражающие строение соединения (его принадлежность к определённому классу).

Рациональная номенклатура строит название соединения на основании структуры более простого соединения (первого члена гомологического ряда). СН 3 ОН – карбинол, СН 3 СН 2 ОН – метилкарбинол, СН 3 СН(ОН) СН 3 – диметилкарбинол и т.д.

Номенклатура ИЮПАК (систематическая номенклатура). По номенклатуре ИЮПАК (международный союз по теоретической и прикладной химии), названия углеводородов и их функциональных производных базируются на названии соответствующего углеводорода с добавлением префиксов и суффиксов, присущих данному гомологическому ряду.

Чтобы правильно (и однозначно) назвать органическое соединение по систематической номенклатуре, надо:

1) выбрать в качестве основного углеродного скелета наиболее длинную последовательность углеродных атомов (родоначальную структуру) и дать её название, обращая внимание на степень ненасыщенности соединения;

2) выявить все имеющиеся в соединении функциональные группы;

3) установить, какая группа является старшей (см. таблицу), название этой группы отражается в названии соединения в виде суфикса и его ставят в конце названия соединения; все остальные группы дают в названии в виде приставок;

4) пронумеровать углеродные атомы основной цепи, придавая старшей группе наименьший из номеров;

5) перечислить приставки в алфавитном порядке (при этом умножающие приставки ди-, три-, тетра- и т.д. не учитываются);

6) составить полное название соединения.

Класс соединений

Формула функциональной группы

Суффикс или окончание

Карбоновые кислоты

Карбокси-

Овая кислота

Сульфокислоты

Сульфоновая кислота

Альдегиды

Гидрокси-

Меркапто-

С≡≡С

Галогенопроизводные

Br, I, F, Cl

Бром-, иод-, фтор-, хлор-

бромид, -иодид, -фторид, -хлорид

Нитросоединения

При этом необходимо помнить:

В названиях спиртов, альдегидов, кетонов, карбоновых кислот, амидов, нитрилов, галогенангидридов суффикс, определяющий класс, следует за суффиксом степени ненасыщенности: например, 2-бутеналь;

Соединения, содержащие другие функциональные группы, называются как производные углеводородов. Названия этих функциональных групп ставятся в качестве приставок перед названием родоначального углеводорода: например, 1-хлорпропан.

Названия кислотных функциональных групп, таких, как группа сульфокислоты или фосфиновой кислоты, помещают после названия углеводородного скелета: например, бензолсульфокислота.

Производные альдегидов и кетонов часто называют по имени исходного карбонильного соединения.

Эфиры карбоновых кислот называются как производные родоначальных кислот. Окончание –овая кислота заменяется на –оат: например, метилпропионат – метиловый эфир пропановой кислоты.

Для того чтобы обозначить, что заместитель связан с атомом азота родоначальной структуры, используют прописную букву N перед названием заместителя: N-метиланилин.

Т.е. начинать надо с названия родоначальной структуры, для чего абсолютно необходимо знать наизусть названия первых 10 членов гомологического ряда алканов (метан, этан, пропан, бутан, пентан, гексан, гептан, октан, нонан, декан). Также надо знать названия образующихся из них радикалов – при этом окончание –ан меняется на –ил.

Рассмотрим соединение, входящее в состав препаратов, применяемых для лечения заболеваний глаз:

СН 3 – С(СН 3) = СН – СН 2 – СН 2 – С(СН 3) = СН – СНО

Основная родоначальная структура – цепь из 8 атомов углерода, включающая альдегидную группу и обе двойные связи. Восемь атомов углерода – октан. Но есть 2 двойные связи – между вторым и третьим атомами и между шестым и седьмым. Одна двойная связь – окончание –ан надо заместить на –ен, двойных связей 2, значит на –диен, т.е. октадиен, а в начале указываем их положение, называя атомы с меньшими номерами – 2,6-октадиен. С родоначальной структурой и непредельностью разобрались.

Но в соединении есть альдегидная группа, это не углеводород, а альдегид, поэтому добавляем суффикс –аль, без номера, он всегда первый – 2,6-октадиеналь.

Ещё 2 заместителя – метильные радикалы у 3-го и 7-го атомов. Значит, в итоге получим: 3,7-диметил - 2,6-октадиеналь.

Тема: Основные положения теории строения органических соединений А. М. Бутлерова.

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: , гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их. Так, в 1862–1864 гг. А. М. Бутлеров рассмотрел пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной):

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление .

Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами.

Основные виды :

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах: углеродного скелета

положения кратных связей:

заместителей

положения функциональных групп

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Основные направления развития теории строения химических соединений и ее значение.

Во времена А. М. Бутлерова в органической химии широко использовали

эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

И волокна, изделия из которых используют в технике, быту, медицине, сельском хозяйстве. Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении.

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

Что мы видим:

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Таким образом, взаимосвязь «структура-свойства» позволяет описывать общие свойства вещества с известной структурой и, наоборот, позволяет найти химическую структуру вещества, зная его общие свойства.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

В 1861 г. великий русский ученый А. М. Бутлеров в своей статье «О химическом строении вещества» раскрыл основную идею теории химического строения, заключающуюся во влиянии способа связи атомов в органическом веществе на его свойства. Он обобщил все имеющиеся к тому времени знания и представления о строении химических соединений в теории строения органических соединений.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Ученик А.М. Бутлерова — В. В. Марковников продолжил изучение вопроса взаимного влияния атомов, что нашло свое отражение в 1869 году в его диссертационной работе «Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Категории ,

Теория А.М. Бутлерова

1. Атомы в молекулах соединены между собой в определенной последовательности химическими связями в соответствии с их валентностью. Порядок связи атомов называется их химическим строением. Углерод во всех органических соединениях четырехвалентен.

2. Свойства веществ определяются не только качественным и количественным составом молекул, но и их строением.

3. Атомы или группы атомов взаимно влияют друг на друга, от чего зависит реакционная способность молекулы.

4. Строение молекул может быть установлено на основании изучения их химических свойств.

Органические соединения обладают рядом характерных особенностей, которые отличают их от неорганических. Почти все они (за редким исключением) горючи; большинство органических соединений не диссоциирует на ионы, что обусловлено природой ковалентной связи в органических веществах. Ионный тип связи реализуется только в солях органических кислот, например, CH3COONa.

Гомологический ряд – это бесконечный ряд органических соединений, имеющих сходное строение и, следовательно, сходные химические свойства и отличающихся друг от друга на любое число СН2– групп (гомологическая разность).

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление – изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов.

Изомерия – это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Различают 2 вида изомерии: структурную изомерию и пространственную изомерию.

Структурная изомерия

Структурные изомеры – соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Пространственная изомерия

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.
Пространственными изомерами являются оптические и цис-транс изомеры (геометрические).

Цис-транс-изомерия

заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла.В цис-изомерах заместители находятся по одну сторону от плоскости кольца или двойной связи, в транс-изомерах – по разные.

В молекуле бутена-2 СН3–СН=СН–СН3 группы СН3 могут находиться либо по одну сторону от двойной связи — в цис-изомере, либо по разные стороны — в транс-изомере.

Оптическая изомерия

Появляется тогда, когда углерод имеет четыре разных заместителя.
Если поменять местами любые два из них, получается другой пространственный изомер того же состава. Физико-химические свойства таких изомеров существенно различаются. Соединения такого типа отличаются способностью вращать плоскость пропускаемого через раствор таких соединений поляризованного света на определенную величину. При этом один изомер вращает плоскость поляризованного света в одном направлении, а его изомер – в противоположном. Вследствие таких оптических эффектов этот вид изомерии называют оптической изомерией.


© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины