Вредные выбросы и сбросы

Вредные выбросы и сбросы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПИЩЕВЫХ ПРОИЗВОДСТВ»

О.В. ГУТИНА, МАЛОФЕЕВА Ю.Н.

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ к решению задач по курсу

«ЭКОЛОГИЯ»

для студентов всех специальностей

Москва 2006 г.

1. Контроль качества атмосферного воздуха в зоне промышленных предприятий.

Задание 1. Расчет рассеивания дымовых газов из трубы котельной

2. Технические средства и методы защиты атмосферы.

Задание 2.

3. Контроль над загрязнением окружающей среды. Нормативно-правовые основы охраны природы. Плата за наносимый ущерб окружающей среды.

Задание 3. «Расчет технологических выбросов и плата за загрязнение ОПС на примере хлебозавода»

Литература

Рассеивание в атмосфере выбросов промышленных предприятий

Выбросы – поступление загрязняющих веществ в атмосферу. Качество атмосферного воздуха определяется концентрацией содержащихся в нем загрязняющих веществ, которая не должна превышать санитарно – гигиенический норматив – предельно допустимую концентрацию(ПДК) для каждого загрязняющего вещества. ПДК – максимальная концентрация загрязняющего вещества в атмосферном воздухе, отнесенная к определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает на него вредного влияния, включая отдаленные последствия.

При существующих технологиях получения целевых продуктов и существующих способах очистки выбросов уменьшение концентраций опасных загрязнений в окружающей среде обеспечивают увеличением площади рассеивания, путем выведения выбросов на большую высоту. При этом предполагают, что достигается только такой уровень аэротехногенного загрязнения окружающей среды, при котором еще возможно естественное самоочищение воздуха.

Наибольшая концентрация каждого вредного вещества С м (мг/м 3) в приземном слое атмосферы не должна превышать предельно допустимой концентрации :

Если в состав выброса входят несколько вредных веществ, обладающих однонаправленным действием, т.е. взаимоусиливают друг друга, то должно выполняться неравенство:

(2)

С 1 - С n – фактическая концентрация вредного вещества в атмосферном

воздухе, мг/м 3 ,

ПДК - предельно допустимые концентрации загрязняющих веществ (МР).

Научно обоснованные нормы ПДК в приземном слое атмосферы должны обеспечиваться контролем нормативов для всех источников выбросов. Таким экологическим нормативом является предельно допустимый выброс

ПДВ - максимальный выброс загрязняющего вещества, который, рассеиваясь в атмосфере, создает приземную концентрацию этого вещества не превышающую ПДК с учетом фоновой концентрации.

Загрязнение окружающей среды при рассеивании выбросов предприятий через высокие трубы зависит от многих факторов: высоты трубы, скорости выбрасываемого газового потока, расстояния от источника выброса, наличия нескольких близко расположенных источников выбросов, метеорологических условий и др.

Высота выброса и скорость газового потока. С увеличением высоты трубы и скорости выбрасываемого газового потока эффективность рассеивания загрязнений увеличивается, т.е. рассевание выбросов происходит в большем объеме атмосферного воздуха, над большей площадью поверхности земли.

Скорость ветра. Ветер – турбулентное движение воздуха над поверхностью земли. Направление и скорость ветра не остаются постоянными, скорость ветра возрастает при увеличении перепада атмосферного давления. Наибольшее загрязнение атмосферы возможно при слабых ветрах 0-5 м/с при рассеивании выбросов на малых высотах в приземном слое атмосферы . При выбросах из высоких источников наименьше е рассеивание загрязнений имеет место при скоростях ветра 1-7 м/с (в зависимости от скорости выхода струи газа из устья трубы).

Температурная стратификация . Способность поверхности земли поглощать или излучать тепло влияет на вертикальное распределение температуры в атмосфере. В обычных условиях при подъеме вверх на 1 км температура уменьшается на 6,5 0 : градиент температуры равен 6,5 0 /км . В реальных условиях могут наблюдаться отклонения от равномерного уменьшения температуры с высотой – температурная инверсия . Различают приземные и приподнятые инверсии . Приземные характеризуются появлением более теплого слоя воздуха непосредственно у поверхности земли, приподнятые – появлением более теплого слоя воздуха(инверсионного слоя) на некоторой высоте. В инверсионных условиях ухудшается рассеивание загрязнений, они концентрируются в приземном слое атмосферы. При выбросе загрязненного газового потока из высокого источника наибольшее загрязнение воздуха возможно при приподнятой инверсии, нижняя граница которой находится над источником выброса и наиболее опасной скорости ветра 1 – 7 м/с. Для низких источников выбросов наиболее неблагоприятным является сочетание приземной инверсии со слабым ветром.

Рельеф местности. Даже при наличии сравнительно небольших возвышенностей существенно изменяется микроклимат в отдельных районах и характер рассеивания загрязнений. Так в пониженных местах образуются застойные, плохо проветриваемые зоны с повышенной концентрацией загрязнений. Если на пути загрязненного потока находятся здания, то над зданием скорость воздушного потока увеличивается, сразу за зданием – снижается, постепенно увеличиваясь по мере удаления, и на некотором расстоянии от здания скорость потока воздуха принимает первоначальное значение. Аэродинамическая тень плохо проветриваемая зона, образующаяся при обтекании здания потоком воздуха. В зависимости от типа зданий и характера застройки образуются различные зоны с замкнутой циркуляцией воздуха, что может оказывать существенное влияние на распределение загрязнений.

Методика расчета рассеивания в атмосфере вредных веществ , содержащихся в выбросах, основана на определении концентраций этих веществ (мг/м 3) в приземном слое воздуха. Степень опасности загрязнения приземного слоя атмосферного воздуха выбросами вредных веществ определяется по наибольшему рассчитанному значению концентрации вредных веществ, которое может установиться на некотором расстоянии от источника выброса при наиболее неблагоприятных метеоусловиях (скорость ветра достигает опасного значения, наблюдается интенсивный турбулентный вертикальный обмен и др.).

Расчет рассеивания выбросов проводится по ОНД-86.

Максимальная приземная концентрация определяется по формуле:

(3)

A – коэффициент, зависящий от температурной стратификации атмосферы (значение коэффициента А принимается равным 140 для Центрального района РФ).

М – мощность выброса, масса загрязняющего вещества, выбрасываемого в единицу времени, г/с.

F – безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосфере (для газообразных веществ равен 1, для твердых- 1).

 – безразмерный коэффициент, учитывающий влияние рельефа местности (для равнинной – 1, для пересеченной – 2).

Н – высота источника выброса над уровнем земли, м.

 – разность между температурой, выбрасываемой газовоздушной смесью и температурой окружающего наружного воздуха.

V 1 – расход газовоздушной смеси, выходящей из источника выброса, м 3 /с.

m, n – коэффициенты, учитывающие условия выброса.

Предприятия, выбрасывающие в окружающую среду вредные вещества, должны быть отделены от жилой застройки санитарно-защитными зонами. Расстояние от предприятия до жилой застройки (размеры санитарно-защитной зоны) устанавливаются в зависимости от количества и вида выбрасываемых в окружающую среду загрязняющих веществ, мощности предприятия, особенностей технологического процесса. С 1981г. расчет санитарно-защитной зоны регламентируется государственным стандартам. СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов». По нему все предприятия разделены на 5 классов по степени их опасности. И в зависимости от класса устанавливается нормативная величина СЗЗ.

Предприятие (класс) Размеры санитарно-защитной зоны

I класс 1000 м

II класс 500 м

III класс 300 м

IV класс 100 м

V класс 50

Одна из функций санитарно-защитной зоны – биологическая очистка атмосферного воздуха средствами озеленения. Древесно-кустарниковые насаждения газопоглотительного назначения (фитофильтры ) способны поглощать газообразные загрязняющие вещества. Например, установлено, что луговая и древесная растительность может связывать 16-90% сернистого газа.

Задача №1 : Котельная промышленного предприятия оборудована котлоагрегатом, работающем на жидком топливе. Продукты сгорания: оксид углерода, окислы азота (окись азота и двуокись азота), сернистый ангидрид, мазутная зола, пятиокись ванадия, бензапирен, причем сернистый ангидрид и двуокись азота обладают однонаправленным действием на организм человека и образуют группу суммации.

В задаче требуется:

1) найти максимальную приземную концентрацию сернистого ангидрида и двуокиси азота;

2) расстояние от трубы до места появления С М;

Исходные данные:

    Производительность котельной – Q об =3000 МДж/ч;

    Топливо – сернистый мазут;

    КПД котельной установки –  к.у. =0.8;

    Высота дымовой трубы H=40 м;

    Диаметр дымовой трубы Д=0.4м;

    Температура выброса Т г =200С;

    Температура наружного воздуха Т в =20С;

    Кол-во уходящих газов от 1 кг сжигаемого мазута V г =22.4 м 3 /кг;

    Предельно-допустимая концентрация SO 2 в атмосферном воздухе –

С пдк а.в. =0.05 мг/м 3 ;

    Предельно-допустимая концентрация NO 2 в атмосферном воздухе –

С пдк а.в. =0.04 мг/м 3 ;

    Фоновая концентрация SO 2 – C ф =0.004 мг/м 3 ;

    Теплота сгорания топлива Q н =40.2 МДж/кг;

    Место расположения котельной – Московская область;

    Рельеф местности ­– спокойный (с перепадом высот 50м на 1км).

    Расчет максимальной приземной концентрации выполняется согласно нормативному документу ОНД-86 «Методика расчета концентраций в атмосферном воздухе ЗВ, содержащихся в выбросах предприятий».

С М =
,

 =Т Г – Т В = 200 – 20 = 180 о С.

Для определения расхода газовоздушной смеси найдем часовой расход топлива:

В ч =

V 1 =

m – безразмерный коэффициент, зависящий от условий выброса: скорости выхода газовоздушной смеси, высоты и диаметра источника выброса и разности температур.

f =

скорость выхода газовоздушной смеси из устья трубы определяется по формуле:

 о =

f= 1000

.

n – безразмерный коэффициент, зависящий от условий выброса: объёма газовоздушной смеси, высоты источника выброса и разности температур.

Определяется по характеристической величине

V М = 0,65

n = 0,532V м 2 – 2,13V м + 3,13 = 1,656

М = V 1  а, г/с,

М SO 2 = 0,579  3 =1,737 г/с,

М NO 2 =0,8  0,579 = 0,46 г/с.

Максимальная приземная концентрация:

сернистого ангидрида –

С М =

двуокиси азота -

С м = .

    Находим расстояние от трубы до места появления С М по формуле:

Х М =

где d – безразмерный коэффициент, зависящий от условий выброса: скорости выхода газовоздушной смеси, высоты и диаметра источника выброса, разности температур и объёма газовоздушной смеси.

d = 4,95V м (1 + 0,28f), при 0,5 V М  2,

d = 7 V М (1 + 0,28f), при V М  2.

У нас V М = 0,89  d = 4,95 0,89(1 + 0,280,029) = 4,7

Х М =

    Т.к. приземная концентрация сернистого ангидрида превышает ПДК сернистого ангидрида в атмосферном воздухе, то величину ПДВ сернистого ангидрида для рассматриваемого источника определяем, учитывая необходимость выполнения уравнения суммации

Подставив наши значения, получаем:

что больше 1. Для выполнения условий уравнения суммации необходимо уменьшить массу выброса сернистого ангидрида, сохранив выброс двуокиси азота на прежнем уровне. Рассчитаем приземную концентрацию сернистого ангидрида при котором котельная не будет загрязнять окружающую среду.

=1- = 0,55

С SO2 = 0,55  0,05 = 0,0275 мг/м 3

Эффективность метода очистки, обеспечивающую снижение массы выброса сернистого ангидрида от первоначального значения М = 1,737 г/с до 0,71 г/с определяем по формуле:

%,

где С ВХ – концентрация загрязняющего вещества на входе в газоочистную

установку, мг/м 3 ,

С ВЫХ – концентрация загрязняющего вещества на выходе из газо-

очистной установки, мг/м 3 .

Т.к.
, а
, то

тогда формула приобретет вид:

Следовательно, при выборе метода очистки необходимо, чтобы его эффективность была не ниже 59%.

Технические средства и методы защиты атмосферы.

Выбросы промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы их очистки и типы газо- и пылеуловителей - аппаратов, предназначенных для очистки выбросов от загрязняющих веществ.

М
етоды очистки промышленных выбросов от пыли можно разделить на две группы: методы улавливания пыли«сухим» способом и методы улавливания пыли«мокрым» способом . Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.

Наиболее распространенными установками сухого пылеулавливания являются циклоны различных типов.

Они используются для улавливания мучной и табачной пыли, золы, образующейся при сжигании топлива в котлоагрегатов. Газовый поток поступает в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса. Под действием центробежной силы частицы пыли отбрасываются к стенке циклона и под действием силы тяжести опадают в бункер для сбора пыли 4, а очищенный газ выходит через выходную трубу 3. Для нормальной работы циклона необходима его герметичность, если циклон не герметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Задачи по очистке газов от пыли могут успешно решаться цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М, СКД-ЦН-33) циклонами, разработанными НИИ по промышленной и санитарной очистке газов (НИИОГАЗ). Для нормального функционирования избыточное давление газов, поступающих в циклоны, не должно превышать 2500 Па. При этом во избежание конденсации паров жидкости t газа выбирается на 30 – 50 о С выше t точки росы, а по условиям прочности конструкции – не выше 400 о С. Производительность циклона зависит от его диаметра, увеличиваясь с ростом последнего. Эффективность очистки циклонов серии ЦН падает с ростом угла входа в циклон. С увеличением размера частиц и уменьшением диаметра циклона эффективность очистки возрастает. Цилиндрические циклоны предназначены для улавливания сухой пыли аспирационных систем и рекомендованы к использованию для предварительной очистки газов на входе фильтров и электрофильтров. Циклоны ЦН-15 изготавливают из углеродистой или низколегированной стали. Канонические циклоны серии СК, предназначенные для очистки газов от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН за счет большего гидравлического сопротивления.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большего числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Отечественная промышленность выпускает батарейные циклоны типа БЦ-2, БЦР-150у и др.

Ротационные пылеуловители относятся к аппаратам центробежного действия, которые одновременно с перемещением воздуха очищают его от фракции пыли крупнее 5 мкм. Они обладают большой компактностью, т.к. вентилятор и пылеуловитель обычно совмещены в одном агрегате. В результате этого при монтаже и эксплуатации таких машин не требуется дополнительных площадей, необходимых для размещения специальных пылеулавливающих устройств при перемещении запыленного потока обыкновенным вентилятором.

Конструктивная схема простейшего пылеуловителя ротационного типа представлена на рисунке. При работе вентиляторного колеса 1 частицы пыли за счет центробежных сил отбрасываются к стенке спиралеобразного кожуха 2 и движутся по ней в направлении выхлопного отверстия 3. Газ, обогащенный пылью, через специальное пылеприемное отверстие 3 отводится в пылевой бункер, а очищенный газ поступает в выхлопную трубу 4.

Для повышения эффективности пылеуловителей такой конструкции необходимо увеличить переносную скорость очищаемого потока в спиральном кожухе, но это ведет к резкому повышению гидравлического сопротивления аппарата, или уменьшить радиус кривизны спирали кожуха, но это снижает его производительность. Такие машины обеспечивают достаточно высокую эффективность очистки воздуха при улавливании сравнительно крупных частиц пыли – свыше 20 – 40 мкм.

Более перспективными пылеотделителями ротационного типа, предназначенными для очистки воздуха от частиц размером  5 мкм, являются противопоточные ротационные пылеотделители (ПРП). Пылеотделитель состоит из встроенного в кожух 1 полого ротора 2 с перфорированной поверхностью и колеса вентилятора 3. Ротор и колесо вентилятора насажены на общий вал. При работе пылеотделителя запыленный воздух поступает внутрь кожуха, где закручивается вокруг ротора. В результате вращения пылевого потока возникают центробежные силы, под действием которых взвешенные частицы пыли стремятся выделиться из него в радиальном направлении. Однако на эти частицы в противоположном направлении действуют силы аэродинамического сопротивления. Частицы, центробежная сила которых больше силы аэродинамического сопротивления, отбрасываются к стенкам кожуха и поступают в бункер 4. Очищенный воздух через перфорацию ротора с помощью вентилятора выбрасывается наружу.

Эффективность очистки ПРП зависит от выбранного соотношения центробежной и аэродинамической сил и теоретически может достигать 1.

Сравнение ПРП с циклонами свидетельствует о преимуществах ротационных пылеуловителей. Так, габаритные размеры циклона в 3 – 4 раза, а удельные энергозатраты на очистку 1000 м 3 газа на 20 – 40 % больше, чем у ПРП при прочих равных условиях. Однако широкое распространение пылеуловители ротационного действия не получили из-за относительной сложности конструкции и процесса эксплуатации по сравнению с другими аппаратами сухой очистки газов от механических загрязнений.

Для разделения газового потока на очищенный газ и обогащенный пылью газ используют жалюзийный пылеотделитель. На жалюзийной решетке 1 газовый поток расходом Q разделяется на два протока расходом Q 1 и Q 2 . Обычно Q 1 = (0.8-0.9)Q, а Q 2 =(0.1-0.2)Q. Отделение частиц пыли от основного газового потока на жалюзийной решетке происходит под действием инерционных сил, возникающих при повороте газового потока на входе в жалюзийную решетку, а также за счет эффекта отражении частиц от поверхности решетки при соударении. Обогащенный пылью газовый поток после жалюзийной решетки направляется к циклону, где очищается от частиц, и вновь вводится в трубопровод за жалюзийной решеткой. Жалюзийные пылеотделители отличаются простотой конструкции и хорошо компонуются в газоходах, обеспечивая эффективность очистки 0,8 и более для частиц размером более 20 мкм. Они применяются для очистки дымовых газов от крупнодисперсной пыли при t до 450 – 600 о С.

Электрофильтр. Электрическая очистка один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Осадительные электроды 2 присоединяют к положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды подсоединяют к отрицательному полюсу. Частицы, поступающие в электрофильтр, ок положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды приедаче заряда ионов примесей ана. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 бычно уже имеют небольшой заряд, полученный за счет трения о стенки трубопроводов и оборудования. Таким образом, отрицательно заряженные частицы движутся к осадительному электроду, а положительно заряженные частицы оседают на отрицательном коронирующем электроде.

Фильтры широко используют для тонкой очистки газовых выбросов от примесей. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них. Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтро-

Загрязнение атмосферы Земли – изменение природной концентрации газов и примесей в воздушной оболочке планеты, а также привнесение в среду чужеродных для неё веществ.

Впервые об на международном уровне заговорили сорок лет назад. В 1979 году в Женеве появилась Конвенция о трансграничном на большие расстояния. Первым международным соглашением о сокращении выбросов стал Киотский протокол 1997 года.

Эти меры хоть и приносят свои результаты, но загрязнение атмосферы остаётся серьёзной проблемой общества.

Вещества, загрязняющие атмосферу

Основные составляющие атмосферного воздуха – азот (78%) и кислород (21%). Доля инертного газа аргона – чуть меньше процента. Концентрация диоксида углерода составляет 0,03%. В малых количествах в атмосфере также присутствуют:

  • озон,
  • неон,
  • метан,
  • ксенон,
  • криптон,
  • закись азота,
  • двуокись серы,
  • гелий и водород.

В чистых воздушных массах окись углерода и аммиак присутствуют в виде следов. Помимо газов, в атмосфере есть водяные пары, кристаллы соли, пыль.

Основные загрязнители воздушной среды:

  • Диоксид углерода – парниковый газ, влияющий на теплообмен Земли с окружающим пространством, а значит, и на климат.
  • Оксид углерода или угарный газ, попадая в организм человека или животного, вызывает отравление (вплоть до летального исхода).
  • Углеводороды – токсичные химические вещества, раздражающие глаза и слизистые оболочки.
  • Производные серы способствуют образованию и усыханию растений, провоцируют болезни дыхательных путей и аллергию.
  • Производные азота приводят к воспалениям лёгких, крупам, бронхитам, частым простудам, усугубляют течение сердечнососудистых заболеваний.
  • , накапливаясь в организме, становятся причиной рака, генных изменений, бесплодия, преждевременной смерти.

Особую опасность для здоровья человека представляет воздух с тяжёлыми металлами. Такие загрязнители, как кадмий, свинец, мышьяк, приводят к возникновению онкологии. Вдыхаемые ртутные пары не действуют молниеносно, но, откладываясь в виде солей, разрушают нервную систему. В значительной концентрации вредны и летучие органические вещества: терпеноиды, альдегиды, кетоны, спирты. Многие из этих загрязнителей воздуха являются мутагенными и канцерогенными соединениями.

Источники и классификация атмосферного загрязнения

Исходя из природы явления, различают следующие виды загрязнений воздуха: химическое, физическое и биологическое.

  • В первом случае в атмосфере наблюдается повышенная концентрация углеводородов, тяжёлых металлов, диоксида серы, аммиака, альдегидов, окислов азота и углерода.
  • При биологическом загрязнении в воздухе присутствуют продукты жизнедеятельности различных организмов, токсины, вирусы, споры грибов и бактерий.
  • Большое количество пыли или радионуклидов в атмосфере свидетельствует о физическом загрязнении. К этому же виду относят последствия тепловых, шумовых и электромагнитных выбросов.

На состав воздушной среды влияет как человек, так и природа. Естественные источники загрязнения атмосферы: вулканы в период активности, лесные пожары, почвенная эрозия, пыльные бури, разложение живых организмов. Мизерная доля влияния приходится и на космическую пыль, образующуюся в результате сгорания метеоритов.

Антропогенные источники загрязнения атмосферного воздуха:

  • предприятия химической, топливной, металлургической, машиностроительной промышленности;
  • сельскохозяйственная деятельность (распыление пестицидов с помощью авиации, отходы животноводства);
  • теплоэнергетические установки, отопление жилых помещений углём и дровами;
  • транспорт (самые «грязные» виды – самолёты и автомобили).

Как определяют степень загрязненности воздуха?

При мониторинге качества атмосферного воздуха в городе учитывают не только концентрацию вредных для здоровья человека веществ, но и временной промежуток их воздействия. Загрязнение атмосферы в Российской Федерации оценивают по следующим критериям:

  • Стандартный индекс (СИ) – показатель, полученный в результате деления наибольшей измеренной разовой концентрации загрязняющего материала на предельно допустимую концентрацию примеси.
  • Индекс загрязнения нашей атмосферы (ИЗА) является комплексной величиной, при расчёте которой берут во внимание коэффициент вредности вещества-загрязнителя, а также его концентрацию – среднегодовую и предельно допустимую среднесуточную.
  • Наибольшая повторяемость (НП) – выраженная в процентах частота превышения предельно допустимой концентрации (максимально разовой) в течение месяца или года.

Уровень загрязнения воздушной среды считается низким, когда СИ меньше 1, ИЗА варьирует в пределах 0–4, а НП не превышает 10%. Среди крупных российских городов, согласно материалам Росстата, самыми экологически чистыми являются Таганрог, Сочи, Грозный и Кострома.

При повышенном уровне выбросов в атмосферу СИ составляет 1–5, ИЗА – 5–6, НП – 10–20%. Высокой степенью загрязнения воздуха отличаются регионы с показателями: СИ – 5–10, ИЗА – 7–13, НП – 20–50%. Очень высокий уровень атмосферной загрязненности наблюдается в Чите, Улан-Удэ, Магнитогорске и Белоярском.

Города и страны мира с самым грязным воздухом

В мае 2016 года Всемирная организация здравоохранения опубликовала ежегодный рейтинг городов с самым грязным воздухом. Лидером списка стал иранский Заболь – город на юго-востоке страны, регулярно страдающий от песчаных бурь. Длится это атмосферное явление около четырёх месяцев, повторяется каждый год. На второй и третьей позиции оказались индийские города-миллионники Гвалияр и Праяг. Следующее место ВОЗ отдала столице Саудовской Аравии – Эр-Рияду.

Замыкает пятёрку городов с самой грязной атмосферой Эль-Джубайль – сравнительно небольшое по численности населения местечко на берегу Персидского залива и в то же время крупный промышленный нефтедобывающий и нефтеперерабатывающий центр. На шестой и седьмой ступеньках вновь оказались индийские города – Патна и Райпур. Основные источники загрязнения атмосферы там – промышленные предприятия и транспорт.

В большинстве случаев загрязнение атмосферы – актуальная проблема для развивающихся стран. Впрочем, ухудшение состояния окружающей среды вызывает не только стремительно растущая индустрия и транспортная инфраструктура, но и техногенные катастрофы. Яркий тому пример – Япония, пережившая радиационную аварию в 2011 году.

Топ-7 государств, где состояние воздуха признано удручающим, выглядит следующим образом:

  1. Китай. В некоторых регионах страны уровень загрязнения воздуха превышает норму в 56 раз.
  2. Индия. Крупнейшее государство Индостана лидирует по количеству городов с худшей экологией.
  3. ЮАР. В экономике страны преобладает тяжёлая промышленность, она же является главным источником загрязнения.
  4. Мексика. Экологическая ситуация в столице государства, Мехико, за последние двадцать лет заметно улучшилась, но смог в городе по-прежнему не редкость.
  5. Индонезия страдает не только от промышленных выбросов, но и от лесных пожаров.
  6. Япония. Страна, несмотря на повсеместное озеленение и использование научно-технических достижений в природоохранной сфере, регулярно сталкивается с проблемой кислотных дождей, смога.
  7. Ливия. Главный источник экологических бед североафриканского государства – нефтяная промышленность.

Последствия

Загрязнение атмосферы – одна из основных причин роста числа респираторных заболеваний, как острых, так и хронических. Вредные примеси, содержащиеся в воздухе, способствуют развитию рака лёгких, сердечных болезней, инсульта. По оценкам ВОЗ, из-за загрязнения воздушной среды в мире преждевременно умирает 3,7 млн человек в год. Больше всего таких случаев фиксируют в странах Юго-Восточной Азии и Западного региона Тихого океана.

В крупных промышленных центрах часто наблюдается такое неприятное явление, как смог. Скопление частиц пыли, воды и дыма в воздухе снижает видимость на дорогах, из-за чего учащается количество ДТП. Агрессивные вещества усиливают коррозию металлических конструкций, отрицательно влияют на состояние растительного и животного мира. Наибольшую опасность смог представляет для астматиков, лиц, болеющих эмфиземой, бронхитом, стенокардией, гипертонией, ВСД. Даже у здоровых людей, надышавшихся аэрозолей, может сильно болеть голова, наблюдаться слезотечение и першение в горле.

Насыщение воздуха оксидами серы и азота приводит к образованию кислотных дождей. После осадков с низким уровнем pH в водоёмах гибнет рыба, а выжившие особи не могут дать потомства. Как результат – сокращается видовой и числовой состав популяций. Кислые осадки выщелачивают питательные вещества, тем самым обедняя почву. Они оставляют химические ожоги на листьях, ослабляют растения. Для среды обитания людей такие дожди и туманы также представляют угрозу: кислая вода разъедает трубы, машины, фасады зданий, памятники.

Повышенное количество парниковых газов (углекислого, озона, метана, водяного пара) в воздушной среде приводит к росту температуры нижних слоёв атмосферы Земли. Прямым следствием является потепление климата, наблюдающееся последние шестьдесят лет.

На погодные условия заметно влияют и , образующиеся под воздействием брома, хлора, атомов кислорода и водорода. Помимо простых веществ, молекулы озона могут разрушать также органические и неорганические соединения: производные фреонов, метан, хлороводород. Чем опасно ослабление щита для окружающей среды и человека? Вследствие истончения слоя растёт солнечная активность, что, в свою очередь, ведёт к увеличению смертности среди представителей морской флоры и фауну, росту числа онкологических заболеваний.

Как сделать воздух чище?

Уменьшить загрязнение атмосферы позволяет внедрение на производстве технологий, снижающих объём выбросов. В сфере теплоэнергетики следует делать ставку на альтернативные энергоисточники: строить солнечные, ветряные, геотермальные, приливные и волновые электростанции. На состоянии воздушной среды позитивно сказывается переход к комбинированной выработке энергии и тепла.

В борьбе за чистый воздух важным элементом стратегии является комплексная программа по утилизации отходов. Она должна быть направлена на уменьшение количества мусора, а также его сортировку, переработку или повторное использование. Городское планирование, нацеленное на улучшение среды, в том числе и воздушной, предполагает совершенствование энергоэффективности зданий, строительство велосипедной инфраструктуры, развитие скоростного городского транспорта.

Проблема экологичности автомобилей возникла ещё в середине ХХ века, когда машины стали массовым продуктом. Европейские страны, находясь на сравнительно небольшой территории, ранее других стали применять различные экологические нормативы. Они существовали в отдельных странах и включали различные требования к содержанию вредных веществ в выхлопных газах у автомобилей.

В 1988 году Европейской экономической комиссией ООН был введён единый регламент (так называемый Евро-0) с требованиями снизить уровень выбросов окиси углерода, оксида азота и других веществ в автомобилях. Раз в несколько лет требования ужесточались, другие государства также стали вводить подобные нормативы.

Экологические нормы в Европе

С 2015 года в Европе действуют нормы Евро-6. Согласно этим требованиям, для бензиновых двигателей устанавливаются следующие допустимые выбросы вредных веществ (г/км):

  • Оксид углерода (CO) — 1
  • Углеводород (СН) — 0,1
  • Оксид азота (NOx) — 0,06

Для автомобилей с дизельными двигателями стандарт Евро-6 устанавливает другие нормы (г/км):

  • Оксид углерода (CO) — 0,5
  • Оксид азота (NOx) — 0,08
  • Углеводороды и оксиды азота (HC+NOx) — 0,17
  • Взвешенные частицы (PM) — 0,005

Экологический стандарт в России

Россия следует стандартам Евросоюза по выбросам выхлопных газов, хотя их реализация отстаёт на 6-10 лет. Первым стандартом, который был официально утверждён в РФ, стал Евро-2 в 2006 году.

С 2014 года в России на ввозимые автомобили действует стандарт Евро-5. С 2016 года он стал применяться и на все производимые автомобили.

Стандарты Евро-5 и Евро-6 имеют одинаковые нормы максимального количества выбросов вредных веществ для автомобилей с бензиновым двигателем. А вот для автомобилей, двигатель которых работает на дизельном топливе, стандарт Евро-5 имеет менее строгие требования: оксид азота (NOx) не должен превышать 0,18 г/км, а углеводороды и оксиды озота (HC+NOx) — 0,23 г/км.

Нормы выбросов в США

Федеральный стандарт к выбросам в атмосферу в США для легковых автомобилей делится на три категории: транспортные средства с низким уровнем выбросов (LEV), транспортные средства со сверхнизким уровнем выбросов (ULEV — гибриды) и транспортные средства с супернизким уровнем выбросов (SULEV — электромобили). На каждый из классов существуют отдельные требования.

В целом все производители и дилеры по продаже автомобилей на территории США придерживаются требований по выбросам в атмосферу агентства ЕРА (LEV II):

Пробег (миль)

Неметановые органические газы (NMOG), г/миль

Оксид азота (NO x), г/миль

Оксид углерода (CO), г/миль

Формальдегид (HCHO), г/миль

Взвешенные частицы (PM)

Стандарты выбросов в Китае

В Китае программы по контролю за выбросами загрязняющих веществ автомобилями начали появляться в восьмидестые годы, а общенациональный стандарт появился лишь в конце девяностых годов. Китай начал применять постепенно строгие стандарты выбросов выхлопных газов для легковых автомобилей в соответствии с европейскими нормами. Эквивалентом Евро-1 стал Китай-1, Евро-2 — Китай-2 и т. д.

Текущий национальный стандарт автомобильных выбросов в Китае — Китай-5. Он устанавливает различные нормы для автомобилей двух типов:

  • Автомобили типа 1: транспортные средства, вмещающие не более 6 пассажиров, включая водителя. Масса ≤ 2,5 тонны.
  • Автомобили типа 2: другие лёгкие транспортные средства (включая лёгкие грузовые автомобили).

Согласно стандарту Китай-5, предельные уровни выбросов загрязняющих веществ для бензиновых двигателей следующие:

Тип автомобиля

Масса, кг

Оксид углерода (CO),

Углеводороды (HC), г/км

Оксид азота (NOx), г/км

Взвешенные частицы (PM)

Автомобили с дизельными двигателями имеют другие предельные нормы выбросов:

Тип автомобиля

Масса, кг

Оксид углерода (CO),

Углеводороды и оксиды озота (НС + NOx), г/км

Оксид азота (NOx), г/км

Взвешенные частицы (PM)

Нормы выбросов в Бразилии

Программа контроля за выбросами моторных транспортных средств в Бразилии называется PROCONVE. Первый стандарт был внедрён в 1988 году. В целом эти нормы соответствуют европейским, однако ныне действующий PROCONVE L6, хотя и является аналогом Евро-5, не включает в себя обязательное наличие фильтров для фильтрации твёрдых частиц или количества выбросов в атмосферу.

Для автомобилей, масса которых не превышает 1700 кг, стандарты выбросов по PROCONVE L6 следующие (г/км):
  • Оксид углерода (CO) — 2
  • Тетрагидроканнабинол (THC) — 0,3
  • Летучие органические вещества (NMHC) — 0,05
  • Оксид азота (NOx) — 0,08
  • Взвешенные частицы (PM) — 0,03

Если масса автомобиля больше 1700 кг, то нормы меняются(г/км):

  • Оксид углерода (CO) — 2
  • Тетрагидроканнабинол (THC) — 0,5
  • Летучие органические вещества (NMHC) — 0,06
  • Оксид азота (NOx) — 0,25
  • Взвешенные частицы (PM) — 0,03.

Где более строгие нормы?

В целом развитые страны ориентируются на сходные нормы по содержанию вредных веществ в выхлопных газах. Евросоюз в этом плане является своеобразным авторитетом: он наиболее часто обновляет эти показатели и внедряет жёсткое правовое регулирование. Другие страны следуют за такой тенденцией и также обновляют нормы выбросов. Например, китайская программа полностью эквивалентна Евро: нынешний Китай-5 соответствует Евро-5. Россия также пытается не отставать от Евросоюза, но на данный момент реализуется стандарт, который действовал в европейских странах до 2015 года.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Влияние выбросов в атмосферу на экологическую обстановку планеты и здоровье всего человечества крайне неблагоприятно. Практически постоянно в воздух попадает и рассеивается по нему масса разных соединений, и некоторые распадаются крайне долго. Особенно актуальной проблемой являются автомобильные выбросы, но существуют и другие источники. Стоит рассмотреть их подробно и выяснить, как избежать печальных последствий.

Атмосфера и её загрязнение

Атмосфера – это то, что окружает планету и образует некий купол, сохраняющий воздух и определённую складывавшуюся тысячелетиями среду. Именно она позволяет человечеству и всему живому дышать и существовать. Атмосфера состоит из нескольких слоёв, и в её структуру входят разные компоненты. Больше всего содержится азота (чуть меньше 78%), на втором месте кислород (порядка 20%). Количество аргона не превышает 1%, а доля углекислого газа СО2 и вовсе ничтожно мала – менее 0,2-0,3%. И такая структура должна сохраняться и оставаться постоянной.

Если же соотношение элементов меняется, то защитная оболочка Земли не выполняет свои основные функции, и это самым непосредственным образом отражается на планете.

Вредные выбросы попадают в окружающую среду ежедневно и практически постоянно, что связано со стремительными темпами развития цивилизации. Каждый стремится приобрести автомобиль, все отапливают свои жилища.

Активно развиваются разные направления промышленности, перерабатываются извлекаемые из недр Земли полезные ископаемые, становящиеся источниками энергии для улучшения качества жизни и работы предприятий. И всё это неизбежно приводит к значительному и крайне негативно влияет на экологию. Если ситуация останется прежней, это может грозить самыми серьёзными последствиями.

Основные разновидности загрязнений

Существует несколько классификаций выбросов вредных веществ в атмосферу. Так, они подразделяются на:

  • организованные
  • неорганизованные

В последнем случае вредные вещества попадают в воздух из так называемых неорганизованных и нерегламентированных источников, к которым относятся хранилища отходов и склады потенциально опасного сырья, места разгрузки и загрузки фур и товарных поездов, эстакады.

  • Низкие. Сюда относятся выделяющие газы и вредные соединения вместе с вентиляционным воздухом на невысоком уровне, часто рядом со зданиями, из которых вещества выводятся.
  • Высокие. К высоким стационарным источникам выбросов загрязняющих веществ в атмосферу относятся трубы, через которые выхлопы практически сразу проникают атмосферные слои.
  • Средние или промежуточные. Промежуточные загрязнители находятся не более чем на 15-20% выше так называемой зоны аэродинамической тени, создаваемой сооружениями.

За основу классификации может быть взята дисперсность, которая определяет проникающие способности компонентов и рассеивание выбросов в атмосфере. Этот показатель применяется для оценки загрязнителей, пребывающих в форме аэрозолей или пыли. Для последней используется разделение дисперсности на пять групп, а для аэрозольных жидкостей – на четыре категории. И чем мельче компоненты, тем более стремительными темпами они рассеиваются по воздушному бассейну.

Токсичность

Все вредные выбросы подразделяются и по токсичности, определяющей характер и степень воздействия на человеческий организм, животных и растений. Показатель определяется как величина, обратно пропорциональная дозе, которая может стать смертельной. По токсичности выделяют такие категории как:

  • малотоксичные
  • умеренно токсичные
  • высокотоксичные
  • смертельно опасные, контакты с которыми могут спровоцировать летальный исход

Нетоксичные выбросы в атмосферный воздух – это, прежде всего, различные инертные газы, которые при нормальных и стабильных условиях не оказывают воздействия, то есть остаются нейтральными. Но при изменении некоторых показателей среды, например, при повышении давления они могут действовать на человеческий мозг наркотически.

Существует и регламентированная отдельная классификация всех попадающих в воздушный бассейн токсичных соединений. Она характеризуется как предельно допустимая концентрация, и, исходя из данного показателя, выделяется четыре класса токсичности. Последний четвёртый – это малотоксичные выбросы вредных веществ. К первому же классу относятся крайне опасные вещества, контакты с которыми представляют собой серьёзную угрозу для здоровья и жизни.

Основные источники

Все источники загрязнений можно разделить на две большие категории: природные и антропогенные. Начать стоит с первой, так как она менее обширна и никак не зависит от деятельности человечества.

Выделяют следующие естественные источники:

  • Наиболее крупными природными стационарными источниками выбросов загрязняющих веществ в атмосферу являются вулканы, во время извержения которых в воздух устремляются огромные количества различных продуктов горения и мельчайших твёрдых частиц горных пород.
  • Значительную долю в составе природных источников составляют лесные, торфяные и степные пожары, бушующие в летнее время года. При сгорании дерева и прочих содержащихся в природных условиях естественных источников топлива также образуются и устремляются в воздушный бассейн вредные выбросы.
  • Различные выделения образуют животные, причём как при жизни в результате функционирования различных желез внутренней секреции, так и после смерти при разложении. Растения, имеющие пыльцу, также могут считаться источниками выбросов в окружающую среду.
  • Негативное воздействие оказывает и состоящая из мельчайших частичек пыль, поднимаемая в воздух, витающая в нём и проникающая в атмосферные слои.

Антропогенные источники

Наиболее многочисленны и опасны антропогенные источники, связанные с деятельностью человека. К ним относят:

  • Промышленные выбросы, возникающие во время работы заводов и прочих предприятий, занимающихся обрабатывающим, металлургическим или химическим производством. И в ходе некоторых процессов и реакций может сформироваться выброс радиоактивных веществ, которые особенно опасны для людей.
  • Выбросы автотранспорта, доля которых может достигать 80-90% в общем объеме всех выбросов загрязняющих веществ в атмосферу. Автотранспортом сегодня пользуются многие, и ежедневно в воздух устремляются тонны входящих в состав выхлопов вредных и опасных соединений. И если промышленные выбросы от предприятий выводятся локально, то автомобильные присутствуют практически повсеместно.
  • К стационарным источникам выбросов относятся тепловые и атомные электростанции, котельные установки. Они позволяют отапливать помещения, поэтому активно используются. Но все подобные котельные и станции являются причиной постоянных выбросов в окружающую среду.
  • Активное применение разных видов топлива, особенно горючих. Во время их сжигания образуются большие количества опасных устремляющихся в воздушный бассейн веществ.
  • Отходы. В процессе их разложения тоже происходят выбросы загрязняющих веществ в атмосферный воздух. А если учесть, что период разложения некоторых отходов превышает десятки лет, то можно представить, насколько губительно их влияние на окружающую среду. И некоторые соединения гораздо опаснее выбросов промышленных предприятий: аккумуляторы и батарейки могут содержать и выделять тяжёлые металлы.
  • Сельское хозяйство тоже провоцирует выделение выбросов загрязняющих веществ в атмосферу, образующихся при использовании удобрений, а также жизнедеятельности животных в местах их скопления. В них могут содержаться СО2, аммиак, сероводород.

Примеры конкретных соединений

Для начала стоит разобрать состав выбросов от автотранспорта в атмосферу, так как он многокомпонентный. Прежде всего, в нём содержится углекислый газ СО2, который не относится к токсичным соединениям, но, попадая в организм в высоких концентрациях, способен снижать уровень кислорода в тканях и крови. И хотя СО2 является неотъемлемой частью воздуха и выделяется во время дыхания людьми, выбросы углекислого газа при эксплуатации автомобилей гораздо более значительны.

Также в составе выхлопных газов обнаруживаются отработавшие газы, копоть и сажа, углеводороды, оксиды азота, угарный газ, альдегиды, бензапирен. Согласно результатам проводившихся измерений, количество выбросов от автотранспорта на один литр используемого бензина может достигать 14-16 кг различных газов и частиц, включая угарный газ и СО2.

От стационарных источников выбросов могут исходить самые разные вещества, такие как ангидрид, аммиак, сернистая и азотная кислоты, оксиды серы и углерода, пары ртути, мышьяк, фтористые и фосфорные соединения, свинец. Все они не просто попадают в воздух, но и могут вступать с ним или друг с другом в реакции, образуя новые компоненты. И особенно опасны промышленные выбросы в атмосферу загрязняющих веществ: замеры показывают их высокие концентрации.

Как избежать серьёзных последствий

Промышленные выбросы и другие крайне вредны, так как являются причиной выпадения кислотных осадков, ухудшения состояния здоровья людей, развития . И чтобы предотвратить опасные последствия, нужно действовать комплексно и принимать такие меры как:

  1. Установка на предприятиях очистных сооружений, введение пунктов контроля загрязнений.
  2. Переход на альтернативные, менее токсичные и негорючие источники энергии, например, воду, ветер, солнечный свет.
  3. Рациональное использование автотранспорта: своевременное устранение поломок, применение специальных снижающих концентрации вредных соединений средств, налаживание выхлопной системы. А лучше хотя бы частично переходить на троллейбусы и трамваи.
  4. Законодательное регулирование на государственном уровне.
  5. Рациональное отношение к природным ресурсам, озеленение планеты.

Вещества, попадающие в атмосферу, опасны, но некоторые из них можно устранять или предупреждать их образование.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины