Мембранно-внутриклеточный механизм действия гормонов. Вторичные посредники на примере цГМФ

Мембранно-внутриклеточный механизм действия гормонов. Вторичные посредники на примере цГМФ

08.04.2019

text_fields

text_fields

arrow_upward

Пути действия гормонов рассматриваются в виде двух альтерна­тивных возможностей:

1) действия гормона с поверхности клеточной мембраны после связывания со специфическим мембранным рецеп­тором и запуска тем самым цепочки биохимических превращений в мембране и цитоплазме (эффекты пептидных гормонов и катехоламинов);

2) действия гормона путем проникновения через мембрану и связывания с рецептором цитоплазмы, после чего гормон-рецепторный комплекс проникает в ядро и органоиды клетки, где и реализует свой регуляторный эффект (стероидные Гормоны, гормоны щитовидной железы).

Считается, что функция распознавания пред­назначенного определенным клеткам специфического гормонального сигнала у всех клеток для всех гормонов осуществляется мембран­ным рецептором, а после связывания гормона с соответствующим ему рецептором, дальнейшая роль гормон- рецепторного комплекса для пептидных и стероидных гормонов различна.

У пептидных, белковых гормонов и катехоламинов гормон-рецепторный комплекс приводит к активации мембранных ферментов и образованию различных вторичных посредников гормонального регуляторного эффекта, реализующих свое действие в цитоплазме, ор­ганоидах и ядре клетки.

Известны четыре системы вторичных по­средников:
1) аденилатциклаза - циклический аденозинмонофос­фат (цАМФ);

2) гуанилатциклаза - циклический гуанозинмоно­фосфат (цГМФ);

3) фосфолипаза С - инозитолтрифосфат (ИФз);

4) ионизированный кальций

Взаимосвязи между вторичными посредниками

text_fields

text_fields

arrow_upward

В большинстве клеток организма присутствуют или могут образо­вываться почти все из рассмотренных выше вторичных посредников, за исключением лишь цГМФ.

В связи с этим, между вторичными посредниками устанавливаются различные взаимосвязи:

1) Равно­правное участие, когда разные посредники необходимы для полно­ценного гормонального эффекта;

2) Один из посредников является основным, а другой лишь способствует реализации эффектов пер­вого;

3) Посредники действуют последовательно (например, инозитол-3- фосфат обеспечивает освобождение кальция, диацилглицерол облегчает взаимодействие кальция с протеинкиназой С);

4) Посред­ники дублируют друг друга для обеспечения избыточности с целью надежности регуляции;

5) Посредники являются антагонистами, т.е. один из них включает реакцию, а другой - тормозит (например, в гладких мышцах сосудов инозитол-3-фосфат и. кальций реализуют их сокращение, а цАМФ - расслабление).

Рис.3.16. Схема механизма действия стероидных гормонов. Пояснения в тексте.

У стероидных гормонов (рис.3.16) мембранный рецептор обеспе­чивает специфическое узнавание гормона и его перенос в клетку, а в цитоплазме располагается особой цитоплазменный белок-рецеп­тор, с которым связывается гормон. Эта связь с рецепторным бел­ком необходима для поступления стероидного гормона в ядро, где происходит его взаимодействие с третьим - ядерным рецептором, связывание комплекса гормон-ядерный рецептор с хроматиновым акцептором, специфическим кислым белком и ДНК, что влечет за собой: активацию транскрипции специфических мРНК, синтез транс­портных и рибосомных РНК, процессинг первичных РНК-транскриптов и транспорт мРНК в цитоплазму, трансляцию мРНК при достаточном уровне транспортных РНК с синтезом белков и фер­ментов в рибосомах. Все эти явления требуют длительного присут­ствия гормон-рецепторного комплекса в ядре.

Однако, эффекты стероидных гормонов проявляются не только через несколько часов, которые требуются для такого ядерного вли­яния, часть из них возникает очень быстро, в течение нескольких минут. Это такие эффекты, как повышение проницаемости мембран, усиление транспорта глюкозы и аминокислот, освобождение лизосо-мальных ферментов, сдвиги энергетики митохондрий. Кроме того, под влиянием стероидных гормонов в клетке увеличивается содер­жание цАМФ и ионизированного кальция. Таким образом, вполне обоснован взгляд, согласно которому мембранный рецептор стеро­идных гормонов выполняет не только функцию «узнавания» моле­кулы гормона и передачи ее цитоплазматическому рецептору, но и, подобно рецепторам пептидных гормонов, активирует систему вто­ричных посредников в клетке. Следовательно, механизмы действия гормонов разной химической структуры имеют не только различия, но и общие черты. Пептидные гормоны обладают также способнос­тью избирательно влиять на транскрипцию генов в ядре клетки. Этот эффект пептидных гормонов может быть реализован не только с поверхности клетки за счет вторичных посредников, но и путем поступления пептидных гормонов внутрь клетки за счет интпернализации гормон-рецепторного комплекса.

Интернализация гормон-рецепторных комплексов происходит за счет эндоцитоза, т.е. активного поглощения с помощью впячивания мембраны, с образованием в цитоплазме пузырька с гормон — рецепторными комплексами, который подвергается затем лизосомному разрушению. Тем не менее, в клетках удалось обнаружить и сво­бодные неразрушенные комплексы, способные оказывать и внутриклеточные эффекты.

Феномен интернализации гормон-рецепторных комплексов и уменьшения тем самым количества рецепторов к гормону на мем­бране клетки позволяет понять механизм падения чувствительности эффектора при избыточном количестве гормональных молекул или феномен десенситизации эффектора. Это явление, по сути, является отрицательной обратной регуляторной связью на уровне эффектора. Противоположное явление - сенситизация или повышение чувстви­тельности к гормонам, также являющееся обратной регуляторной связью, может быть обусловлено увеличением числа свободных ре­цепторных мест на мембране, как за счет падения интернализации, так и в результате «всплывания» активных связывающих участков рецепторов, поскольку в мембране клетки рецепторы свободно пере­мещаются. Таким образом, гормоны передают клетке информацион­ные сигналы, а сама клетка способна регулировать степень воспри­ятия гормональной регуляции.

Гормоны, секретируемые железами внутренней секреции, связываются с транспортными белками плазмы или в некоторых случаях адсорбируются на клетках крови и доставляются к органам и тканям, влияя на их функцию и обмен веществ. Некоторые органы и ткани обладают очень высокой чувствительностью к гормонам, поэтому их называют органами-мишенями илитканями мишенями. Гормоны влияют буквально на все стороны обмена веществ, функции и структуры в организме.

Согласно современным представлениям, действие гормонов основано на стимуляции или угнетении каталитической функции определенных ферментов. Этот эффект достигается посредством активации или ингибирования уже имеющихся ферментов в клетках за счет ускорения их синтеза путём активации генов. Гормоны могут увеличивать или уменьшать проницаемость клеточных и субклеточных мембран для ферментов и других биологически активных веществ, благодаря чему облегчается или тормозится действие фермента.

Различают следующие типы механизма действия гормонов: мембранный, мембранно-внутриклеточный и внутриклеточный (цитозольный).

Мембранный механизм . Гормон связывается с клеточной мембраной и в месте связывания изменяет её проницаемость для глюкозы, аминокислот и некоторых ионов. В этом случае гормон выступает как эффектор транспортных средств мембраны. Такое действие оказывает инсулин, изменяя транспорт глюкозы. Но этот тип транспорта гормонов редко встречается в изолированном виде. Инсулин, например, обладает как мембранным, так и мембранно-внутриклеточным механизмом действия.

Мембранно-внутриклеточный механизм . По мембранно-внутриклеточному типу действуют гормоны, которые не проникают в клетку и поэтому влияют на обмен веществ через внутриклеточного химического посредника. К ним относят белково-пептидные гормоны (гормоны гипоталамуса, гипофиза, поджелудочной и паращитовидной желез, тиреокальцитонин щитовидной железы); производные аминокислот (гормоны мозгового слоя надпочечников – адреналин и норадреналин, щитовидной железы – тироксин, трийодтиронин).

Функции внутриклеточных химических посредников гормонов выполняют циклические нуклеотиды – циклический 3׳ ,5׳ аденозинмонофосфат (цАМФ) и циклический 3׳ ,5׳ гуанозинмонофосфат (цГМФ), ионы кальция.

Гормоны влияют на образование циклических нуклеотидов: цАМФ – через аденилатциклазу, цГМФ – через гуанилатциклазу.

Аденилатциклаза встроена в мембрану клетки и состоит из 3-х взаимосвязанных частей: рецепторной (R), представленной набором мембранных рецепторов, находящихся снаружи мембраны, сопрягающей (N), представленной особымN–белком, расположенным в липидном слое мембраны, и каталитической (C), являющейся ферментным белком, то есть собственно аденилатциклазой, которая превращает АТФ (аденозинтрифосфат) в цАМФ.

Аденилатциклаза работает по слудующей схеме. Как только гормон связывается с рецептором (R) и образуется комплекс гормон- рецептор, происходит образовагние комплексаN– белок – ГТФ (гуанозинтрифосфат), который активирует каталитическую (С) часть аденилатцеклазы. Активация аденилатциклазы приводит к образованию цАМФ внутри клетки на внутренней поверхности мембраны из АТФ.

Даже одна молекула гормона, связавшегося с рецептором, заставляет работать аденилатцеклазу. При этом на одну молекулу связавшегося гормона образуется 10-100 молекул цАМФ внутри клетки. В активном состоянии аденилатциклаза находится до тех пор, пока существует комплекс гормон – рецептор. Аналогичным образом работает и гуанилатциклаза.

В цитоплазме клетки находятся неактивные протеинкиназы. Циклические нуклеотиды- цАМФ ицГМФ- активируют пртеинкиназы. Существуют цАМФ- зависимые и цГМФ – зависимые протеинкиназы, которые активируются своим циклическим нуклеотидом. В зависимости от мембранного рецептора, связывающего определенный гормон, включается или аденилатцеклаза, или гуанилатцеклазаи соответственно происходит образование или цАМФ, или цГМФ.

Через цАМФ действует большинство гормонов, а через цГМФ- только окситоцин, тиреокальцитонин, инсулин и адреналин.

При помощи активированных протеинкиназ осуществляется два вида регуляции активности ферментов: активация уже имеющихся ферментов путем ковалентной модификации, то есть фосфолированием; изменение количества ферментного белка за счет изменения скорости его биосинтеза.

Влияние циклических нуклеотидов на биохимические процессы прекращается под влиянием специального фермента- фосфодиэстеразы, разрушающей цАМФ и цГМФ. Другой фермент – фосфопротеидфосфаза – разрушает результат действия протеинкиназы, то есть отщепляет фосфорную кислоту от ферментных белков, в результате чего они становятся неактивными.

Внутри клетки ионов кальция содержится очень мало, вне клетки их больше. Они пступают из внеклеточной среды по кальциевым каналам в мембране. В клетке кальций взаимодействует с кальцийсвязывающим белком калмодулином (КМ). Этот комплекс изменяет активность ферментов, что ведет к изменению физиологический функций клеток. Через ионы кальция действуют гормоны окситоцин, инсулин, простагландин F 2α. Таким образом, чувствительность тканей и органов к гормонам зависит от мембранных рецепторов, а специфическое регуляторное влияние их определяется внутриклеточным посредником.

Внутриклеточный (цитозольный) механизм действия . Он характерен для стероидных гармонов (кортикостероидов, половых гормонов – андрогенов, эстрогенов и гестагенов). Стероидгные гормоны взаимодействуют с рецепторами, находящимися в цитоплазме. Образовавшийся гормнон-рецепторный комплекс переносится в ядро и действует непосредственно на геном, стимулируя или угнетая его активность, т.е. действует на синтез ДНК, изменяя скорость транскрипции и количество инфармационной (матричной) РНК (мРНК). Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции, что приводит к изменению функциональной активности клетки.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое) , действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Синтез белковых гормонов, как и других белков, находится под генетическим контролем, и типичные клетки млекопитающих экспрессируют гены, которые кодируют от 5000 до 10 000 различных белков, а некоторые высокодифференцированные клетки – до 50 000 белков. Любой синтез белка начинается с транспозиции сегментов ДНК , затем транскрипции, посттранскрипционного процессинга, трансляции, посттрансляционного процессинга и модификации. Многие полипептидные гормоны синтезируются в форме больших предшественников - прогормонов (проинсулин, проглюкагон, проопиомеланокортин и др.). Конверсия прогормонов в гормоны осуществляется в аппарате Гольджи.

    Существуют два основных механизма действия гормонов на уровне клетки:
  1. Реализация эффекта с наружной поверхности клеточной мембраны.
  2. Реализация эффекта после проникновения гормона внутрь клетки.

1)Реализация эффекта с наружной поверхности клеточной мембраны

В этом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент - аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорнои кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов - циклического 3,5-аденозинмонофосфата (цАМФ). цАМФ активирует клеточный фермент протеинкиназу, реализующую действие гормона. Установлено, что гормоно-зависимая аденилатциклаза - это общий фермент, на который действуют различные гормоны, в то время как рецепторы гормонов множественны и специфичны для каждого гормона. Вторичными посредниками кроме цАМФ могут быть циклический 3,5-гуанозинмонофосфат (цГМФ), ионы кальция, инозитол-трифосфат. Так действуют пептидные, белковые гормоны, производные тирозина - катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными .

Плазматические рецепторы в зависимости от структуры подразделяются на:

  1. семи фрагментов (петель);
  2. рецепторы, трансмембранный сегмент которых состоит из одного фрагмента (петли или цепи);
  3. рецепторы, трансмембранный сегмент которых состоит из четырех фрагментов (петель).

К гормонам, рецептор которых состоит из семи трансмембранных фрагментов, относятся:
АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, простагландины, гастрин, холецистокинин, нейропептид Y, нейромедин К, вазопрессин, адреналин (a-1 и 2, b-1 и 2), ацетилхолин (М1, М2, М3 и М4), серотонин (1А, 1В, 1С, 2), дофамин (Д1 и Д2), ангиотензин, вещество К, вещество Р, или нейрокинин 1, 2 и 3 типа, тромбин, интерлейкин-8, глюкагон, кальцитонин, секретин, соматолиберин, ВИП, гипофизарный аденилатциклазактивирующий пептид, глютамат (MG1 – MG7), аденин.

Ко второй группе относятся гормоны, имеющие один трансмембранный фрагмент:
СТГ, пролактин, инсулин, соматомаммотропин, или плацентарный лактоген, ИФР-1, нервные факторы роста, или нейротрофины, фактор роста гепатоцитов, предсердный натрийуретический пептид типа А, В и С, онкостатин, эритропоэтин, цилиарный нейротрофический фактор, лейкемический ингибиторный фактор, фактор некроза опухолей (р75 и р55), нервный фактор роста, интерфероны (a, b и g), эпидермальный фактор роста, нейродифференцирующий фактор, факторы роста фибробластов, факторы роста тромбоцитов А и В, макрофагный колониестимулирующий фактор, активин, ингибин, интерлейкины-2, 3, 4, 5, 6 и 7, гранулоцито-макрофагный колониестимулирующий фактор, гранулоцитный колониестимулирующий фактор, липопротеин низкой плотности, трансферрин, ИФР-2, урокиназный плазминогенный активатор.

К гормонам третьей группы, рецептор которых имеет четыре трансмембранных фрагмента, относятся:
ацетилхолин (никотиновые мышечные и нервные), серотонин, глицин, g-аминомасляная кислота.

Cопряжение рецептора с эффекторными системами осуществляется через так называемый G-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мембраны. G-белок в активированной форме стимулирует через аденилатцик-лазу синтез циклического АМФ, который запускает каскадный механизм активирования внутриклеточных белков.

Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты «вторичных» мессенджеров внутри клетки, является процесс фосфорилирования – дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев – тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток.

Аденилатциклазная мессенджерная система

Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков:
1)рецептор гормона ;
2)фермент аденилатциклаза , выполняющая функцию синтеза циклического АМФ (цАМФ);
3)G-белок , осуществляющий связь между аденилатциклазой и рецептором;
4)цАМФ-зависимая протеинкиназа , катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность;
5)фосфодиэстераза , которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала

Показано, что связывание гормона с β-адренергическим рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что в свою очередь обеспечивает взаимодействие рецептора со вторым белком сигнального пути – ГТФ-связывающим.

ГТФ-связывающий белок – G-белок – представляет собой смесь 2 типов белков:
активного G s (от англ. stimulatory G)
ингибиторного G i
В составе каждого из них имеется три разные субъединицы (α-, β- и γ-), т.е. это гетеротримеры. Показано, что β-субъединицы G s и G i идентичны; в то же время α-субъединицы, являющиеся продуктами разных генов, оказались ответственными за проявление G-белком активаторной и ингибиторной активности. Гормонрецепторный комплекс сообщает G-белку способность не только легко обменивать эндогенный связанный ГДФ на ГТФ, но и переводить G s -белок в активированное состояние, при этом активный G-белок диссоциирует в присутствии ионов Mg 2+ на β-, γ-субъединицы и комплекс α-субъединицы G s в ГТФ-форме; этот активный комплекс затем перемещается к молекуле аденилатциклазы и активирует ее. Сам комплекс затем подвергается самоинактивации за счет энергии распада ГТФ и реассоциации β- и γ-субъединиц с образованием первоначальной ГДФ-формы G s .

Рец - рецептор; G - G-белок; АЦ -аденилатциклаза.

Представляет собой интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы и катализирует реакцию синтеза цАМФ из АТФ:

Каталитический компонент аденилатциклазы, выделенный из разных тканей животных, представлен одним полипептидом. В отсутствие G-белков он практически неактивен. Содержит две SH-группы, одна из которых вовлечена в сопряжение с G s -белком, а вторая необходима для проявления каталитической активности.Под действием фосфоди-эстеразы цАМФ гидролизуется с образованием неактивного 5"-АМФ.

Протеинкиназа – это внутриклеточный фермент, через который цАМФ реализует свой эффект. Протеинкиназа может существовать в 2 формах. В отсутствие цАМФ протеинкиназа представлена в виде тетрамерного комплекса, состоящего из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц; в этой форме фермент неактивен. В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну R 2 -субъединицу и две свободные каталитические субъединицы С; последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность.

Активность многих ферментов регулируется цАМФ-зависимым фосфорилированием, соответственно большинство гормонов белково-пептидной природы активирует этот процесс. Однако ряд гормонов оказывает тормозящий эффект на аденилатциклазу, соответственно снижая уровень цАМФ и фосфорилирование белков. В частности, гормон соматостатин, соединяясь со своим специфическим рецептором – ингибиторным G-белком (Gi , являющимся структурным гомологом Gs-белка), ингибирует аденилатциклазу и синтез цАМФ, т.е. вызывает эффект, прямо противоположный вызываемому адреналином и глюкагоном. В ряде органов простагландины (в частности, РGЕ 1) также оказывают ингибиторный эффект на аденилатциклазу, хотя в том же органе (в зависимости от типа клеток) и тот же PGE 1 может активировать синтез цАМФ.

Более подробно изучен механизм активирования и регуляции мышечной гликогенфосфорилазы, активирующей распад гликогена. Выделяют 2 формы:
каталитически активную – фосфорилаза а и
неактивную – фосфорилаза b .

Обе фосфорилазы построены из двух идентичных субъединиц, в каждой остаток серина в положении 14 подвергается процессу фосфорилирования–дефосфорилирования, соответственно активированию и инактивированию.

Под действием киназы фосфорилазы b, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы b подвергаются ковалентному фосфорилиро-ванию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние.

В мышечной ткани открыты 3 типа регуляции гликогенфосфорилазы.
Первый тип ковалентная регуляция , основанная на гормонзависимом фосфорилировании–дефосфорилировании субъединиц фосфорилазы.
Второй тип аллостерическая регуляция . Она основана на реакциях аденилирования–деаденилирования субъединиц гликогенфосфорилазы b (соответственно активирование–инактивирование). Направление реакций определяется отношением концентраций АМФ и АТФ, присоединяющихся не к активному центру, а к аллостерическому центру каждой субъединицы.

В работающей мышце накопление АМФ, обусловленное тратой АТФ, вызывает аденилирование и активирование фосфорилазы b. В покое, наоборот, высокие концентрации АТФ, вытесняя АМФ, приводят к аллостерическому ингибированию этого фермента путем деаденилирования.
Третий тип кальциевая регуляция , основанная на аллостерическом активировании киназы фосфорилазы b ионами Са 2+ , концентрация которых повышается при мышечном сокращении, способствуя тем самым образованию активной фосфорилазы а.

Гуанилатциклазная мессенджерная система

Довольно долгое время циклический гуанозинмонофосфат (цГМФ) рассматривался как антипод цАМФ. Ему приписывали функции, противоположные цАМФ. К настоящему времени получено много данных, что цГМФ принадлежит самостоятельная роль в регуляции функции клеток. В частности, в почках и кишечнике он контролирует ионный транспорт и обмен воды, в сердечной мышце служит сигналом релаксации и т.д.

Биосинтез цГМФ из ГТФ осуществляется под действием специфической гуанилатциклазы по аналогии с синтезом цАМФ:

Адреналинрецепторный комплекс: АЦ - аденилатциклаза, G - G-белок; С и R - соответственно каталитические и регуляторные субъединицы протеинкиназы; КФ - киназа фосфорилазы b; Ф - фосфорилаза; Глк-1-P - глюкозо-1-фосфат; Глк-6-P - глюкозо-6-фосфат; УДФ-Глк - уридиндифосфатглюкоза; ГС - гликогенсинтаза.

Известны четыре разные формы гуанилатциклазы, три из которых являются мембраносвязанными и одна – растворимая открыта в цитозоле.

Мембраносвязанные формы состоят из 3 участков :
рецепторного , локализованного на внешней поверхности плазматической мембраны;
внутримембранного домена и
каталитического компонента , одинакового у разных форм фермента.
Гуанилатциклаза открыта во многих органах (сердце, легкие, почки, надпочечники, эндотелий кишечника, сетчатка и др.), что свидетельствует о широком ее участии в регуляции внутриклеточного метаболизма, опосредованном через цГМФ. Мембраносвязанный фермент активируется через соответствующие рецепторы короткими внеклеточными пептидами, в частности гормоном предсердным натрийуретическим пептидом (АНФ), термостабильным токсином грамотрицательных бактерий и др. АНФ, как известно, синтезируется в предсердии в ответ на увеличение объема крови, поступает с кровью в почки, активирует гуанилатциклазу (соответственно повышает уровень цГМФ), способствуя экскреции Na и воды. Гладкие мышечные клетки сосудов также содержат аналогичную рецептор-гуанилатциклазную систему, посредством которой связанный с рецептором АНФ оказывает сосудорасширяющее действие, способствуя снижению кровяного давления. В эпителиальных клетках кишечника активатором рецептор–гуанилатциклазной системы может служить бактериальный эндотоксин, который приводит к замедлению всасывания воды в кишечнике и развитию диареи.

Растворимая форма гуанилатциклазы является гемсодержащим ферментом, состоящим из 2 субъединиц. В регуляции этой формы гуанилатциклазы принимают участие нитровазодилататоры, свободные радикалы – продукты перекисного окисления липидов. Одним из хорошо известных активаторов является эндотелиальный фактор (EDRF) , вызывающий релаксацию сосудов. Действующим компонентом, естественным лигандом, этого фактора служит оксид азота NO. Эта форма фермента активируется также некоторыми нитрозовазодилататорами (нитроглицерин, нитропруссид и др.), используемыми при болезнях сердца; при распаде этих препаратов также освобождается NO.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са 2+ -зависимой ферментной системы со смешанной функцией, названной NO-синтазой:

Оксид азота при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию цГМФ, который снижает силу сердечных сокращений путем стимулирования ионных насосов, функционирующих при низких концентрациях Са 2+ . Однако действие NO кратковременное, несколько секунд, локализованное – вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Получены доказательства, что большинство эффектов цГМФ опосредовано через цГМФ-зависимую протеинкиназу, названную протеинкина-зой G. Этот широко распространенный в эукариотических клетках фермент получен в чистом виде. Он состоит из 2 субъединиц – каталитического домена с последовательностью, аналогичной последовательности С-субъединицы протеинкиназы А (цАМФ-зависимой), и регуля-торного домена, сходного с R-субъединицей протеинкиназы А. Однако протеинкиназы А и G узнают разные последовательности белков, регулируя соответственно фосфорилирование ОН-группы серина и треонина разных внутриклеточных белков и оказывая тем самым разные биологические эффекты.

Уровень циклических нуклеотидов цАМФ и цГМФ в клетке контролируется соответствующими фосфодиэстеразами, катализирующими их гидролиз до 5"-нуклеотидмонофосфатов и различающимися по сродству к цАМФ и цГМФ. Выделены и охарактеризованы растворимая кальмоду-линзависимая фосфодиэстераза и мембраносвязанная изоформа, не регулируемая Са 2+ и кальмодулином.

Са 2+ -мессенджерная система

Ионам Са 2+ принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са 2+ является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са 2+ могут быть внутри- и внеклеточными. В норме концентрация Са 2+ в цитозоле не превышает 10 -7 М, и основными источниками его являются эндоплазматический ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са 2+ (до 10 –6 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций–мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са 2+ -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са 2+ -связывающий белок кальмодулин. При повышении концентрации Са 2+ в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов – мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы b, активируемой ионами Са 2+ , как и NO-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са 2+ -связывающих белков. При повышении концентрации кальция связывание Са 2+ с кальмодулином сопровождается конформационными его изменениями, и в этой Са 2+ -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название).

К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфолипазы С. В результате последовательных реакций образуются два потенциальных вторичных мессенджера – диацилглицерол и инозитол-1,4,5-трифосфат.

Биологические эффекты этих вторичных мессенджеров реализуются по-разному. Действие диацилглицерола, как и свободных ионов Са 2+ , опосредовано через мембраносвязанный Са-зависимый фермент протеинкиназу С , которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1,4,5-трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са 2+ в цитозоль.

Таким образом, представленные данные о вторичных мессенджерах свидетельствуют о том, что каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ, хотя нельзя исключить возможности существования тесной связи между этими системами. Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G – цГМФ; Са 2+ -кальмодулинзависимые протеинкиназы находятся под контролем внутриклеточной [Са 2+ ], а протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са 2+ и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мес-сенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки: ионных каналов, внутриклеточных структурных элементов и генетического аппарата.

2)Реализация эффекта после проникновения гормона внутрь клетки

Во этом случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связываются в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина - гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Известно, что эффект стероидных гормонов реализуется через генетический аппарат путем изменения экспрессии генов. Гормон после доставки с белками крови в клетку проникает (путем диффузии) через плазматическую мембрану и далее через ядерную мембрану и связывается с внутриядерным рецептором–белком. Комплекс стероид–белок затем связывается с регуляторной областью ДНК, с так называемыми гормончувствительными элементами, способствуя транскрипции соответствующих структурных генов, индукции синтеза белка de novo и изменению метаболизма клетки в ответ на гормональный сигнал.

Следует подчеркнуть, что главной и отличительной особенностью молекулярных механизмов действия двух основных классов гормонов является то, что действие пептидных гормонов реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, в то время как стероидные гормоны (а также тиреоидные гормоны, ретиноиды, витамин D3-гормоны) выступают в качестве регуляторов экспрессии генов.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.

Механизм действия гормонов

Как уже отмечалось выше, гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) от ЦНС к строго определенным и высокоспецифичным клеткам-мишеням соответствующих органов или тканей.

Узнающими центрами клеток-мишеней, с которыми связывается гормон, являются высокоспецифичные рецепторы . Роль таких рецепторов, как правило, выполняют гликопротеины, специфичность которых обусловлена природой углеводного компонента. Рецепторы большинства гормонов (белковых и производных аминокислот) находятся в плазматической мембране клеток.

Рассмотрим основные биохимические события, обеспечивающие перенос сигналов от ЦНС к органам и тканям.

Под влиянием раздражителей в ЦНС возникают сигналы – нервные импульсы, которые затем поступают в гипоталамус или через спинной мозг в мозговое вещество надпочечников.

В гипоталамусе синтезируются первые гормоны «дистанционного» действия, так называемые нейрогормоны или рилизинг-факторы (от англ. release – освобождать). Затем нейрогормоны достигают гипофиза , где регулируют (усиливают или тормозят) выделение тропных гормонов , которые, в свою очередь, контролируют процессы синтеза гормонов периферическими железами .

Мозговое вещество надпочечников под действием сигналов из ЦНС выделяет адреналин и ряд других гормональных веществ. Таким образом, гипоталамус и мозговое вещество надпочечников находятся под прямым контролем ЦНС, в то время как другие эндокринные железы связаны с ЦНС лишь косвенно – через гормоны гипоталамуса и гипофиза.

В результате такой передачи эндокринные железы организма синтезируют специфические гормоны, которые и оказывают регулирующее воздействие на различные органы и ткани организма.

Типы взаимодействий между железами внутренней секреции

Между железами внутренней секреции складываются сложные взаимодействия, среди которых можно выделить следующие основные типы:

1. Взаимодействия по принципу положительной прямой или отрицательной обратной связи . Например, тиреотропный гормон, вырабатываемый в гипофизе, стимулирует образование гормонов щитовидной железы (положительная прямая связь), однако повышение концентрации гормонов щитовидной железы выше нормы тормозит образование тиреотропного гормона гипофиза (отрицательная обратная связь).

2. Синергизм и антагонизм гормональных влияний . Как адреналин, синтезируемый надпочечниками, так и глюкагон, выделяемый поджелудочной желелезой, вызывают увеличение содержания глюкозы в крови за счет распада гликогена в печени (синергизм). Среди группы женских половых гормонов прогестерон – ослабляет, а эстрогены усиливают сократительные функции мускулатуры матки (антагонизм).

В настоящее время известно несколько механизмов действия гормонов, основными из них являются следующие:

1) мембранный ;

2) мембранно-внутриклеточный (косвенный);

3) цитозольный (прямой).

Кратко рассмотрим особенности каждого из перечисленных механизмов действия гормонов.

Мембранный механизм редко встречается в изолированном виде и заключается в том, что гормон за счет межмолекулярных взаимодействий с рецепторной белковой частью мембраны клетки и последующих ее конформационных перестроек изменяет (как правило, увеличивает) проницаемость мембраны для некоторых биочастиц (глюкозы, аминокислот, неорганических ионов и др.). В этом случае гормон выступает в качестве аллостерического эффектора транспортных систем клеточной мембраны. Затем поступившие в клетку вещества оказывают влияние на протекающие в ней биохимические процессы, наример, ионы изменяют электрический потенциал клеток.

Мембранно-внутриклеточный механизм действия характерен для пептидных гормонов и адреналина, которые не способны проникать в клетку и влияют на внутриклеточные процессы через химического посредника, роль которого в большинстве случаев выполняют циклические нуклеотиды – циклический 3",5"-АМФ (цАМФ), циклический 3",5"-ГМФ (цГМФ) и ионы Са 2+ .

Циклические нуклеотиды синтезируются гуанилатциклазой и кальций-зависимой аденилатциклазой, которые встроены в мембрану и состоят из трех взаимосвязанных фрагментов (рис.): наружного узнающего мембранного рецептора R, обладающего стереохимическим сродством к данному гормону; промежуточного N-белка, имеющего участок связывания и расщепления ГДФ; каталитической части С, представленной собственно аденилатциклазой, в активном центре которой может протекать следующая реакция:

АТФ = цАТФ + Н 4 Р 2 О 7

При взаимодействии гормона с рецептором изменяется конформация сопряженного N-белка и происходит замещение ГДФ, находящегося на неактивном белке, на ГТФ. Комплекс ГТФ–N-белок активирует аденилатциклазу и запускает синтез цАМФ из АТФ. Аденилатциклаза поддерживается в активном состоянии до тех пор, пока существует комплекс гормон-рецептор. Благодаря этому происходит многократное усиление сигнала: на одну молекулу гормона внутри клетки синтезируется 10–100 молекул цАМФ. Сходный механизм реализуется и через цГМФ.

Влияние циклических нуклеотидов на биохимические процессы прекращается под действием специальных ферментов – фосфодиэстераз, разрушающих как сами циклические нуклеотиды, так и соединения, образующиеся в результате их действия – фосфопротеины. Нециклические формы АМФ и ГМФ инактивируют данные процессы.

Цитозольный механизм действия характерен для гормонов, являющихся липофильными веществами, которые способны проникать внутрь клеток через липидный слой мембраны (стероидные гормоны, тироксин). Эти гормоны, проникая внутрь клетки, образуют молекулярные комплексы с белковыми цитоплазматическими рецепторами. Затем в составе комплексов со специальными транспортными белками гормон транспортируется в клеточное ядро, где вызывает изменение активности генов, регулируя процессы транскрипции или трансляции

Таким образом, в то время как пептидные гормоны влияют на постсинтетические события, стероидные гормоны оказывают воздействие на геном клетки.

Водорастворимые гормоны не способны проникать через цитоплазматическую мембрану. Рецепторы для данной группы гормонов располагаются на поверхности клеточной мембраны. Поскольку гормоны не проходят внутрь клеток, между ними и внутриклеточными процессами необходим вторичный посредник, который передаёт гормональный сигнал внутрь клетки. В качестве вторичных посредников могут служить инозитолсодержащие фосфолипиды, ионы кальция, циклические нуклеотиды.

10.3.2.1. Циклические нуклеотиды - цАМФ, цГМФ- вторичные посредники

Гормон взаимодействует с рецептором и образует гормон - рецепторный комплекс, в котором меняется конформация рецептора. Это, в свою очередь, изменяет конформацию мембранного ГТФ - зависимого белка (G-белка) и ведёт к активации мембранного фермента аденилатциклазы, который переводит АТФ в цАМФ.

Внутриклеточный циклический АМФ служит вторичным посредником. Он активирует внутриклеточные ферменты протеинкиназы, которые катализируют фосфорилирование различных внутриклеточных белков (ферментов, мембранных белков), что приводит к реализации конечного эффекта гормона. Эффект гормона «выключается» под действием фермента фосфодиэстеразы, разрушающей цАМФ, и ферментов фосфатаз, дефосфорилирующих белки.

.

10.3.2.2. Ионы кальция - вторичные посредники

Взаимодействие гормона с рецептором повышает проницаемость кальциевых каналов клеточной мембраны, и внеклеточный кальций поступает в цитозоль. В клетках ионы Са 2+ взаимодействуют с регуляторным белком кальмодулином. Комплекс кальций-кальмодулин активирует кальцийзависимые протеинкиназы, которые активируют фосфолирирование различных белков и приводят к конечным эффектам.

10.3.2.3. Инозитолсодержащие фосфолипиды - вторичные посредники .

Образование гормон-рецепторного комплекса активирует в клеточной мембране фосфолипазу «С», которая расщепляет фосфатидилинозит на вторичные посредники диацилглицерин (ДАГ) и инозитол-трифосфат (ИФ 3). ИФ 3 активирует выход Са 2+ из внутриклеточных депо в цитозоль. Ионы кальция взаимодействуют с кальмодулином, что активирует протеинкиназы и последующее фосфолирирование белков, сопровождающееся конечными эффектами гормона. ДАГ активирует протеинкиназу «С», которая фосфорилирует сериновые или треониновые специфические белки – мишени, в результате чего может меняться проницаемость мембран, в ряде случаев через систему посредников происходит экспрессия генов.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины