Условная вероятность и простейшие основные формулы. Формула полной вероятности: теория и примеры решения задач

Условная вероятность и простейшие основные формулы. Формула полной вероятности: теория и примеры решения задач

09.10.2019

Рассмотрим события A и B , связанные с одним и тем же опытом. Пусть из каких-то источников стало известно, что событие B наступило, но неизвестно, какой конкретно из элементарных исходов, составляющих событие B , произошел. Что можно сказать в этом случае о вероятности события A ?

Вероятность события A , вычисленную в предположении, что событие B произошло, принято называть условной вероятностью и обозначать P(A|B) .

Условную вероятность P(A|B) события A при условии события B в рамках классической схемы вероятности естественно определить как отношение N AB исходов, благоприятствующих совместному осуществлению событий A и B , к числу N B исходов, благоприятствующих событию B , то есть

Если поделить числитель и знаменатель этого выражения на общее число N элементарных исходов, то получим

Определение . Условной вероятностью события A при условии наступления события B называют отношение вероятности пересечения событий A и B к вероятности события B :

При этом предполагают, что P(B) ≠ 0 .

Теорема . Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A) .

Смысл этой теоремы заключается в том, что условная вероятность представляет собой безусловную вероятность, заданную на новом пространстве Ω 1 элементарных исходов, совпадающем с событием B .

Пример . Из урны, в которой a=7 белых и b=3 черных шаров, наугад без возвращения извлекают два шара. Пусть событие A 1 состоит в том, что первый извлеченный шар является белым, а A 2 - белым является второй шар. Требуется найти P(A 2 |A 1) .

Способ 1. . По определению условной вероятности

Способ 2. . Перейдем к новому пространству элементарных исходов Ω 1 . Так как событие A 1 произошло, то это означает, что в новом пространстве элементарных исходов всего равновозможных исходов N Ω 1 =a+b-1=9 , а событию A 2 благоприятствует при этом N A 2 =a-1=6 исходов. Следовательно,

Теорема [умножения вероятностей] . Пусть событие A=A 1 A 2 …A n и P(A)>0 . Тогда справедливо равенство:

P(A) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) … P(A n |A 1 A 2 …A n-1) .

Замечание . Из свойства коммутативности пересечения можно писать

P(A 1 A 2) = P(A 1) P(A 2 |A 1)

P(A 1 A 2) = P(A 2) P(A 1 |A 2) .

Пример . На 7 карточках написаны буквы, образующие слово «СОЛОВЕЙ». Карточки перемешивают и из них наугад последовательно извлекают и выкладывают слева направо три карточки. Найти вероятность того, что получится слово «ВОЛ» (событие A ).

Пусть событие A 1 - на первой карточке написана буква «В», A 2 - на второй карточке написана буква «О», A 2 - на третьей карточке - буква «Л». Тогда событие A - пересечение событий A 1 , A 2 , A 3 . Следовательно,

P(A) = P(A 1 A 2 A 3) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) .

P(A 1)=1/7 ; если событие A 1 произошло, то на оставшихся 6 карточках «О» встречается два раза, значит P(A 2 |A 1)=2/6=1/3 . Аналогично, P(A 3 |A 1)=2/6=1/3 . Следовательно,

Определение . События A и B , имеющие ненулевую вероятность, называют независимыми, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B , то есть

P(A|B) = P(A) или P(B|A) = P(B) ,

в противном случае события A и B называют зависимыми.

Теорема . События A и B , имеющие ненулевую вероятность, являются независимыми тогда и только тогда, когда

P(AB) = P(A) P(B) .

Таким образом, можно дать эквивалентное определение:

Определение . События A и B называют независимыми, если P(AB) = P(A) P(B) .

Пример . Из колоды карт, содержащей n=36 карт, наугад извлекают одну карту. Обозначим через A событие, соответствующее тому, что извлеченная карта будет пиковой, а B - событие, соответствующее появлению «дамы». Определим являются ли зависимыми события A и B .

P(A)=9/36=1/4 , P(B)=4/36=19 , P(AB)=1/36 , . Следовательно, события A и B независимы. Аналогично, .

Замечание. В основе определения вероятности события лежит некоторая совокупность условий . Если никаких ограничений, кроме условий при вычислении вероятности не налагается, то такие вероятности называются безусловными . Однако в ряде случаев приходится рассматривать вероятности событий при дополнительном условии, что произошло некоторое событие В.

Определение 1. Вероятность события А , вычисленная при условии, что имело место другое событие В , называется условной вероятностью события А и обозначается .

Замечание. Строго говоря, безусловные вероятности также являются условными, так как исходным моментом построенной теории было предположение о существовании некоторого неизменного комплекса условий .

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие А), если известно, что эта сумма есть чётное число (событие В)?

Решение. Построить пространство исходов, найти безусловную вероятность и условную вероятность .

Пример 2. Из колоды карт последовательно вынули 2 карты.

Найти :

а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта вышла вначале);

б) условную вероятность того, что вторая карта будет тузом, если первоначально был вынут туз.

Решение. а) Обозначим А - событие, состоящее в появлении туза на втором месте, В - событие, состоящее в появлении туза на первом месте. Событии А можно представить в виде . В силу несовместности событий и имеем . Общее число случаев вынуть из колоды в 36 карт 2 карты (выборка без повторений с учетом порядка!). Событию будут благоприятны исхода, а событию будут благоприятны исхода. Тогда .

б) Если первая вынутая карта - туз, то в колоде осталось 35 карт и среди них только 3 туза. Следовательно .

Общее решение задачи о нахождении условной вероятности для классического определения вероятности:

Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Если событий В произошло, то это означает, что наступило одно из событий , благоприятных событию В. При этом условии событию А благоприятствуют r и только r событий , благоприятных АВ. Таким образом . (1)

Аналогично, если , то . (1’)

Если В (соответственно, А) есть невозможное событие, то равенство (1) (соответственно (1’)) теряет смысл.

При каждое из равенств (1) и (1’) равносильно так называемой теореме умножения вероятностей.

Теорема умножения вероятностей. Вероятность произведения событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло: (2).


Доказательство теоремы умножения вероятностей для классической схемы случаев . Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Тогда , , а (из общего решения задачи о нахождении условной вероятности). Подставляя полученные значения вероятностей в формулу (2), получим тождество. Теорема доказана.

Замечание. Теорема умножения справедлива и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и .

Следствие. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.

Пример 3. В ящике находится 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в ящик. Найти вероятность того, что при первом испытании появится белый шар, при втором - черный и при третьем - синий.

Решение. Пусть событие А - при первом испытании появится белый шар, событие В - при втором испытании появится черный шар; событие С - при третьем испытании появится синий шар. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, то есть условная вероятность . Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором черный: . Так как события А, В и С совместны, то искомая вероятность

Определение 2. Событие А называется независимым от события В , если вероятность события А не зависит от того, произошло событие В или нет:

(3)

(наступление события В не меняет вероятности события А).

Определение 3. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Замечание 1. Если событие А независимо от события В, то в силу (2) имеет место равенство Отсюда следует, что , (4)

Т.е. событие В также независимо от А. Таким образом, при сделанном предположении свойство независимости событий взаимно.

Замечание 2. Понятие независимости событий играет значительную роль в теории вероятностей и её приложениях. В практических вопросах для определения независимости событий редко обращаются к выполнению равенств (3) и (4). Обычно для этого пользуются интуитивными соображениями, основанными на опыте (пример с монетой и др.). Для независимых событий теорема умножения вероятностей имеет наиболее простой вид.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

.

Замечание 3. Если независимость событий определить посредством равенства , то это определение верно всегда, в том числе и тогда, когда и .

Определение 4. События , , …, называются независимыми в совокупности , если для любого события из их числа и произвольных , , …, взаимно независимы.

Замечание 4. В силу замечания 3 это определение эквивалентно следующему.

Определение 4. При любых и .

Замечание 5. Для независимости в совокупности нескольких событий недостаточно их попарной независимости.

Пример. Грани тетраэдра окрашены: 1-я - в красный цвет, 2-я - в зелёный, 3-я - в синий, 4-я - во все эти 4 цвета (АВС). Легко видеть, что вероятность того, что грань, на которую упадёт тетраэдр при бросании, имеет красный цвет, равна 0,5: граней 4, 2 из них имеют в окраске красный цвет. Тогда . Аналогично можно подсчитать, что

Таким образом, события А, В, С попарно независимы. Однако, если осуществились события В и С вместе, то и осуществилось событие А, т.е. . Следовательно, события А, В и С в совокупности зависимы.

Обобщение теоремы умножения вероятностей на случай произвольного конечного числа независимых событий: .

Пример 4. Вероятность того, что стрелок при одном выстреле попадет в мишень, равна . Стрелок произвел три выстрела. Найти вероятность того, что он попал три раза.

Решение. Пусть событие А - стрелок попал в мишень при первом выстреле, событие В - стрелок попал в мишень при втором выстреле; событие С - стрелок попал в мишень при третьем выстреле. Вероятности этих событий по условию равны между собой: . Так как вероятность попадания в цель при каждом из выстрелов не зависит от результата остальных выстрелов, то все три события независимы в совокупности, тогда .

Следствие. (Теорема о вероятности появления хотя бы одного из совокупности независимых событий). Вероятность появления хотя бы одного из совокупности независимых событий А А

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, чтостудент вытащил выученный билет: А = (1,...,5,26,...,30,), а событие В - в том, что студент вытащил билет из первых двадцати: В = (1,2,3,...,20)

Событие состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B . Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р (А /В )). Таким образом, решение задачи определяется формулой

Р (А /В ) = P (А ÇВ ) /Р (B ) (2)

Р (А /В ) называется условной вероятностью события A при условии, что событие В произошло . Формулу (2) можно рассматривать, как определение условной вероятности . Эту же формулу можно переписать в виде

P (А ÇВ ) = Р (А /В )Р (B )(3)

Формула (3) называется формулой умножения вероятностей или теоремой умножения вероятностей, а условная вероятность Р (А /В ) здесь должна восприниматься просто по смыслу.

Пример 2 . Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X – событие, состоящее в извлечении первым белого шара, а Y - событие, состоящее в извлечении вторым черного шара. Тогда событие, заключающееся в том, что первый шар будет белым, а второй - черным. P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P (X ) = 7/10, по формуле умножения вероятностей получаем: P () = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А /В )=Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ÇВ ) = Р (А ) Р (B )

Докажите самостоятельно, что если А и В - независимые события, то и тоже являются независимыми событиями.

Пример 3 . Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6) 3 = 1/216.

Пример 4 . Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1–1–2”, “1–2–1”, “2–1–1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216 = 1/72.



Пример 5 . Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р (А ) = 4/32 = 1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р (А/В ). Очевидно, что Р (А ÇВ ) = 1/32, и Р (В ) = 8/32. Тогда Р (А/В ) = Р (А ÇВ )/ Р (В ) = 1/8, то есть Р (А ) = Р (А/В ). Отсюда следует, что события А и В независимы.

Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р (А ÇС ) = Р (А ) = 1/8. Р (С ) = 28/32 = 7/8. Отсюда получаем Р (А/С ) = 1/7, и это не равно величине Р (А ), следовательно, события А и С зависимы.

Пример 6 . Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P (А ÇВ ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.

Следует отметить, что если в задаче с шарами положить количество белых и черных шаров равным соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Рассмотрим задачи на применение теорем сложения и умножения вероятностей.

1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?

Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие заключается в том, что все трое не попали в мишень . Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р() = 0,1×0,2×0,3 = 0,006. Тогда Р(А) = 1 – Р() = 0,994.

2. При включении двигатель начинает работать с вероятностью р . а) Найти вероятность того, что двигатель начнёт работать со второго включения.

б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.

а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А ). Это происходит с вероятностью 1 – р . При втором включении двигатель запустится (событие В ) с вероятностью р . Нас интересует вероятность события А ÇВ . Из условия задачи можно понять, что события А и В независимы. Отсюда P (А ÇВ ) = р (1 – р ).

б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, ни при втором включении. Вероятность этого противоположного события равна (1 – р ) 2 . Отсюда вероятность интересующего нас события равна 1 – (1 – р ) 2 .

3 . В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети – мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.

Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р (В/А ). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P (А ÇВ ). В нашем случае событие А является следствием события В , поэтому P (А ÇВ ) = Р (В ) (смотри объяснение к теме 2). По условию задачи Р (В ) = (1/2) 4 = 1/16. Чтобы вычислить Р (А ), заметим, что событие состоит в том, что все дети в семье –девочки. Очевидно, что Р () = (1/2) 4 = 1/16. Тогда Р (А ) = 1 – Р () = 15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р (В /А ) = P (А ÇВ )/Р (А ). В результате получается Р (В /А ) = (1/16)/(15/16) = 1/15.

Если бы в условии этой задачи был поставлен вопрос “чему равна вероятность того, что все дети мальчики, при условии, что второй ребёнок – мальчик?”, то ответ был бы 1/8.

4 . В урне семь белых и три чёрных шара. Без возвращения извлекаются три шара. Известно, что среди них есть чёрный шар. Найти вероятность того, что другие два шара белые.

Пусть событие А состоит в том, что в выборке есть два белых шара, событие В – в том, что в выборке есть чёрный шар. Всего в условии задачи существует возможных исходов. Отсюда Р (А ÇВ ) = . Чтобы вычислить вероятность Р (В ), заметим, что состоит в том, что все извлечённые шары белые, и Р () = . Искомая вероятность равна ()/(1 – ) = 63/85.

5. Студент знает 20 из 25 вопросов программы. Зачёт сдан, если студент ответит не менее чем на 3 из 4-х вопросов в билете. Взглянув на первый вопрос, студент обнаружил, что знает его. Какова вероятность, что студент сдаст зачёт?

Пусть А - событие, заключающееся в том, что студент сдал экзамен;

В - событие, заключающееся в том, что студент знает первый вопрос в билете.

Очевидно, что Р (В ) =20/25 = 4/5. Теперь необходимо определить вероятность Р (А ÇВ ). Из двадцати пяти вопросов можно составить различных билетов, содержащих четыре вопроса. Все билеты, выбор которых удовлетворял бы и событию А, и событию В , должны быть составлены следующим образом: либо студент знает все вопросы билета (можно составить всего таких билетов), либо студент знает первый, второй и третий вопросы, но не знает четвёртого (можно составить всего 5таких билетов), либо студент знает первый, второй и четвёртый вопросы, но не знает третьего (тоже 5билетов), либо студент знает первый, третий и четвёртый вопросы, но не знает второго (тоже 5билетов). Отсюда получаем, что

Р (А ÇВ ) =

Осталось только найти искомую вероятность р (А/В):

Р (А/В) =

Задачи для самостоятельного решения.

1) . Вероятность попасть в самолёт равна 0,4, вероятность его сбить равна 0,1. Найти вероятность того, что при попадании в самолёт он будет сбит.

2) . Из урны, содержащей 6 белых и 4 чёрных шара, наудачу извлекают по одному шару до появления чёрного шара. Найти вероятность того, что придётся производить четвёртое извлечение, если выборка производится а) с возвращением; б) без возвращения.

3) а) В условиях задачи 1 найти вероятность того, что в мишень попали двое стрелков. б) В условиях задачи 1 найти вероятность того, что в мишень попали не менее двух стрелков.

4) По самолёту производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором – 0,6, при третьем – 0,8. При одном попадании самолёт будет сбит с вероятностью 0,3, при двух – с вероятностью 0,6, при трёх самолёт будет сбит наверняка. Какова вероятность того, что самолёт будет сбит?

5) Вероятность того, что случайным образом выбранный из студенческой группы студент знает английский язык, равна 5/6. Вероятность того, что студент знает французский язык, равна 7/12. Вероятность того, что студент знает и английский и французский языки, равна 1/2. а) Найти вероятность того, что студент не знает французского языка при условии, что он не знает английского. б) Найти вероятность того, что студент знает французский язык при условии, что он знает английский.

Ответы. 1)1/4; 2) а) 0,216; б) 1/6; 3) а) 0,398; б) 0,902; 4) 0,594; 5) а) 0,5; б) 0,3.

Условная вероятность

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .


Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .

Формула полной вероятности событий:

Теорема: Если событие F может произойти только при условии появления одного из событий(гипотез) , образующих полную группу, то вероятность события F равна сумме произведений вероятностей каждого из этих событий(гипотез) на соответствующие условные вероятности события F.

Мы уже говорили, что в основе определения вероятности события лежит некоторая совокупность условий. Если никаких ограничений, кроме условий, при вычислении вероятности не налагается, то такие вероятности называются безусловными.

Однако в ряде случаев приходится находить вероятности событий при дополнительном условии, что произошло некоторое событие В, имеющее не нулевую вероятность, т.е. Данные вероятности мы будем называть условными и обозначать символом; это означает вероятность события А при условии, что событие В произошло.

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие A), если известно, что эта сумма есть четное число (событие В)?

Все возможные случаи, которые могут представиться при бросании двух костей, мы запишем в таблице 1.7.1, каждая клетка которой содержит запись возможного события: на первом месте в скобках указывается число очков, выпавших на первой кости, на втором месте -- число очков, выпавших на второй кости.

Общее число возможных случаев -- 36, благоприятствующих событию A -- 5. Таким образом, безусловная вероятность.

Если событие В произошло, то осуществилась одна из 18 (а не 36) возможностей и, следовательно, условная вероятность равна.

Пример 2. Из колоды карт последовательно вынуты две карты. Найти: а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта была вынута вначале), и б) условную вероятность, что вторая карта будет тузом, если первоначально был вынут туз.

Обозначим через A событие, состоящее в появлении туза на втором месте, а через В--событие, состоящее в появлении туза на первом месте. Ясно, что имеет место равенство.

В силу несовместимости событий АВ и АВ имеем:

При вынимании двух карт из колоды в 36 карт могут произойти 36*35 (учитывая порядок!) случаев. Из них благоприятствующих событию АВ -- 4*3 случаев, а событию -- 32 * 4 случаев. Таким образом,

Если первая карта есть туз, то в колоде осталось 35 карт и среди них только три туза. Следовательно, .

Общее решение задачи нахождения условной вероятности для классического определения вероятности не представляет труда. В самом деле, пусть из n единственно возможных, несовместимых и равновероятных событий событию А благоприятствует m событий. Если событие В произошло, то это означает, что наступило одно из событий, благоприятствующих В. При этом условии событию А благоприятствуют r и только r событий Aj, благоприятствующих АВ. Таким образом,

Точно так же можно вывести, что

Понятно, что

т. е. вероятность произведения двух событий равна произведению вероятности одного из этих событий на условную вероятность другого при условии, что первое произошло.

Теорема умножения применима и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и.

Условная вероятность обладает всеми свойствами вероятности. В этом легко убедиться, проверив, что она удовлетворяет всем свойствам, сформулированных в предыдущих параграфах. Действительно, первое свойство выполняется очевидным образом, поскольку для каждого события А определена неотрицательная функция. Если, то

Проверка третьего свойства также не составляет труда и мы предоставляем читателю ее осуществление.

Заметим, что вероятностное пространство для условных вероятностей задается следующей тройкой.

Определение 1. Говорят, что событие А независимо от события В, если имеет место равенство т. е. если наступление события В не изменяет вероятности появления события А.

Если событие А независимо от В, то имеет место равенство

Отсюда находим: т. е. событие В также независимо от А. Таким образом, свойство независимости событий взаимно.

Если события А и В независимы, то независимы также события А и. Действительно, так как

Отсюда мы делаем важное заключение: если события А и В независимы, то независимы также каждые два события.

Понятие независимости событий играет значительную роль в теории вероятностей и в ее приложениях. В частности, большая часть результатов, изложенных в настоящем пособии, получена в предположении независимости тех или иных рассматриваемых событий.

Так, например, ясно, что выпадение герба на одной монете не изменяет вероятности появления герба (решки) на другой монете, если только эти монеты во время бросания не связаны между собой (например, жестко не скреплены). Точно так же рождение мальчика у одной матери не изменяет вероятности появления мальчика (девочки) у другой матери. Это -- события независимые.

Для независимых событий теорема умножения принимает особенно простой вид, а именно, если события A и В независимы, то

Мы обобщим теперь понятие независимости двух событий на совокупность нескольких событий.

Определение 2. События называются независимыми в совокупности, если для любого события из их числа и произвольных из их же числа события и взаимно независимы. В силу предыдущего это определение эквивалентно: при любых

Заметим, что для независимости в совокупности нескольких событий недостаточно их по парной независимости. В этом можно убедиться на следующем простом примере.

Пример С.Н. Бернштейна. Представим себе, что грани тетраэдра окрашены: 1-я -- в красный цвет (A), 2-я -- в зеленый (В), третья -- в синий (С) и 4-я -- во все эти три цвета (AВС). Легко видеть, что вероятность выпадения грани, на которую упадет тетраэдр при бросании, и своей окраске иметь красный цвет равна 1/2: граней четыре и две из них имеют в окраске красный цвет.

события A,В,С, таким образом, попарно независимы.

Однако, если нам известно, что осуществились события В и С, то заведомо осуществилось и событие A, т. е. .

Таким образом, события A,В,С в совокупности зависимы. Таким образом, в общем случае при по определению

(В случае условная вероятность остается неопределенной.) Это позволяет нам перенести автоматически на общее понятие вероятности все определения и результаты настоящего параграфа.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины