Находить линейный угол двугранного угла. Урок «Двугранный угол

Находить линейный угол двугранного угла. Урок «Двугранный угол

09.10.2019
Тема урока: «Двугранный угол».

Цель урока: введение понятия двугранного угла и его линейного угла.

Задачи:

Образовательная: рассмотреть задачи на применение этих понятий, сформировать конструктивный навык нахождения угла между плоскостями;

Развивающая: развитие творческого мышления учащихся, личностное саморазвитие учащихся, развитие речи учащихся;

Воспитательная: воспитание культуры умственного труда, коммуникативной культуры, рефлексивной культуры.

Тип урока: урок усвоения новых знаний

Методы обучения: объяснительно-иллюстративный

Оборудование: компьютер, интерактивная доска.

Литература:

    Геометрия. 10-11 классы: учеб. для 10-11 кл. общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.] – 18-е изд. – М. : Просвещение, 2009. – 255 с.

План урока:

    Организационный момент (2 мин)

    Актуализация знаний (5 мин)

    Изучение нового материала (12 мин)

    Закрепление изученного материала (21 мин)

    Домашнее задание (2 мин)

    Подведение итогов (3 мин)

Ход урока:

1. Организационный момент.

Включает в себя приветствие учителем класса, подготовку помещения к уроку, проверку отсутствующих.

2. Актуализация опорных знаний.

Учитель: На прошлом уроке вы писали самостоятельную работу. В целом работы написали неплохо. А теперь давайте немного повторим. Что называется углом на плоскости?

Ученик: Углом на плоскости называется фигура, образованная двумя лучами, исходящими из одной точки.

Учитель: Что называется углом между прямыми в пространстве?

Ученик: Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых с вершиной в точке их пересечения.

Ученик: Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.

Учитель: Что называется углом между прямой и плоскостью?

Ученик: Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость.

3.Изучение нового материала.

Учитель: В стереометрии наряду с такими углами рассматривается ещё один вид углов – двугранные углы. Вы, наверное, уже догадались какова тема сегодняшнего урока, поэтому откройте тетради, запишите сегодняшнее число и тему урока.

Запись на доске и в тетрадях:

10.12.14.

Двугранный угол.

Учитель : Чтобы ввести понятие двугранного угла, следует напомнить, что любая прямая, проведенная в данной плоскости, разделяет эту плоскость на две полуплоскости (рис.1,а)

Учитель : Представим себе, что мы перегнули плоскость по прямой так, что две полуплоскости с границей оказались уже не лежащими в одной плоскости (рис. 1, б). Полученная фигура и есть двугранный угол. Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. У двугранного угла две грани, отсюда и название - двугранный угол. Прямая - общая граница полуплоскостей - называется ребром двугранного угла. Запишите определение в тетрадь.

Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости.

Учитель : В обыденной жизни мы часто встречаемся с предметами, имеющими форму двугранного угла. Приведите примеры.

Ученик : Полураскрытая папка.

Ученик : Стена комнаты совместно с полом.

Ученик : Двускатные крыши зданий.

Учитель : Правильно. И таких примеров огромное количество.

Учитель : Как вы знаете, углы на плоскости измеряются в градусах. Вероятно у вас возник вопрос, а как же измеряются двугранные углы? Это делается следующим образом. Отметим на ребре двугранного угла какую-нибудь точку и в каждой грани из этой точки проведем луч перпендикулярно к ребру. Образованный этими лучами угол называется линейным углом двугранного угла. Сделайте чертёж у себя в тетрадях.

Запись на доске и в тетрадях.

О а, АО а, ВО a , СА BD – двугранный угол, AOB линейный угол двугранного угла.

Учитель : Все линейные углы двугранного угла равны. Сделайте себе ещё вот такой чертёж.

Учитель : Докажем это. Рассмотрим два линейных угла АОВ и PQR . Лучи ОА и QP лежат в одной грани и перпендикулярны OQ , значит, они сонаправлены. Аналогично лучи ОВ и QR сонаправлены. Значит, AOB = PQR (как углы с сонаправленными сторонами).

Учитель : Ну, а теперь ответ на наш вопрос как же измеряется двугранный угол. Градусной мерой двугранного угла называется градусная мера его линейного угла. Перерисуйте из учебника со страницы 48 изображения острого, прямого и тупого двугранного угла.

4.Закрепление изученного материала.

Учитель : Сделайте чертежи к задачам.

1 . Дано: Δ ABC , АС = ВС, АВ лежит в плоскости α, CD α, С α. Построить линейный угол двугранного угла CABD .

Ученик : Решение: CM AB , DC АВ. CMD - искомый.

2. Дано: Δ ABC , C = 90°, ВС лежит плоскости α, АО α, A α.

Построить линейный угол двугранного угла АВСО.

Ученик : Решение: AB BC , АО ВС, значит, ОС ВС. ACO - искомый.

3 . Дано: Δ ABC , С = 90°, АВ лежит в плоскости α, CD α, С α. Построить линейный угол двугранного угла DABC .

Ученик : Решение: CK AB , DC АВ, DK АВ, значит, DKC - искомый.

4 . Дано: DABC - тетраэдр, DO ABC .Построить линейный угол двугранного угла ABCD .

Ученик : Решение: DM ВС, DO ВС, значит, ОМ ВС; OMD - искомый.

5.Подведение итогов.

Учитель: Что нового вы узнали сегодня на уроке?

Ученики : Что называется двугранным углом, линейным углом, как измеряется двугранный угол.

Учитель : Что повторили?

Ученики : Что называется углом на плоскости; углом между прямыми.

6.Домашнее задание.

Запись на доске и в дневниках: п. 22, №167, №170.

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: ввести понятие двугранного угла и его линейного угла;

  • рассмотреть задачи на применение этих понятий;
  • сформировать конструктивный навык нахождения угла между плоскостями;
  • рассмотреть задачи на применение этих понятий.
  • Ход урока

    I. Организационный момент.

    Сообщить тему урока, сформировать цели урока.

    II. Актуализация знаний учащихся (слайд 2, 3).

    1. Подготовка к изучению нового материала.

    Что называется углом на плоскости?

    Что называется углом между прямыми в пространстве?

    Что называется углом между прямой и плоскостью?

    Сформулируйте теорему о трех перпендикулярах

    III. Изучение нового материала.

    • Понятие двугранного угла.

    Фигура, образованная двумя полуплоскостями , проходящими через прямую МN, называется двугранным углом (слайд 4).

    Полуплоскости - грани, прямая МN – ребро двугранного угла.

    Какие предметы в обыденной жизни имеют форму двугранного угла? (Cлайд 5)

    • Угол между плоскостями АСН и СНD – это двугранный угол АСНD, где СН – ребро. Точки А и D лежат на гранях этого угла. Угол AFD – линейный угол двугранного угла АCHD (слайд 6).
    • Алгоритм построения линейного угла (слайд 7).

    1 способ. На ребре взять любую точку О и провести перпендикуляры в эту точку (РО DE, KO DE) получили угол РОК - линейный.

    2 способ. В одной полуплоскости взять точку К и опустить из нее два перпендикуляра на другую полуплоскость и ребро (КО и КР), тогда по теореме обратной ТТП РОDE

    • Все линейные углы двугранного угла равны (слайд 8). Доказательство: лучи ОА и О 1 А 1 сонаправлены, лучи ОВ и О 1 В 1 тоже сонаправлены, углы ВОА и В 1 О 1 А 1 равны как углы с сонаправлеными сторонами.
    • Градусной мерой двугранного угла называется градусная мера его линейного угла (слайд 9).

    IV. Закрепление изученного материала.

    • Решение задач (устно по готовым чертежам). (Слайды10-12)

    1. РАВС – пирамида; угол АСВ равен 90 о, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол РСВ – линейный угол двугранного угла с

    2. РАВС - пирамида; АВ = ВС, D – середина отрезка АС, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол PDB – линейный угол двугранного угла с ребром АС.

    3. PABCD – пирамида; прямая РВ перпендикулярна плоскости АВС, ВК перпендикулярна DC. Доказать, что угол РКВ – линейный угол двугранного угла с ребром СD.

    • Задачи на построение линейного угла (слайды 13-14).

    1. Построить линейный угол двугранного угла с ребром АС, если в пирамиде РАВС грань АВС – правильный треугольник, О – точка пересечения медиан, прямая РО перпендикулярна плоскости АВС

    2. Дан ромб АВСD.Прямая РС перпендикулярна плоскости АВСD.

    Построить линейный угол двугранного угла с ребром ВD и линейный угол двугранного угла с ребром АD.

    • Вычислительная задача. (Слайд 15)

    В параллелограмме АВСD угол АDС равен 120 0 , АD = 8 см,

    DС= 6 см, прямая РС перпендикулярна плоскости АВС, РС= 9 см.

    Найти величину двугранного угла с ребром АD и площадь параллелограмма.

    V. Домашнее задание (слайд16).

    П. 22, № 168, 171.

    Используемая литература:

    1. Геометрия 10-11 Л.С.Атанасян.
    2. Система задач по теме “Двугранные углы” М.В.Севостьянова (г.Мурманск), журнал Математика в школе 198… г.

    Величину угла между двумя различными плоскостями можно определить для любого взаимного расположения плоскостей.

    Тривиальный случай если плоскости параллельны. Тогда угол между ними считается равным нулю.

    Нетривиальный случай если плоскости пересекаются. Этому случаю и посвящено дальнейшее обсуждение. Сначала нам понадобится понятие двугранного угла.

    9.1 Двугранный угол

    Двугранный угол это две полуплоскости с общей прямой (которая называется ребром двугранного угла). На рис. 50 изображён двугранный угол, образованный полуплоскостями и; ребром этого двугранного угла служит прямая a, общая для данных полуплоскостей.

    Рис. 50. Двугранный угол

    Двугранный угол можно измерять в градусах или радианах словом, ввести угловую величину двугранного угла. Делается это следующим образом.

    На ребре двугранного угла, образованного полуплоскостями и, возьмём произвольную точку M. Проведём лучи MA и MB, лежащие соответственно в данных полуплоскостях и перпендикулярные ребру (рис. 51 ).

    Рис. 51. Линейный угол двугранного угла

    Полученный угол AMB это линейный угол двугранного угла. Угол " = \AMB как раз и является угловой величиной нашего двугранного угла.

    Определение. Угловая величина двугранного угла это величина линейного угла данного двугранного угла.

    Все линейные углы двугранного угла равны друг другу (ведь они получаются друг из друга параллельным сдвигом). Поэтому данное определение корректно: величина " не зависит от конкретного выбора точки M на ребре двугранного угла.

    9.2 Определение угла между плоскостями

    При пересечении двух плоскостей получаются четыре двугранных угла. Если все они имеют одинаковую величину (по 90), то плоскости называются перпендикулярными; угол между плоскостями тогда равен 90 .

    Если не все двугранные углы одинаковы (то есть имеются два острых и два тупых), то углом между плоскостями называется величина острого двугранного угла (рис. 52 ).

    Рис. 52. Угол между плоскостями

    9.3 Примеры решения задач

    Разберём три задачи. Первая простая, вторая и третья примерно на уровне C2 на ЕГЭ по математике.

    Задача 1. Найдите угол между двумя гранями правильного тетраэдра.

    Решение. Пусть ABCD правильный тетраэдр. Проведём медианы AM и DM соответствующих граней, а также высоту тетраэдра DH (рис. 53 ).

    Рис. 53. К задаче 1

    Будучи медианами, AM и DM являются также высотами равносторонних треугольников ABC и DBC. Поэтому угол " = \AMD есть линейный угол двугранного угла, образованного гранями ABC и DBC. Находим его из треугольника DHM:

    1 AM

    Ответ: arccos 1 3 .

    Задача 2. В правильной четырёхугольной пирамиде SABCD (с вершиной S) боковое ребро равно стороне основания. Точка K середина ребра SA. Найдите угол между плоскостями

    Решение. Прямая BC параллельна AD и тем самым параллельна плоскости ADS. Поэтому плоскость KBC пересекает плоскость ADS по прямой KL, параллельной BC (рис. 54 ).

    Рис. 54. К задаче 2

    При этом KL будет также параллельна прямой AD; следовательно, KL средняя линия треугольника ADS, и точка L середина DS.

    Проведём высоту пирамиды SO. Пусть N середина DO. Тогда LN средняя линия треугольника DOS, и потому LN k SO. Значит, LN перпендикуляр к плоскости ABC.

    Из точки N опустим перпендикуляр NM на прямую BC. Прямая NM будет проекцией наклонной LM на плоскость ABC. Из теоремы о трёх перпендикулярах следует тогда, что LM также перпендикулярна BC.

    Таким образом, угол " = \LMN является линейным углом двугранного угла, образованного полуплоскостями KBC и ABC. Будем искать этот угол из прямоугольного треугольника LMN.

    Пусть ребро пирамиды равно a. Сначала находим высоту пирамиды:

    SO = p

    Решение. Пусть L точка пересечения прямых A1 K и AB. Тогда плоскость A1 KC пересекает плоскость ABC по прямой CL (рис.55 ).

    A C

    Рис. 55. К задаче 3

    Треугольники A1 B1 K и KBL равны по катету и острому углу. Следовательно, равны и другие катеты: A1 B1 = BL.

    Рассмотрим треугольник ACL. В нём BA = BC = BL. Угол CBL равен 120 ; стало быть, \BCL = 30 . Кроме того, \BCA = 60 . Поэтому \ACL = \BCA + \BCL = 90 .

    Итак, LC ? AC. Но прямая AC служит проекцией прямой A1 C на плоскость ABC. По теореме о трёх перпендикулярах заключаем тогда, что LC ? A1 C.

    Таким образом, угол A1 CA линейный угол двугранного угла, образованного полуплоскостями A1 KC и ABC. Это и есть искомый угол. Из равнобедренного прямоугольного треугольника A1 AC мы видим, что он равен 45 .

    Величину угла между двумя различными плоскостями можно определить для любого взаимного расположения плоскостей.

    Тривиальный случай если плоскости параллельны. Тогда угол между ними считается равным нулю.

    Нетривиальный случай если плоскости пересекаются. Этому случаю и посвящено дальнейшее обсуждение. Сначала нам понадобится понятие двугранного угла.

    9.1 Двугранный угол

    Двугранный угол это две полуплоскости с общей прямой (которая называется ребром двугранного угла). На рис. 50 изображён двугранный угол, образованный полуплоскостями и; ребром этого двугранного угла служит прямая a, общая для данных полуплоскостей.

    Рис. 50. Двугранный угол

    Двугранный угол можно измерять в градусах или радианах словом, ввести угловую величину двугранного угла. Делается это следующим образом.

    На ребре двугранного угла, образованного полуплоскостями и, возьмём произвольную точку M. Проведём лучи MA и MB, лежащие соответственно в данных полуплоскостях и перпендикулярные ребру (рис. 51 ).

    Рис. 51. Линейный угол двугранного угла

    Полученный угол AMB это линейный угол двугранного угла. Угол " = \AMB как раз и является угловой величиной нашего двугранного угла.

    Определение. Угловая величина двугранного угла это величина линейного угла данного двугранного угла.

    Все линейные углы двугранного угла равны друг другу (ведь они получаются друг из друга параллельным сдвигом). Поэтому данное определение корректно: величина " не зависит от конкретного выбора точки M на ребре двугранного угла.

    9.2 Определение угла между плоскостями

    При пересечении двух плоскостей получаются четыре двугранных угла. Если все они имеют одинаковую величину (по 90), то плоскости называются перпендикулярными; угол между плоскостями тогда равен 90 .

    Если не все двугранные углы одинаковы (то есть имеются два острых и два тупых), то углом между плоскостями называется величина острого двугранного угла (рис. 52 ).

    Рис. 52. Угол между плоскостями

    9.3 Примеры решения задач

    Разберём три задачи. Первая простая, вторая и третья примерно на уровне C2 на ЕГЭ по математике.

    Задача 1. Найдите угол между двумя гранями правильного тетраэдра.

    Решение. Пусть ABCD правильный тетраэдр. Проведём медианы AM и DM соответствующих граней, а также высоту тетраэдра DH (рис. 53 ).

    Рис. 53. К задаче 1

    Будучи медианами, AM и DM являются также высотами равносторонних треугольников ABC и DBC. Поэтому угол " = \AMD есть линейный угол двугранного угла, образованного гранями ABC и DBC. Находим его из треугольника DHM:

    1 AM

    Ответ: arccos 1 3 .

    Задача 2. В правильной четырёхугольной пирамиде SABCD (с вершиной S) боковое ребро равно стороне основания. Точка K середина ребра SA. Найдите угол между плоскостями

    Решение. Прямая BC параллельна AD и тем самым параллельна плоскости ADS. Поэтому плоскость KBC пересекает плоскость ADS по прямой KL, параллельной BC (рис. 54 ).

    Рис. 54. К задаче 2

    При этом KL будет также параллельна прямой AD; следовательно, KL средняя линия треугольника ADS, и точка L середина DS.

    Проведём высоту пирамиды SO. Пусть N середина DO. Тогда LN средняя линия треугольника DOS, и потому LN k SO. Значит, LN перпендикуляр к плоскости ABC.

    Из точки N опустим перпендикуляр NM на прямую BC. Прямая NM будет проекцией наклонной LM на плоскость ABC. Из теоремы о трёх перпендикулярах следует тогда, что LM также перпендикулярна BC.

    Таким образом, угол " = \LMN является линейным углом двугранного угла, образованного полуплоскостями KBC и ABC. Будем искать этот угол из прямоугольного треугольника LMN.

    Пусть ребро пирамиды равно a. Сначала находим высоту пирамиды:

    SO = p

    Решение. Пусть L точка пересечения прямых A1 K и AB. Тогда плоскость A1 KC пересекает плоскость ABC по прямой CL (рис.55 ).

    A C

    Рис. 55. К задаче 3

    Треугольники A1 B1 K и KBL равны по катету и острому углу. Следовательно, равны и другие катеты: A1 B1 = BL.

    Рассмотрим треугольник ACL. В нём BA = BC = BL. Угол CBL равен 120 ; стало быть, \BCL = 30 . Кроме того, \BCA = 60 . Поэтому \ACL = \BCA + \BCL = 90 .

    Итак, LC ? AC. Но прямая AC служит проекцией прямой A1 C на плоскость ABC. По теореме о трёх перпендикулярах заключаем тогда, что LC ? A1 C.

    Таким образом, угол A1 CA линейный угол двугранного угла, образованного полуплоскостями A1 KC и ABC. Это и есть искомый угол. Из равнобедренного прямоугольного треугольника A1 AC мы видим, что он равен 45 .

    Данный урок предназначается для самостоятельного изучения темы «Двугранный угол». В ходе этого занятия учащиеся познакомятся с одной из самых важных геометрических фигур - двугранным углом. Также на уроке нам предстоит узнать о том, как определить линейный угол рассматриваемой геометрической фигуры и какой бывает двугранный угол при основании фигуры.

    Повторим, что такое угол на плоскости и как он измеряется.

    Рис. 1. Плоскость

    Рассмотрим плоскость α (рис. 1). Из точки О исходят два луча - ОВ и ОА .

    Определение . Фигура, образованная двумя лучами, исходящими из одной точки, называется углом.

    Угол измеряется в градусах и в радианах.

    Вспомним, что такое радиан.

    Рис. 2. Радиан

    Если мы имеем центральный угол, длина дуги которого равна радиусу, то такой центральный угол называется углом в 1 радиан. , ∠АОВ = 1 рад (рис. 2).

    Связь радианов и градусов.

    рад.

    Получаем, рад. (). Тогда,

    Определение . Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а , не принадлежащими одной плоскости.

    Рис. 3. Полуплоскости

    Рассмотрим две полуплоскости α и β (рис. 3). Их общая граница - а . Указанная фигура называется двугранным углом.

    Терминология

    Полуплоскости α и β - это грани двугранного угла.

    Прямая а - это ребро двугранного угла.

    На общем ребре а двугранного угла выберем произвольную точку О (рис. 4). В полуплоскости α из точки О восстановим перпендикуляр ОА к прямой а . Из той же точки О во второй полуплоскости β восставим перпендикуляр ОВ к ребру а . Получили угол АОВ , который называется линейным углом двугранного угла.

    Рис. 4. Измерение двугранного угла

    Докажем равенство всех линейных углов для данного двугранного угла.

    Пусть мы имеем двугранный угол (рис. 5). Выберем точку О и точку О 1 на прямой а . Построим линейный угол соответствующий точке О , т. е. проведем два перпендикуляра ОА и ОВ в плоскостях α и β соответственно к ребру а . Получаем угол АОВ - линейный угол двугранного угла.

    Рис. 5. Иллюстрация доказательства

    Из точки О 1 проведем два перпендикуляра ОА 1 и ОВ 1 к ребру а в плоскостях α и β соответственно и получим второй линейный угол А 1 О 1 В 1 .

    Лучи О 1 А 1 и ОА сонаправленны, так как они лежат в одной полуплоскости и параллельны между собой как два перпендикуляра к одной и той же прямой а .

    Аналогично, лучи О 1 В 1 и ОВ сонаправлены, значит, АОВ = А 1 О 1 В 1 как углы с сонаправленными сторонами, что и требовалось доказать.

    Плоскость линейного угла перпендикулярна ребру двугранного угла.

    Доказать : а АОВ.

    Рис. 6. Иллюстрация доказательства

    Доказательство :

    ОА а по построению, ОВ а по построению (рис. 6).

    Получаем, что прямая а перпендикулярна двум пересекающимся прямым ОА и ОВ из плоскости АОВ , значит, прямая а перпендикулярна плоскости ОАВ , что и требовалось доказать.

    Двугранный угол измеряется своим линейным углом. Это означает, что, сколько градусов радиан содержится в линейном угле, столько же градусов радиан содержится в его двугранном угле. В соответствии с этим различают следующие виды двугранных углов.

    Острый (рис. 6)

    Двугранный угол острый, если его линейный угол острый, т.е. .

    Прямой (рис. 7)

    Двугранный угол прямой, когда его линейный угол равен 90°- Тупой (рис. 8)

    Двугранный угол тупой, когда его линейный угол тупой, т.е. .

    Рис. 7. Прямой угол

    Рис. 8. Тупой угол

    Примеры построения линейных углов в реальных фигурах

    АВС D - тетраэдр.

    1. Построить линейный угол двугранного угла с ребром АВ .

    Рис. 9. Иллюстрация к задаче

    Построение :

    Речь идет о двугранном угле, который образован ребром АВ и гранями АВ D и АВС (рис. 9).

    Проведем прямую D Н перпендикулярно плоскости АВС , Н - основание перпендикуляра. Проведем наклонную D М перпендикулярно прямой АВ, М - основание наклонной. По теореме о трех перпендикулярах заключаем, что проекция наклонной НМ также перпендикулярна прямой АВ .

    То есть, из точки М восстановлены два перпендикуляра к ребру АВ в двух гранях АВ D и АВС . Мы получили линейный угол D МН .

    Заметим, что АВ , ребро двугранного угла, перпендикулярно плоскости линейного угла, т. е. плоскости D МН . Задача решена.

    Замечание . Двугранный угол можно обозначить следующим образом: D АВС , где

    АВ - ребро, а точки D и С лежат в разных гранях угла.

    2. Построить линейный угол двугранного угла с ребром АС .

    Проведем перпендикуляр D Н к плоскости АВС и наклонную D N перпендикулярно прямой АС. По теореме о трех перпендикулярах получаем, что НN - проекция наклонной D N на плоскость АВС, также перпендикулярна прямой АС. D - линейный угол двугранного угла с ребром АС .

    В тетраэдре D АВС все ребра равны. Точка М - середина ребра АС . Докажите, что угол D МВ - линейный угол двугранного угла ВАС D , т. е. двугранного угла с ребром АС . Одна его грань - АС D , вторая - АСВ (рис. 10).

    Рис. 10. Иллюстрация к задаче

    Решение :

    Треугольник ADC - равносторонний, DM - медиана, а значит и высота. Значит, D М АС. Аналогично, треугольник A В C - равносторонний, В M - медиана, а значит, и высота. Значит, ВМ АС.

    Таким образом, из точки М ребра АС двугранного угла восстановлено два перпендикуляра DM и ВМ к этому ребру в гранях двугранного угла.

    Значит, ∠DM В - линейный угол двугранного угла, что и требовалось доказать.

    Итак, мы определили двугранный угол, линейный угол двугранного угла.

    На следующем уроке мы рассмотрим перпендикулярность прямых и плоскостей, дальше узнаем что такое двугранный угол при основании фигур.

    Список литературы по теме "Двугранный угол", "Двугранный угол при основании геометрических фигур"

    1. Геометрия. 10-11 класс: учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
    2. Геометрия. 10 класс: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
    1. Yaklass.ru ().
    2. E-science.ru ().
    3. Webmath.exponenta.ru ().
    4. Tutoronline.ru ().

    Домашнее задание по теме "Двугранный угол", определение двугранного угла при основании фигур

    Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

    Задания 2, 3 стр. 67.

    Что такое линейный угол двугранного угла? Как его построить?

    АВС D - тетраэдр. Построить линейный угол двугранного угла с ребром:

    а) В D б) D С.

    АВС DA 1 B 1 C 1 D 1 - куб. Постройте линейный угол двугранного угла А 1 АВС с ребром АВ . Определите его градусную меру.

    © 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины