Этапы функционирования химической синаптической передачи. Строение химических синапсов. Передача сигналов в химических синапсах

Этапы функционирования химической синаптической передачи. Строение химических синапсов. Передача сигналов в химических синапсах

В большинстве синапсов нервной системы для передачи сигналов от пресинаптического нейрона на постсинаптический используются химические вещества - медиаторы или нейротрансмиттеры. Химическая передача сигналов осуществляется посредством химических синапсов (рис. 14), включающих мембраны пре- и постсинаптических клеток и разделяющую их синаптическую щель - область внеклеточного пространства шириной около 20 нм.

Рис.14. Химический синапс

В области синапса аксон обычно расширяется, образуя т.н. пресинаптическую бляшку или концевую пластинку. В пресинаптическом окончании содержатся синаптические везикулы - окруженные мембраной пузырьки диаметром порядка 50 нм, в каждом из которых заключено 10 4 – 5х10 4 молекул медиатора. Синаптическая щель заполнена мукополисахаридом, склеивающим между собой пре- и постсинаптические мембраны.

Установлена следующая последовательность событий при передаче через химический синапс. При достижении потенциалом действия пресинаптического окончания происходит деполяризация мембраны в зоне синапса, активируются кальциевые каналы плазматической мембраны и в окончание входят ионы Ca 2+ . Повышение внутриклеточного уровня кальция инициирует экзоцитоз везикул, наполненных медиатором. Содержимое везикул высвобождается во внеклеточное пространство, и часть молекул медиатора, диффундируя, связываются с рецепторными молекулами постсинаптической мембраны. Среди них есть рецепторы, которые могут непосредственно управлять ионными каналами. Связывание с такими рецепторами молекул медиатора является сигналом для активации ионных каналов. Таким образом, наряду с рассмотренными в предыдущем разделе потенциал-зависимыми ионными каналами существуют медиатор-зависимые каналы (иначе называются лиганд-активируемые каналы или ионотропные рецепторы). Они открываются и пропускают в клетку соответствующие ионы. Движение ионов по их электрохимическим градиентам, порождает натриевый деполяризующий (возбуждающий) или калиевый (хлорный) гиперполяризующий (тормозной) ток. Под воздействием деполяризующего тока развивается постсинаптический возбуждающий потенциал или потенциал концевой пластинки (ПКП). Если этот потенциал превосходит пороговый уровень, открываются потенциалзависимые натриевые каналы и возникает ПД. Скорость проведения импульса в синапсе меньше чем по волокну, т.е. наблюдается синаптическая задержка, напр., в нервно-мышечном синапсе лягушки – 0,5 мс. Описанная выше последовательность событий характерна для т.н. прямой синаптической передачи .

Кроме рецепторов непосредственно управляющих ионными каналами в химической передаче участвуют рецепторы, сопряженные с G-белками или метаботропные рецепторы .


G-белки, названные так по их способности связываться с гуаниновыми нуклеотидами, являются тримерами, состоящими из трех субъединиц: α, β и γ. Существует большое количество разновидностей каждой из субъединиц (20 α, 6 β, 12 γ). что создает основу для огромного количества их комбинаций. G-белки разделяются на четыре основных группы по структуре и мишеням их α-субъединиц: G s стимулирует аденилатциклазу; G i интибирует аденилатциклазу; G q связывается с фосфолипазой С; мишени С 12 пока не известны. Семейство G i включает G t (трансдуцин), который активирует фосфодиэстеразу цГМФ, а также две изоформы G 0 , которые связываются с ионными каналами. Вместе с тем, каждый из G-белков может взаимодействовать с несколькими эффекторами, а разные G-белки могут модулировать активность одних и тех же ионных каналов. В неактивированном состоянии гуанозиндифосфат (ГДФ) связан с α-субъединицей, и все три субъединицы объединены в тример. Взаимодействие с активированным рецептором позволяет гуанозинтрифосфату (ГТФ) заместить ГДФ на α-субъединице, что приводит к диссоциации α-- и βγ -субъединиц (в физиологических условиях β- и γ-субъединицы остаются связанными). Свободные α--и βγ -субъединицы связываются с белками-мишенями и модулируют их активность. Свободная α-субъединица обладает ГТФ-азной активностью, вызывая гидролиз ГТФ с образованием ГДФ. В результате α-- и βγ -субъединицы вновь связываются, что приводит к прекращению их активности.

В настоящее время идентифицировано > 1000 метаботропных рецепторов. В то время как рецепторы, связанные с каналами, вызывают электрические изменения в постсинаптической мембране всего за несколько миллисекунд или еще быстрее, рецепторам, не связанным с каналами, для достижения эффекта требуется несколько сотен миллисекунд и более. Это обусловлено тем обстоятельством, что между первоначальным сигналом и ответом должна пройти серия ферментативных реакций. Более того, часто сам сигнал "размыт" не только во времени, но и пространстве, поскольку установлено, что медиатор может высвобождаться не из нервных окончаний, а из варикозных утолщений (узелков), расположенных вдоль аксона. В этом случае отсутствуют морфологически выраженные синапсы, узелки не прилегают к каким-то специализированным рецептивным участкам постсинаптической клетки. Поэтому медиатор диффундирует в значительном объеме нервной ткани, воздействуя (как гормон) сразу на рецепторное поле у множества нервных клеток, расположенных в различных участках нервной системы и даже за ее пределами. Это т.н. непрямая синаптическая передача.

В ходе функционирования синапсы подвергаются функциональным и морфологическим перестройкам. Этот процесс назван синаптической пластичностью . Наиболее ярко такие изменения проявляются при высокочастотной активности, являющейся естественным условием функционирования синапсов in vivo. Например, частота импульсации вставочных нейронов в ЦНС достигает 1000 Гц. Пластичность может проявляться либо в увеличении (потенциации), либо уменьшении (депрессии) эффективности синаптической передачи. Выделяют кратковременные (длятся секунды и минуты) и долговременные (длятся часы, месяцы, годы) формы синаптической пластичности. Последние особенно интересны тем, что они имеют отношение к процессам научения и памяти. Например, долговременная потенциация - устойчивое усиление синаптической передачи в ответ на высокочастотное раздражение. Этот вид пластичности может продолжаться дни и месяцы. Долговременная потенциация наблюдается во всех отделах ЦНС, но наиболее полно изучена на глутаматергических синапсах в гиппокампе. Долговременная депрессия также возникает в ответ на высокочастотное раздражение и проявляется в виде длительного ослабления синаптической передачи. Этот вид пластичности имеет сходный механизм с долговременной потенциацией, но развивается при низкой внутриклеточной концентрации ионов Са2+, в то время как долговременная потенциация – при высокой.

На выделение медиаторов из пресинаптического окончания и химическую передачу нервного импульса в синапсе могут влиять медиаторы, выделяемые из третьего нейрона. Такие нейроны и медиаторы могут тормозить синаптическую передачу или, напротив, облегчать ее. В этих случаях говорят об гетеросинаптической модуляции - гетеросинаптическом торможении или облегчении в зависимости от конечного результата.

Таким образом, химическая передача более гибкая, чем электрическая, поскольку при этом без труда может осуществляться как возбуждающее, так и тормозное действие. Кроме того, при активации постсинаптических каналов химическими агентами может возникать достаточно сильный ток, способный деполяризовать крупные клетки.

Медиаторы - точки приложения и характер действия

Одна из самых сложных задач, стоящих перед нейрофизиологами, состоит в точной химической идентификации медиаторов, действующих в различных синапсах. К настоящему времени известно довольно много соединений, которые могут выполнять роль химических посредников при межклеточной передаче нервного импульса. Однако точно идентифицировано лишь ограниченное число таких медиаторов; некоторые из будут рассмотрены ниже. Для того чтобы медиаторная функция того или иного вещества в какой-либо ткани была неопровержимо доказана, должны удовлетворяться определенные критерии:

1. при прямом нанесении на постсинаптическую мембрану вещество должно вызывать в постсинаптической клетке абсолютно такие же физиологические эффекты, что и при раздражении пресинаптического волокна;

2. должно быть доказано, что это вещество выделяется при активации пресинаптического нейрона;

3. действие вещества должно блокироваться теми же агентами, которые подавляют и естественное проведение сигнала.

Синапс – это мембранное образование двух (или более) клеток, в котором происходит передача возбуждения (информации) от одной клетки к другой.

Существует следующая классификация синапсов:

1) по механизму передачи возбуждения (и по строению):

Химические;

Электрические (эфапсы);

Смешанные.

2) по выделяемому нейромедиатору:

Адренергические – нейромедиатор норадреналин;

Холинергические – нейромедиатор ацетилхолин;

Дофаминергические – нейромедиатор дофамин;

Серотонинергические – нейромедиатор серотонин;

ГАМК-ергические – нейромедиатор гамма-аминомасляная кислота (ГАМК)

3) по влиянию:

Возбуждающие;

Тормозные.

4) по местоположению:

Нервно-мышечные;

Нейро-нейрональные:

а) аксо-соматические;

б) аксо-аксональные;

в) аксо-дендрические;

г) дендросоматические.

Рассмотрим три типа синапсов: химический, электрический и смешанный (совмещающий свойства химического и электрического синапсов).

Независимо от типа, синапсы имеют общее черты строения: нервный отросток на конце образует расширение (синаптическую бляшку , СБ); конечная мембрана СБ отлична от других участков мембраны нейрона и носит название пресинаптической мембраны (ПреСМ); специализированная мембрана второй клетки обозначается постсинаптической мембраной (ПостСМ); между мембранами синапса находится синаптическая щель (СЩ, рис. 1, 2).

Рис. 1. Схема строения химического синапса

Электрические синапсы (эфапсы, ЭС) сегодня обнаружены в НС не только ракообразных, но и моллюсков, членистоногих, млекопитающих. ЭС обладают рядом уникальных свойств. Они имеют узкую синаптическую щель (около 2-4 нм), благодаря чему возбуждение может передаваться электрохимическим способом (как по нервному волокну за счет ЭДС) с высокой скоростью и в обоих направлениях : как от ПреСМ мембраны к ПостСМ, так и от ПостСМ к ПреСМ. Между клетками имеются щелевые контакты (коннексусы или коннексоны), образованные двумя белками коннексинами. Шесть субъединиц каждого коннексина формируют каналы ПреСМ и ПостСМ, через которые клетки могут обмениваться низкомолекулярными веществами молекулярной массой 1000-2000 Дальтон. Работа коннексонов может регулироваться ионами Са 2+ (рис. 2).

Рис. 2. Схема электрического синапса

ЭС обладают большей специализацией по сравнению с химическими синапсами и обеспечивают высокую скорость передачи возбуждения . Однако он, по-видимому, лишен возможности более тонкого анализа (регуляции) передаваемой информации.



Химические синапсы доминируют в НС . История их изучения начинается с работ Клода Бернара, который в 1850 г. опубликовал статью «Исследование о кураре». Вот что он писал: «Кураре – сильный яд, приготовляемый некоторыми народностями (большей частью людоедами), обитающими в лесах... Амазонки». И далее, «Кураре сходен с ядом змеи в том отношении, что его можно безнаказанно ввести в пищеварительный тракт человека или животных, в то время как впрыскивание его под кожу или в какую-либо часть тела быстро приводит к смерти. …через несколько мгновений животных ложатся, как будто они устали. Затем дыхание останавливается и их чувствительность и жизнь исчезают, причем животные не издают крика и не проявляют никаких признаков боли». Хотя К.Бернар не пришел к мысли о химической передачи нервного импульса, его классические опыты с кураре позволили этой мысли зародиться. Прошло более полувека, когда Дж. Ленгли установил (1906 г.), что парализующее действие кураре связано с особой частью мышцы, которую он назвал рецептивной субстанцией. Впервые предположение о передаче возбуждения с нерва на эффекторный орган с помощью химического вещества было высказано Т. Элиотом (1904).

Однако окончательно утвердили гипотезу химического синапса только работы Г. Дейла и О. Лёви. Дейл в 1914 г. установил, что раздражение парасимпатического нерва имитируется ацетилхолином. Лёви в 1921 г. доказал, что ацетилхолин выделяется из нервного окончания блуждающего нерва, а в 1926 г. открыл ацетилхолинэстеразу – фермент, разрушающий ацетилхолин.

Возбуждение в химическом синапсе передается с помощью медиатора . Этот процесс включает в себя несколько стадий. Рассмотрим эти особенности на примере ацетилхолинового синапса, который широко распространении в ЦНС, вегетативной и периферической нервной системе (рис. 3).

Рис. 3. Схема функционирования химического синапса



1. Медиатор ацетилхолин (АХ) синтезируется в синаптической бляшке из ацетил-СоА (ацетил-кофермент А образуется в митохондриях) и холина (синтезируется печенью) с помощью ацетилхолинтрансферазы (рис. 3, 1).

2. Медиатор упакован в синаптические везикулы (Кастильо, Катц; 1955 г.). Количество медиатора в одной везикуле составляет несколько тысяч молекул (квант медиатора ). Часть везикул расположена на ПреСМ и готова к высвобождению медиатора (рис. 3, 2).

3. Высвобождается медиатор путем экзоцитоза при возбуждении ПреСМ. Важную роль в разрыве мембран и квантовом высвобождении медиатора играет входящий ток Са 2+ (рис. 3, 3).

4. Высвободившийся медиатор связывается со специфическим белком-рецептором ПостСМ (рис. 3, 4).

5. В результате взаимодействия медиатора и рецептора изменяется ионная проводимость ПостСМ: при открытии Na + каналов происходит деполяризации; открытие K + или Cl - каналов приводит к гиперполяризации (рис. 3, 5).

6 . Вслед за деполяризацией запускаются биохимические процессы в постсинаптической цитоплазме (рис. 3, 6).

7. Рецептор освобождается от медиатора: АХ разрушается ацетилхолинэстеразой (АХЭ, рис. 3. 7).

Обратите внимание, что медиатор в норме взаимодействует со специфическим рецептором с определенной силой и длительностью . Почему кураре - яд? Местом действия кураре как раз является АХ синапс. Кураре более прочно связывается с ацетилхолиновым рецептором и лишает его взаимодействия с медиатором (АХ). Возбуждение с соматических нервов на скелетные мышцы, в том числе с диафрагмального нерва на основную дыхательную мышцу (диафрагму) передается с помощью АХ, поэтому кураре вызывает релаксацию (расслабление) мышц и остановку дыхания (из-за чего, собственно, и наступает смерть).

Отметим основные особенности передачи возбуждения в химическом синапсе .

1. Возбуждение передается с помощью химического посредника – медиатора.

2. Возбуждение передается в одном направлении: от ПреСм к ПостСМ.

3. В химическом синапсе происходит временная задержка в проведении возбуждения, поэтому синапс обладает низкой лабильностью .

4. Химический синапс обладает высокой чувствительностью к действию не только медиаторов, но и других биологически активных веществ, лекарств и ядов.

5. В химическом синапсе происходит трансформация возбуждений: электрохимическая природа возбуждения на ПреСМ продолжается в биохимический процесс экзоцитоза синаптических везикул и связывания медиатора со специфическим рецептором. За этим следует изменение ионной проводимости ПостСМ (тоже электрохимический процесс), который продолжается биохимическими реакциями в постсинаптической цитоплазме.

В принципе, такая многостадийность передачи возбуждения должна иметь весомое биологическое значения. Обратите внимание, что на каждом из этапов возможна регуляция процесса передачи возбуждения. Несмотря на ограниченное количество медиаторов (чуть больше десятка), в химическом синапсе имеются условия для широкого разнообразия в решении судьбы приходящего в синапс нервного возбуждения. Совокупность особенностей химических синапсов объясняет индивидуальное биохимическое разнообразие нервных и психических процессов.

Теперь остановимся на двух важных процессах, протекающих в постсинаптическом пространстве. Мы отметили, что в результате взаимодействия АХ с рецептором на ПостСМ могут развиваться как деполяризация, так и гиперполяризация. От чего же зависит, будет ли медиатор возбуждающим или тормозным? Результат взаимодействия медиатора и рецептора определяется свойствами рецепторного белка (еще одно важное свойство химического синапса – ПостСМ активна по отношению к приходящему к ней возбуждению). В принципе химический синапс – динамическое образование, изменяя рецептор, клетка, принимающая возбуждение, может влиять на его дальнейшую судьбу. Если свойства рецептора таковы, что его взаимодействие с медиатором открывает Na + каналы, то при выделении одного кванта медиатора на ПостСМ развивается локальный потенциал (для нервно-мышечного синапса он носит название миниатюрного потенциала концевой пластинки – МПКП).

Когда же возникает ПД? Возбуждение ПостСМ (возбуждающий постсинаптический потенциал – ВПСП) возникает как результат суммации локальных потенциалов. Можно выделить два типа суммационных процессов . При последовательном выделении нескольких квантов медиатора в одном и том же синапсе (вода и камень точит) возникает временна я суммация . Есликванты медиаторы выделяются одновременно в разных синапсах (на мембране нейрона их может быть несколько тысяч) возникаетпространственная суммация . Реполяризация ПостСМ мембраны происходит медленно и после выделения отдельных квантов медиатора ПостСМ некоторое время находится в состоянии экзальтации (так называемая синаптическая потенциация, рис. 4). Возможно, таким образом, происходит обучение синапса (выделение квантов медиатора в определенных синапсах могут «подготовить» мембрану к решающему взаимодействию с медиатором).

При открытии K + или Cl - каналов на ПостСМ возникает тормозный постсинаптический потенциал (ТПСП, рис. 4).

Рис. 4. Потенциалы постсинаптической мембраны

Естественно, что в случае развития ТПСП дальнейшее распространение возбуждения может быть остановлено. Другой вариант прекращения процесса возбуждения – пресинаптическое торможение. Если на мембране синаптической бляшки образуется тормозный синапс, то в результате гиперполяризации ПреСМ экзоцитоз синаптических визикул может быть заблокирован.

Второй важный процесс – развитие биохимических реакций в постсинаптической цитоплазме. Изменение ионной проводимости ПостСМ активирует так называемые вторичные мессенджеры (посредники) : цАМФ, цГМФ, Са 2+ -зависимую протеинкиназу, которые, в свою очередь активируют различные протеинкиназы путем их фосфорилирования. Эти биохимические реакции могут «спускаться» вглубь цитоплазмы вплоть до ядра нейрона, регулируя процессы белкового синтеза. Таким образом, нервная клетка может ответить на пришедшее возбуждение не только решением его дальнейшим судьбы (ответить ВПСП или ТПСП, т.е. провести или не провести далее), а изменить количество рецепторов, или синтезировать белок-рецептор с новыми свойствами по отношению к определенному медиатору. Следовательно, еще одно важное свойство химического синапса: благодаря биохимическим процессам постсинаптической цитоплазмы клетка готовится (обучается) к будущим взаимодействиям.

В нервной системе функционируют разнообразные синапсы, которые отличаются медиаторами и рецепторами. Название синапсов определяется медиатором, точнее названием рецептора к конкретному медиатору. Поэтому, рассмотрим классификацию основных медиаторов и рецепторов нервной системы (смотрите так же материал, розданный на лекции!!).

Мы уже отмечали, что эффект взаимодействия медиатора и рецептора определяется свойствами рецептора. Поэтому известные медиаторы, за исключением g-аминомасляной кислоты, могут выполнять функции как возбуждающих, так и тормозных медиаторов.По химической структуре выделяют следующие группы медиаторов.

Ацетилхолин , широко распространен в ЦНС, является медиатором в холинергических синапсах вегетативной нервной системы, а также в соматических нервно-мышечных синапсах (рис. 5).

Рис. 5. Молекула ацетилхолина

Известны два типа холинорецепторов : никотиновые (Н-холинорецепторы ) и мускариновые (М-холинорецепторы ). Название получили по веществам, вызывающим сходный с ацетилхолином эффект в этих синапсах: Н-холиномиметиком является никотин , аМ-холиномиметиком - токсин мухомора Amanita muscaria (мускарин ). Блокатором (холинолитиком) Н-холинорецептора являетсяd-тубокурарин (основной компонент яда кураре), а М-холинолитиком является токсин красавки Atropa belladonna –атропин . Интересно, что свойства атропина давно известно и было время, когда женщины использовали атропин красавки, чтобы вызвать расширение зрительных зрачков (сделать глаза темными и «красивыми»).

Четыре следующих основных медиаторов имеют сходство в химической структуре, поэтому их относят к группе моноаминов . Этосеротонин или 5-гидрокситриптами (5-HT), играет важную роль в механизмах подкрепления (гормон радости). Синтезируется из незаменимой для человека аминокислоты – триптофана (рис. 6).

Рис. 6. Молекула серотонина (5-гидрокситриптамина)

Три других медиатора синтезируются из незаменимой аминокислоты фенилаланина, поэтому объединены общим названиемкатехоламинов – это дофамин (допамин), норадреналин (норэпинефрин) и адреналин (эпинефрин, рис. 7).

Рис. 7. Катехоламины

Среди аминокислот к медиаторам относят гамма-аминомасляную кислоту (g-АМК или ГАМК – известна как только тормозный медиатор), глицин, глутаминовую кислоту, аспарагиновую кислоту.

К медиаторам относят ряд пептидов . В 1931 г. Эйлером в экстрактах мозга и кишечника было обнаружено вещество, вызывающее сокращение гладких мышц кишечника, расширение кровеносных сосудов. Этот медиатор был в чистом виде выделен из гипоталамуса и получил название вещества Р (от англ. powder – порошок, состоит из 11 аминокислот). В дальнейшем установлено, что вещество Р играет важную роль в проведении болевых возбуждений (название не пришлось менять, т.к. боль по англ. - pain).

Пептид дельта сна получил свое название за способность вызывать в электроэнцефалограмме медленные высокоамплитудные ритмы (дельта-ритмы).

В мозге синтезируется целый ряд белковых медиаторов наркотической (опиатной) природы. Это пентапептиды Met-энкефалин иLeu-энкефалин , а также эндорфины . Это важнейшие блокаторы болевых возбуждений и медиаторы подкрепления (радости и удовольствия). Другими словами, наш мозг является отличной фабрикой эндогенных наркотиков. Главное, научить мозг их вырабатывать. «Как?» - спросите вы. Все просто – эндогенные опиаты вырабатываются, когда мы получаем удовольствие. Делайте все с удовольствием, заставляйте свою эндогенную фабрику синтезировать опиаты! Нам от природы с рождения дана эта возможность – подавляющее большинство нейронов реактивны на положительное подкрепление.

Исследования последних десятилетий позволили открыть еще один очень интересный медиатор – оксид азота (NO). Оказалось, что NO не только играет важную роль в регуляции тонуса кровеносных сосудов (известный вам нитроглицерин является источником NO и расширяет коронарные сосуды), но и синтезируется в нейронах ЦНС.

В принципе, история медиаторов еще не закончена, есть целый ряд веществ, которые участвуют в регуляции нервного возбуждения. Просто пока точно не установлен факт их синтеза в нейронах, они не обнаружены в синаптических везикулах, не найдены специфические к ним рецепторы

  • Антигенная структура бактерий. Групповые, ввдовые, типовые антигены. Перекрестнореагируюшие антигены. Антигенная формула.
  • Антигенная структура вирусов гриппа и ее изменчивость, роль в эпидемическом и пандемическом распространении гриппа. Механизмы естественного и приобретенного иммунитета.
  • Схема процесса передачи нервного сигнала в химическом синапсе

    Подавляющее большинство синапсов в нервной системецарства животных являются именно химическими. Для них характерно наличие нескольких общих черт, хотя, тем не менее, размеры и форма пре- и постсинаптических компонентов варьируют очень широко. Синапсы в коре головного мозга млекопитающих имеют претерминальныеаксоны около 100 нанометров толщиной и пресинаптические бутоны со средним диаметром около 1 микрометра.

    Химический синапс состоит из двух частей:пресинаптической , образованной булавовидным расширением окончанием аксона передающей клетки ипостсинаптической , представленной контактирующим участком плазматической мембраны воспринимающей клетки. Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

    Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы.

    В синаптическом расширении имеются мелкие везикулы, так называемые пресинаптические или синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуютрецепторы к тому или иному медиатору.

    Одинаковый размер пресинаптических пузырьков во всех исследованных синапсах (40-50 нанометров) сначала считали доказательством того, что каждая везикула является минимальным кластером, чье освобождение требуется для производства синаптического сигнала. Везикулы размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька имеется большое количество митохондрий (производящихаденозинтрифосфат) и упорядоченные структуры протеиновых волокон.

    Синаптическая щель - это пространство между пресинаптическим пузырьком и постсинаптической мембраной от 20 до 30 нанометров шириной, которое содержит связующие пре- и постсинапс структуры, построенные изпротеогликана. Ширина синаптической щели в каждом отдельном случае обусловлена ​​тем, что извлеченный из пресинапса медиатор должен проходить к постсинапсу за время, являющееся значительно меньше частоты нервных сигналов, характерных для нейронов, образующих синапс (время прохождения медиатора от пре- к постсинаптической мембране - порядка нескольких микросекунд).

    Постсинаптическая мембрана принадлежит клетке, которая принимает нервные импульсы. Механизмом трансляции химического сигнала медиатора в электрический потенциал действия на этой клетке являютсярецепторы - белковые макромолекулы, встроенные в постсинаптическую мембрану.

    С помощью специальных ультрамикроскопичекских методик в последние годы был получен достаточно большой объем информации о детальной структуре синапсов.

    Так, на пресинаптической мембране была открыта упорядоченная струтура кратероподобных углублений диаметром 10 нанометров, вдавленных внутрь. Сначала их именовали синаптопорами, но сейчас эти структуры называют местами присоединения везикул (МПВ). МПВ собраны в упорядоченные группы численностью по шесть отдельных углублений вокруг так называемых уплотненных выступлений. Таким образом, уплотненные выступления формируют правильные треугольные структуры на внутренней стороне пресинаптической мембраны, а МПВ - гексагональные, и являются местами, где везикулы открываются и выбрасывают медиатор в синаптическую щель.

    Структура электрического синапса:

    Структура электрических синапсов изучена с помощью электронной микроскопии и других методов.

    В отличие от химического синапса, синаптическая щель в электрическом синапсе чрезвычайно узка.Через синаптическую щель данного типа синапсов проходят пространственно упорядоченные белковые каналы с гидрофильной порой, каждый примерно 5 нанометров в диаметре, которые перфорируют пре- и постсинаптическую мембрану и называются коннексонами. У первичноротых организмов (нематоды,моллюски, членистоногие) коннексоны сформированы белками паннексинами (англ.) или иннексинами (англ.); увторичноротых (асцидии, позвоночные) коннексоны построены из белков другого типа - коннексинов, которые кодируются другой группой генов. У иглокожих пока не обнаружены ни паннексины, ни коннексины; возможно, у них имеется еще одно семейство белков, формирующих щелевые контакты и электрические синапсы

    У позвоночных есть и паннексины, и коннексины. Но до сих пор у позвоночных не выявлено ни одного электрического синапса, где межклеточные каналы были бы сформированы паннексинами.

    Через коннексины (или паннексины), связывающие пре- и постсинаптический нейроны, проходят ионы и малые молекулы, в том числе искусственно введенные в клетку флуоресцентные красители. Проход указанных красителей через электрический синапс может быть зарегистрирован даже с помощью светового микроскопа.

    Электрические синапсы позволяют осуществлять электрическую проводимость в обоих направлениях (в отличие от химических); тем не менее, в последнее время у некоторых ракообразных были открыты выпрямляющие электрические синапсы, то есть такие, которые позволяют осуществлять прохождение нервного сигнала только в одном направлении.

    Строение и функции нервно-мышечного синапса:

    Основной структурной единицей нервной системы является нейрон, специализированными функциями которого являются прием, первичная обработка и передача информации. Типичные двигательные нейроны имеют 5-7 отростков, или дендритов, и длинный волокнистый отросток - аксон, который покрыт миелином (оболочкой белково-липидного комплекса).

    Моторный аксон, подходя к мышце, теряет миелиновую оболочку и делится на терминальные веточки, каждая из которых подходит к отдельному мышечному веретену. Нервная клетка вместе с сарколеммой мышечного волокна образует структуру, которую называют нервно-мышечным синапсом. Оголенная часть нерва, обращенная к поверхности мышечного волокна, - это пресинаптическая мембрана; оголенная часть мышечного волокна - это пост-синаптическая мембрана; микропространство между этими мембранами - это синаптичес-кая щель. Поверхность мышечного волокна образует множественные контактные складки, на которых расположены N-холинореиепторы.
    В пресинаптических структурах синтезируется основная часть ацетилхолина (АХ). Синтез происходит путем переноса ацетильной группы с коэнзима А на холин при участии фермента холинацетилазы. Ацетилхолин депонируется в виде так называемых синаптических везикул, которые представляют собой заготовленные кванты этого медиатора. С помощью ацетилхолина происходит переход возбуждения с нерва на скелетную мышцу.
    Химический механизм проведения возбуждения содержит элементы элекгро-физиологических явлений. В покое постсинаптическая мембрана находится в состоянии статической поляризации: ее внутренняя поверхность электроотрицательная по отношению к внешней. Электростатическая разница между ними составляет около 90 мВ. При возникновении импульса развивается потенциал действия в нервном окончании: высвобождаются ионы Са++, которые соединяясь с протеинами способствуют высвобождению ацетилхолина из везикул. В каждом терминале аксона имеется до 200 таких везикул, которые содержат около 10 ООО молекул ацетилхолина.
    В синаптической щели ацетилхолин вступает в связь со специализированными участками постсинаптической мембраны - холинергическими рецепторами. Большинство этих рецепторов расположены на внутренней поверхности контактных складок. Постсинаптическая мембрана содержит никотиновые АХ-рецепторы, мембрана которых состоит из протеинов с молекулярным весом 250 000 Дт. Соединение первой а-субъединицы с ацетилхолином увеличивает сродство последнего со второй сс-субъединицей. Этот механизм обеспечивает положительную обратную связь для высвобождения трансмиттера во время высокой активности нервно-мышечного синапса.
    Содержащийся в синаптической зоне фермент ацетилхолинэстераза быстро прекращает действие ацетилхолина. Он гидролизируется на холин и уксусную кислоту.

    И клеткой-мишенью. У данного типа синапса роль посредника (медиатора) передачи выполняет химическое вещество.

    Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

    Энциклопедичный YouTube

      1 / 3

      ✪ Межнейронные химические синапсы

      ✪ Нервная ткань. 5. Синапсы

      ✪ Neuronal synapses (chemical) | Human anatomy and physiology | Health & Medicine | Khan Academy

      Субтитры

      Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

    Структура химического синапса

    В синаптическом расширении имеются мелкие везикулы , так называемые пресинаптические или синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент , разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

    Одинаковый размер пресинаптических пузырьков во всех исследованных синапсах (40-50 нанометров) сначала считали доказательством того, что каждая везикула является минимальным кластером, чье освобождение требуется для производства синаптического сигнала. Везикулы размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька имеется большое количество митохондрий (производящих аденозинтрифосфат) и упорядоченные структуры протеиновых волокон.

    Синаптическая щель - это пространство между пресинаптической мембраной и постсинаптической мембраной от 20 до 30 нанометров шириной, которое содержит связующие пре- и постсинапс структуры, построенные из протеогликана . Ширина синаптической щели в каждом отдельном случае обусловлена тем, что извлеченный из пресинапса медиатор должен проходить к постсинапсу за время, являющееся значительно меньше частоты нервных сигналов, характерных для нейронов, образующих синапс (время прохождения медиатора от пре- к постсинаптической мембране - порядка нескольких микросекунд).

    Постсинаптическая мембрана принадлежит клетке, которая принимает нервные импульсы. Механизмом трансляции химического сигнала медиатора в электрический потенциал действия на этой клетке являются рецепторы - белковые макромолекулы, встроенные в постсинаптическую мембрану.

    С помощью специальных ультрамикроскопичекских методик в последние годы был получен достаточно большой объем информации о детальной структуре синапсов.

    Так, на пресинаптической мембране была открыта упорядоченная струтура кратероподобных углублений диаметром 10 нанометров, вдавленных внутрь. Сначала их именовали синаптопорами, но сейчас эти структуры называют местами присоединения везикул (МПВ). МПВ собраны в упорядоченные группы численностью по шесть отдельных углублений вокруг так называемых уплотненных выступлений. Таким образом, уплотненные выступления формируют правильные треугольные структуры на внутренней стороне пресинаптической мембраны, а МПВ - гексагональные , и являются местами, где везикулы открываются и выбрасывают медиатор в синаптическую щель.

    Механизм передачи нервного импульса

    Поступление электрического импульса к пресинаптической мембране включает процесс синаптической передачи, первым этапом которой является вхождение ионов Са 2+ в пресинапс сквозь мембрану через специализированные кальциевые каналы, локализованные у синаптической щели. Ионы Са 2+ , с помощью неизвестного пока полностью механизма, активируют везикулы, скученные у своих мест присоединения, и те высвобождают медиатор в синаптическую щель. Вошедшие в нейрон ионы Са 2+ , после активации ими везикул с медиатором, деактивируются за время порядка нескольких микросекунд, благодаря депонированию в митохондриях и везикулах пресинапса.

    Молекулы медиатора, высвобождаемые из пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы (в случае канальных рецепторов, что является наиболее распространенным их типом; при работе рецепторов других типов механизм передачи сигнала отличается). Ионы, которые начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд её мембраны, что является частичной поляризацией (в случае тормозного синапса) или деполяризацией (в случае возбуждающего синапса) этой мембраны и, как следствие, приводит к торможению или провоцированию генерации постсинаптической клеткой потенциала действия.

    Квантово-везикулярная гипотеза

    Распространенная до последнего времени в качестве объяснения механизма высвобождения медиатора из пресинапса, гипотеза квантово-везикулярного экзоцитоза (КВЭ) подразумевает, что «пакет», или квант, медиатора содержится в одной везикуле и высвобождается при экзоцитозе (при этом мембрана везикулы сливается с клеточной пресинаптической мембраной). Эта теория была долгое время превалирующей гипотезой - несмотря на то, что корреляция между уровнем высвобождения медиатора (или постсинаптическими потенциалами) и количеством везикул в пресинапсе отсутствует . Кроме того, гипотеза КВЭ имеет и другие существенные недостатки.

    Физиологической основой именно квантованного высвобождения медиатора должно быть одинаковое количество этого медиатора в каждой везикуле. Гипотеза КВЭ в классическом виде не приспособлена к описанию эффектов квантов разного размера (или разного количества медиатора) которые могут быть высвобождены при одном акте экзоцитоза. При этом надо принять во внимание, что в одном и том же пресинаптическом бутоне могут наблюдаться везикулы разного размера; кроме того, не найдено корреляции между размером везикулы и количеством медиатора в ней (то есть его концентрация в везикулах тоже может быть разной). Более того, в денервированном нервно-мышечном синапсе шванновские клетки генерируют большее количество миниатюрных постсинаптических потенциалов, чем наблюдается в синапсе до денервации, несмотря на полное отсутствие в этих клетках пресинаптических везикул, локализованных в районе пресинаптического бутона .

    Гипотеза пороцитоза

    Существуют существенные экспериментальные подтверждения того, что медиатор секретируется в синаптическую щель благодаря синхронной активации гексагональных групп МПВ (см. выше) и присоединенных к ним везикул , что стало основой для формулирования гипотезы пороцитоза (англ. porocytosis ). Эта гипотеза базируется на наблюдении, что присоединенные к МПВ везикулы, при получении потенциала действия , синхронно сокращаются и при этом секретируют в синаптическую щель каждый раз одинаковое количество медиатора, высвобождая только часть содержимого каждой из шести везикул. Сам по себе термин «пороцитоз» происходит от греческих слов poro (что означает поры) и cytosis (описывает перенос химических субстанций через плазматическую мембрану клетки).

    Большинство экспериментальных данных о функционировании моносинаптических межклеточных соединений получены благодаря исследованиям изолированных нервно-мышечных контактов. Как и в межнейронных, в нервно-мышечных синапсах МПВ формируют упорядоченные гексагональные структуры . Каждая из таких гексагональных структур может быть определена как «синаптомер» - то есть структура, которая является элементарной единицей в процессе секреции медиатора. Синаптомер содержит, кроме собственно поровых углублений, протеиновые нитчатые структуры, содержащие линейно упорядоченные везикулы; существование аналогичных структур доказано и для синапсов в центральной нервной системе (ЦНС).

    Как было сказано выше, пороцитозный механизм генерирует квант нейромедиатора , но без того, чтобы мембрана индивидуальной везикулы полностью сливалась с пресинаптической мембраной. Малый коэффициент вариации (менее 3 %) у величин постсинаптических потенциалов является индикатором того, что в единичном синапсе имеются не более 200 синаптомеров , каждый из которых секретирует один квант медиатора в ответ на один потенциал действия . 200 участков высвобождения (то есть синаптомеров, которые высвобождают медиатор), найденные на небольшом мышечном волокне, позволяют рассчитать максимальный квантовый лимит, равный одной области высвобождения на микрометр длины синаптического контакта , это наблюдение исключает возможность существования квантов медиатора, обеспечивающих передачу нервного сигнала, в объеме одной везикулы.

    Сравнение гипотез пороцитоза и квантово-везикулярной

    Сравнение недавно общепринятой гипотезы КВЭ с гипотезой пороцитоза может быть осуществлено посредством сравнения теоретического коэффициента вариации с опытным, рассчитанным для амплитуд постсинаптических электрических потенциалов, генерируемых в ответ на каждый отдельный выброс медиатора из пресинапса. Если принять, что процесс экзоцитоза проходит в небольшом синапсе, где содержится около 5 000 везикул (50 на каждый микрон длины синапса), постсинаптические потенциалы должны быть сгенерированы 50-ю случайно выбранными везикулами, что даёт теоретический коэффициент вариации 14 %. Эта величина примерно в 5 раз больше, чем коэффициент вариации постсинаптических потенциалов, получаемых в опытах, таким образом, можно утверждать, что процесс экзоцитоза в синапсе не является случайным (не совпадает с распределением Пуассона) - что невозможно, если объяснять его в рамках гипотезы КВЭ, но вполне соответствует гипотезе пороцитоза. Дело в том, что гипотеза пороцитоза предполагает, что все связанные с пресинаптической мембраной везикулы выбрасывают медиатор одновременно; при этом постоянное количество медиатора, выбрасываемого в синаптическую щель в ответ на каждый потенциал действия (об устойчивости свидетельствует малый коэффициент вариации постсинаптических ответов) вполне может быть объяснено высвобождением малого объема медиатора большим количеством везикул - при этом, чем больше везикул, участвующих в процессе, тем меньше становится коэффициент корреляции , хотя это и выглядит с точки зрения математической статистики несколько парадоксально.

    Классификация

    По медиатору

    • аминергические, содержащие биогенные амины (например, серотонин, дофамин);
      • в том числе адренергические, содержащие адреналин или норадреналин;
    • холинергические, содержащие ацетилхолин;
    • пуринергические, содержащие пурины;
    • пептидергические, содержащие пептиды.

    При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

    По знаку действия

    • возбуждающие
    • тормозные.

    Если первые способствуют возникновению возбуждения в постсинаптической клетке, то вторые, наопротив, прекращают или предотвращают его появление. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

    По их местоположению и принадлежности структурам

    • периферические
      • нервно-мышечные
      • нейросекреторные (аксо-вазальные)
      • рецепторно-нейрональные
    • центральные
      • аксо-дендритические - с дендритами, в том числе аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
      • аксо-соматические - с телами нейронов;
      • аксо-аксональные - между аксонами;
      • дендро-дендритические - между дендритами;

    В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

    В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

    К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

    Образуют луковицеобразные утолщения, называемые синаптическими бляшками .

    Мембрана синаптической бляшки в области самого синапса утолщена в результате уплотнения цитоплазмы и образует пресинаптическую мембрану . Мембрана дендрита в области синапса тоже утолщена и образует постсинаптическую мембрану . Эти мембраны разделены промежутком - синаптической щелью шириной 10 - 50 нм.

    Так как в формировании потенциала покоя мембраны участвуют многие ионы, равновесие может нарушаться посредством изменений проводимости различных ионов. Так, например, при дополнительном выходящем токе ионов К+ или при входящем токе ионов Сl- может увеличиваться потенциал покоя мембраны, это означает что она гиперполяризуется. Гиперполяризация мембраны - противоположность возбуждения, т.е. определенные химические процессы на постсинаптической мембране могут вызывать торможение нейрона. В этой возможности можно видеть существенное эволюционное преимущество химических синапсов перед электрическими синапсами .

    Совершенно очевидно, что очень коротко представленные в этом разделе химические процессы могут быть модифицированы посредством других, опять-таки химических, веществ. Это происходит при помощи независимых соединений - нейромодуляторов .

    Химические процессы в синапсе открывают широкие возможности для фармакологической регуляции и являются предметом многочисленных исследований с целью поиска эндогенных соединений, способных модифицировать в заданном направлении синаптическую передачу. И действительно, действие многих медикаментов основывается на влиянии на синаптическое проведение. Это относится не только к психотропным и наркотическим веществам . Многие другие, например, понижающие давление ( гипотензивные) средства, также действуют опосредованно через синапсы. Кроме того, многие яды растительного и животного происхождения направленно воздействуют на химический синапс.

    © 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины