Что такое b в графике функции. Основные свойства функции. Свойства функции корень n -ой степени при четных n

Что такое b в графике функции. Основные свойства функции. Свойства функции корень n -ой степени при четных n

22.09.2023

В этой статье мы рассмотрим линейную функцию , график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.

Линейной функцией называется функция вида

В уравнении функции число , которое мы умножаем на называется коэффициентом наклона.

Например, в уравнении функции ;

в уравнении функции ;

в уравнении функции ;

в уравнении функции .

Графиком линейной функции является прямая линия.

1 . Чтобы построить график функции , нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции , удобно взять и , тогда ординаты эти точек будут равны и .

Получим точки А(0;2) и В(3;3). Соединим их и получим график функции :


2 . В уравнении функции коэффициент отвечает за наклон графика функции:

Title="k>0">

Коэффициент отвечает за сдвиг графика вдоль оси :

Title="b>0">

На рисунке ниже изображены графики функций ; ;


Заметим, что во всех этих функциях коэффициент больше нуля вправо . Причем, чем больше значение , тем круче идет прямая.

Во всех функциях - и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций ; ;


На этот раз во всех функциях коэффициент меньше нуля , и все графики функций наклонены влево .

Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций ; ;

Теперь во всех уравнениях функций коэффициенты равны. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

График функции (b=3) пересекает ось OY в точке (0;3)

График функции (b=0) пересекает ось OY в точке (0;0) - начале координат.

График функции (b=-2) пересекает ось OY в точке (0;-2)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции .

Если k<0 и b>0 , то график функции имеет вид:

Если k>0 и b>0 , то график функции имеет вид:

Если k>0 и b<0 , то график функции имеет вид:

Если k<0 и b<0 , то график функции имеет вид:

Если k=0 , то функция превращается в функцию и ее график имеет вид:

Ординаты всех точек графика функции равны

Если b=0 , то график функции проходит через начало координат:

Это график прямой пропорциональности .

3 . Отдельно отмечу график уравнения . График этого уравнения представляет собой прямую линию, параллельую оси все точки которой имеют абсциссу .

Например, график уравнения выглядит так:

Внимание! Уравнение не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует .

4 . Условие параллельности двух прямых:

График функции параллелен графику функции , если

5. Условие перпендикулярности двух прямых:

График функции перпендикулярен графику функции , если или

6 . Точки пересечения графика функции с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда . То есть точка пересечения с осью OX имеет координаты (;0):


Рассмотрим решение задач.

1 . Постройте график функции , если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.

В уравнении функции два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.

а) Из того, что график функции параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид

б) Нам осталось найти b. Известно, что график функции проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:

отсюда b=-10

Таким образом, нам надо построить график функции

Точка А(-3;2) нам известна, возьмем точку B(0;-10)

Поставим эти точки в координатной плоскости и соединим их прямой:

2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).

Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой . То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение и получим систему линейных уравнений.

Вычтем из второго уравнения системы первое, и получим . Подставим значение k в первое уравнение системы, и получим b=-2.

Итак, уравнение прямой .

3 . Постройте график уравнения

Чтобы найти, при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть каждого множителя.

Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:

Построим графики всех уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения :


4 . Постройте график функции , если он перпендикулярен прямой и проходит через точку М(-1;2)

Мы не будем строить график, только найдем уравнение прямой.

а) Так как график функции , если он перпендикулярен прямой , следовательно , отсюда . То есть уравнение функции имеет вид

б) Мы знаем, что график функции проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:

Отсюда .

Следовательно, наша функция имеет вид: .

5 . Постройте график функции

Упростим выражение, стоящее в правой части уравнения функции.

Важно! Прежде чем упрощать выражение, найдем его ОДЗ.

Знаменатель дроби не может быть равен нулю, поэтому title="x1">, title="x-1">.

Тогда наша функция принимает вид:

Title="delim{lbrace}{matrix{3}{1}{{y=x+2} {x1} {x-1}}}{ }">

То есть нам надо построить график функции и выколоть на нем две точки: с абсциссами x=1 и x=-1:


Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

График функции – это наглядное представление поведения некоторой функции на координатной плоскости. Графики помогают понять различные аспекты функции, которые невозможно определить по самой функции. Можно построить графики множества функций, причем каждая из них будет задана определенной формулой. График любой функции строится по определенному алгоритму (если вы забыли точный процесс построения графика конкретной функции).

Шаги

Построение графика линейной функции

    Определите, является ли функция линейной. Линейная функция задается формулой вида F (x) = k x + b {\displaystyle F(x)=kx+b} или y = k x + b {\displaystyle y=kx+b} (например, ), а ее график представляет собой прямую. Таким образом, формула включает одну переменную и одну константу (постоянную) без каких-либо показателей степеней, знаков корня и тому подобного. Если дана функция аналогичного вида, построить график такой функции довольно просто. Вот другие примеры линейных функций:

    Воспользуйтесь константой, чтобы отметить точку на оси Y. Константа (b) является координатой «у» точки пересечения графика с осью Y. То есть это точка, координата «х» которой равна 0. Таким образом, если в формулу подставить х = 0, то у = b (константе). В нашем примере y = 2 x + 5 {\displaystyle y=2x+5} константа равна 5, то есть точка пересечения с осью Y имеет координаты (0,5). Нанесите эту точку на координатную плоскость.

    Найдите угловой коэффициент прямой. Он равен множителю при переменной. В нашем примере y = 2 x + 5 {\displaystyle y=2x+5} при переменной «х» находится множитель 2; таким образом, угловой коэффициент равен 2. Угловой коэффициент определяет угол наклона прямой к оси X, то есть чем больше угловой коэффициент, тем быстрее возрастает или убывает функция.

    Запишите угловой коэффициент в виде дроби. Угловой коэффициент равен тангенсу угла наклона, то есть отношению вертикального расстояния (между двумя точками на прямой) к горизонтальному расстоянию (между этими же точками). В нашем примере угловой коэффициент равен 2, поэтому можно заявить, что вертикальное расстояние равно 2, а горизонтальное расстояние равно 1. Запишите это в виде дроби: 2 1 {\displaystyle {\frac {2}{1}}} .

    • Если угловой коэффициент отрицательный, функция убывает.
  1. От точки пересечения прямой с осью Y нанесите вторую точку, используя вертикальное и горизонтальное расстояния. График линейной функции можно построить по двум точкам. В нашем примере точка пересечения с осью Y имеет координаты (0,5); от этой точки передвиньтесь на 2 деления вверх, а затем на 1 деление вправо. Отметьте точку; она будет иметь координаты (1,7). Теперь можно провести прямую.

    При помощи линейки проведите прямую через две точки. Во избежание ошибок найдите третью точку, но в большинстве случаев график можно построить по двум точкам. Таким образом, вы построили график линейной функции.

Нанесение точек на координатную плоскость

    Определите функцию. Функция обозначается как f(x). Все возможные значения переменной «у» называются областью значений функции, а все возможные значения переменной «х» называются областью определения функции. Например, рассмотрим функцию y = x+2, а именно f(x) = x+2.

    Нарисуйте две пересекающиеся перпендикулярные прямые. Горизонтальная прямая – это ось Х. Вертикальная прямая – это ось Y.

    Обозначьте оси координат. Разбейте каждую ось на равные отрезки и пронумеруйте их. Точка пересечения осей – это 0. Для оси Х: справа (от 0) наносятся положительные числа, а слева отрицательные. Для оси Y: сверху (от 0) наносятся положительные числа, а снизу отрицательные.

    Найдите значения «у» по значениям «х». В нашем примере f(x) = х+2. Подставьте в эту формулу определенные значения «х», чтобы вычислить соответствующие значения «у». Если дана сложная функция, упростите ее, обособив «у» на одной стороне уравнения.

    • -1: -1 + 2 = 1
    • 0: 0 +2 = 2
    • 1: 1 + 2 = 3
  1. Нанесите точки на координатную плоскость. Для каждой пары координат сделайте следующее: найдите соответствующее значение на оси Х и проведите вертикальную линию (пунктиром); найдите соответствующее значение на оси Y и проведите горизонтальную линию (пунктиром). Обозначьте точку пересечения двух пунктирных линий; таким образом, вы нанесли точку графика.

    Сотрите пунктирные линии. Сделайте это после нанесения на координатную плоскость всех точек графика. Примечание: график функции f(х) = х представляет собой прямую, проходящую через центр координат [точку с координатами (0,0)]; график f(х) = х + 2 – это прямая, параллельная прямой f(х) = х, но сдвинутая на две единицы вверх и поэтому проходящая через точку с координатами (0,2) (потому что постоянная равна 2).

Построение графика сложной функции

    Найдите нули функции. Нули функции – это значения переменной «х», при которых у = 0, то есть это точки пересечения графика с осью Х. Имейте в виду, что нули имеют не все функции, но это первый шаг процесса построения графика любой функции. Чтобы найти нули функции, приравняйте ее к нулю. Например:

    Найдите и отметьте горизонтальные асимптоты. Асимптота – это прямая, к которой график функции приближается, но никогда не пересекает ее (то есть в этой области функция не определена, например, при делении на 0). Асимптоту отметьте пунктирной линией. Если переменная «х» находится в знаменателе дроби (например, y = 1 4 − x 2 {\displaystyle y={\frac {1}{4-x^{2}}}} ), приравняйте знаменатель к нулю и найдите «х». В полученных значения переменной «х» функция не определена (в нашем примере проведите пунктирные линии через х = 2 и х = -2), потому что на 0 делить нельзя. Но асимптоты существуют не только в случаях, когда функция содержит дробное выражение. Поэтому рекомендуется пользоваться здравым смыслом:

Элементарные функции и их графики

Прямая пропорциональность. Линейная функция .

Обратная пропорциональность. Гипербола.

Квадратичная функция . Квадратная парабола.

Степенная функция. Показательная функция.

Логарифмическая функция . Тригонометрические функции.

Обратные тригонометрические функции.

1.

Пропорциональные величины. Если переменные y и x прямо пропорциональны , то функциональная зависимость между ними выражается уравнением:

y = k x ,

где k - постоянная величина ( коэффициент пропорциональности ).

График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол , тангенс которого равен k : tan = k (рис.8). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом . На рис.8 показаны три графика для k = 1/3, k = 1 и k = 3 .

2.

Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:

A x + B y = C ,

где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия . Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A , B , C показаны на рис.9.

3.

Обратная пропорциональность. Если переменные y и x обратно пропорциональны , то функциональная зависимость между ними выражается уравнением:

y = k / x ,

где k - постоянная величина.

График обратной пропорциональности – гипербола (рис.10). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью (о конических сечениях см. раздел «Конус» в главе «Стереометрия»). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k , что следует из уравнения гиперболы: xy = k .

Основные характеристики и свойства гиперболы:

Область определения функции: x 0, область значений: y 0 ;

Функция монотонная (убывающая) при x < 0 и при x > 0, но не

монотонная в целом из-за точки разрыва x = 0 (подумайте, почему?);

Функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая;

- нулей функция не имеет.

4.

Квадратичная функция. Это функция: y = ax 2 + bx + c , где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2 . График этой функции квадратная парабола - кривая, проходящая через начало координат (рис.11). Каждая парабола имеет ось симметрии OY , которая называется осью параболы . Точка O пересечения параболы с её осью называется вершиной параболы .

График функции y = ax 2 + bx + c - тоже квадратная парабола того же вида, что и y = ax 2 , но её вершина лежит не в начале координат, а в точке с координатами:

Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента a при x 2 и дискриминанта D : D = b 2 4ac . Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.

Изобразите, пожалуйста, квадратную параболу для случая a > 0, D > 0 .

Основные характеристики и свойства квадратной параболы:

Область определения функции:  < x + (т.e. x R ), а область

значений:(ответьте, пожалуйста, на этот вопрос сами!);

Функция в целом не монотонна, но справа или слева от вершины

ведёт себя, как монотонная;

Функция неограниченная, всюду непрерывная, чётная при b = c = 0,

и непериодическая;

- при D < 0 не имеет нулей. (А что при D 0 ?) .

5.

Степенная функция. Это функция: y = ax n , где a , n – постоянные. При n = 1 получаем прямую пропорциональность : y = ax ; при n = 2 - квадратную параболу ; при n = 1 - обратную пропорциональность или гиперболу . Таким образом, эти функции - частные случаи степенной функции. Мы знаем, что нулевая степень любого числа, отличного от нуля, равна 1, cледовательно, при n = 0 степенная функция превращается в постоянную величину: y = a , т.e. её график - прямая линия, параллельная оси Х , исключая начало координат (поясните, пожалуйста, почему?). Все эти случаи (при a = 1) показаны на рис.13 (n 0) и рис.14 (n < 0). Отрицательные значения x здесь не рассматриваются, так как тогда некоторые функции:

Если n – целые, степенные функции имеют смысл и при x < 0, но их графики имеют различный вид в зависимости от того, является ли n чётным числом или нечётным. На рис.15 показаны две такие степенные функции: для n = 2 и n = 3.

При n = 2 функция чётная и её график симметричен относительно оси Y . При n = 3 функция нечётная и её график симметричен относительно начала координат. Функция y = x 3 называется кубической параболой .

На рис.16 представлена функция . Эта функция является обратной к квадратной параболе y = x 2 , её график получается поворотом графика квадратной параболы вокруг биссектрисы 1-го координатного углаЭто способ получения графика любой обратной функции из графика её исходной функции. Мы видим по графику, что это двузначная функция (об этом говорит и знак  перед квадратным корнем). Такие функции не изучаются в элементарной математике, поэтому в качестве функции мы рассматриваем обычно одну из её ветвей: верхнюю или нижнюю.

6.

Показательная функция. Функция y = a x , где a - положительное постоянное число, называется показательной функцией . Аргумент x принимает любые действительные значения ; в качестве значений функции рассматриваются только положительные числа , так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = 3, y = 3 i и y = 3 i (проверьте, пожалуйста!). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку (0, 1). При a = 1 мы имеем график прямой линии, параллельной оси Х , т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает.

Основные характеристики и свойства показательной функции:

 < x + (т.e. x R );

область значений: y > 0 ;

Функция монотонна: возрастает при a > 1 и убывает при 0 < a < 1;

- нулей функция не имеет.

7.

Логарифмическая функция. Функция y = log a x , где a – постоянное положительное число, не равное 1, называется логарифмической . Эта функция является обратной к показательной функции; её график (рис.18) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла.

Основные характеристики и свойства логарифмической функции:

Область определения функции: x > 0, а область значений:  < y +

(т.e. y R );

Это монотонная функция: она возрастает при a > 1 и убывает при 0 < a < 1;

Функция неограниченная, всюду непрерывная, непериодическая;

У функции есть один ноль: x = 1.

8.

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция y = sin x представляется графиком (рис.19). Эта кривая называется синусоидой .

График функции y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на 2

Из этих графиков очевидны характеристики и свойства этих функций:

Область определения:  < x +  область значений: 1 y +1;

Эти функции периодические: их период 2;

Функции ограниченные (| y | , всюду непрерывные, не монотонные, но

имеющие так называемые интервалы монотонности , внутри которых они

ведут себя, как монотонные функции (см. графики рис.19 и рис.20);

Функции имеют бесчисленное множество нулей (подробнее см. раздел

«Тригонометрические уравнения»).

Графики функций y = tan x и y = cot x показаны соответственно на рис.21 и рис.22

Из графиков видно, что эти функции: периодические (их период ,

неограниченные, в целом не монотонные, но имеют интервалы монотонности

(какие?), разрывные (какие точки разрыва имеют эти функции?). Область

определения и область значений этих функций:

9.

Обратные тригонометрические функции. Определения обратных

тригонометрических функций и их основные свойства приведены в

одноимённом разделе в главе «Тригонометрия». Поэтому здесь мы ограничимся

лишь короткими комметариями, касающимися их графиков, полученных

поворотом графиков тригонометрических функций вокруг биссектрисы 1-го

координатного угла.

Функции y = Arcsin x (рис.23) и y = Arccos x (рис.24) многозначные, неограниченные; их область определения и область значений соответственно: 1 x +1 и  < y + . Поскольку эти функции многозначные, не

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины