Что такое атомная орбиталь в химии. Атомная орбиталь. Квантовые числа. Формы орбиталей

Что такое атомная орбиталь в химии. Атомная орбиталь. Квантовые числа. Формы орбиталей

09.10.2019

Волновую функцию (7), описывающую состояние электрона, называют атомной орбиталью (АО).

Квантовые числа. В квантовой механике каждая АО определяется тремя квантовыми числами.

Главное квантовое число n . Может принимать целочисленные значения от 1 до ∞. Главное квантовое число определяет:

номер энергетического уровня;

интервал энергий электронов, находящихся на данном уровне;

размеры орбиталей;

число подуровней данного энергетического уровня (первый уровень состоит из одного подуровня, второй – из двух, третий – из трех и т.д.);

В Периодической системе элементов максимальному значению главного квантового числа соответствует номер периода.

Орбитальное квантовое число l .Определяет орбитальный момент количества движения (импульс) электрона, точное значение его энергии и форму орбиталей. Может принимать значения 0, 1, 2, 3, …, (n -1).

Атомная орбиталь – геометрический образ одноэлектронной волновой функции ψ, представляющий собой область наиболее вероятного пребывания электрона в атоме. Она ограничивает область пространства, в которой вероятность нахождения электрона имеет определенное значение (90 …99 %). Иногда орбиталью называют граничную поверхность этой области, а на рисунках, как правило, изображают сечение этой области плоскостью, проходящей через начало координат и лежащей в плоскости рисунка. В начало координат помещают центр ядра атома. Понятие «орбиталь», в отличие от «орбита», не подразумевает знания точных координат электрона. Орбитальное квантовое число определяет форму атомной орбитали. При l =0 это сфера, при l =1 – объемная восьмерка (гантель), при l =2 – четырехлепестковая розетка.

Каждому значению главного квантового числа соответствует n значений орбитального квантового числа l (табл. 1). Например, если n =1, то l принимает только одно значение (l =0), n =2 – два значения: 0 и 1 и т.д. Каждому численному значению l соответствует определенная геометрическая форма орбиталей и приписывается буквенное обозначение. Первые четыре буквы обозначения имеют историческое происхождение и связаны с характером спектральных линий. s , p , d , f – первые буквы английских слов, использованных для названия спектральных линий: sharp (резкий), principal (главный), diffuse (диффузный), fundamental (основной). Обозначения других орбиталей приведены в алфавитном порядке: g , h , …

Таблица 1

Значения главного и орбитального квантовых чисел

Орбитальное квантовое число l Главное квантовое число n
Значение Буквенное обозначение s s p s p d s p d f s p d f g

Обозначение любого подуровня определяется двумя квантовыми числами – главным (при записи указывается численное значение) и орбитальным (при записи указывается буквенное обозначениеорбитальным ()ается численное значение двумя квантовыми числами - главным). Например, энергетический подуровень, для которого n =2 и l =1, следует обозначить так: -подуровень. Все орбитали с одинаковым значением l имеют одинаковую геометрическую формулу и в зависимости от значений главного квантового числа различаются размерами. Например, все орбитали, для которых l =0 (s -орбитали) являются сферически симметричными, различаются размерами в зависимости от значения главного квантового числа. Чем выше значение n , тем больше размеры орбиталей.



Магнитное квантовое число m l .Определяет возможные значения проекции орбитального момента количества движения электрона на фиксированное направление в пространстве (например, на ось z ). Оно принимает отрицательные и положительные значения l , включая нуль. Общее число значений равно 2l +1:

От значения магнитного квантового числа зависит взаимодействие магнитного поля, создаваемого электроном, с внешним магнитным полем. Если нет внешнего магнитного поля, то энергия электрона в атоме не зависит от m l . В этом случае электроны с одинаковыми значениями n и l , но с разными значениями m l обладают одинаковой энергией. Если существует внешнее магнитное поле – энергия электронов с разными m l различается.

В общем случае магнитное квантовое число характеризует ориентацию АО в пространстве относительно внешней силы. Магнитное квантовое число определяет ориентацию орбитального углового момента относительно некоторого фиксированного направления.

Общее число возможных значений m l соответствует числу способов расположения орбиталей данного подуровня в пространстве, то есть общему числу орбиталей на данном подуровне (табл. 2).

Таблица 2

Число орбиталей на подуровне

Орбитальному квантовому числу l =0 отвечает единственное значение магнитного квантового числа m l =0. Эти значения l и m l характеризуют все s -орбитали, которые имеют форму сферы. Так как в этом случае магнитное квантовое число принимает только одно значение, то каждый s-подуровень состоит только из одной орбитали. Рассмотрим любой р -подуровень. При l =1 орбитали имеют форму гантелей (объемные восьмерки), магнитное квантовое число принимает следующие значения: m l = -1, 0, +1. Следовательно, р -подуровень состоит из трех АО, которые располагаются вдоль осей координат, их обозначают p x , p y , p z соответственно (рис. 1).

Рис. 1. Пространственная форма s- и р-атомных орбиталей.

Для d -подуровня l =2, m l = -2, -1, 0, +1, +2 (всего 5 значений), и любой d -подуровень состоит из пяти атомных орбиталей, которые определенным образом расположены в пространстве (рис. 2), и обозначаются соответственно.

Рис. 2. Пространственная форма d-атомных орбиталей.

Четыре из пяти d- орбиталей имеют форму четырехлепестковых розеток, каждая из которых образована двумя гантелями, пятая АО представляет собой гантель с тором в экваториальной плоскости (-орбиталь) и расположена вдоль оси z . Лепестки орбитали расположены вдоль осей x и y. Лепестки орбиталей расположены симметрично между соответствующими осями.

Четвертый энергетический уровень состоит из четырех подуровней – s , p , d и f . Первые три из них аналогичны описанным выше, а четвертый f -подуровень состоит из семи АО, пространственная форма которых достаточно сложна и в данном разделе не рассматривается.

С. Гаудсмит и Дж. Уленбек для описания некоторых тонких эффектов в спектре атома водорода в 1925 г. выдвинули гипотезу о наличии собственного момента импульса электрона, который назвали спином . Спин нельзя выразить через координаты и импульсы, у него нет аналога в классической механике. Спиновое число s электрона принимает только одно значение, равное Проекция вектора спина на определенное направление внешнего поля (например, на ось z ) определяется спиновым квантовым числом m S , которое может принимать два значения: m S =

Понятие «спин» введено для характеристики специфического квантового свойства электрона. Спин – это проявление релятивистских эффектов на микроскопическом уровне.

Электрон имеет четыре степени свободы. Спиновое квантовое число принимает только дискретные значения: Таким образом, состояние электрона в атоме определяется набором значений четырех квантовых чисел: n , l , m l , m S .

Обозначение и структура электронных энергетических уровней . Определим некоторые термины, которые используются для разъяснения физического смысла квантовых чисел. Группа орбиталей, имеющих одинаковое значение орбитального квантового числа, образует энергетический подуровень . Совокупность всех орбиталей с одинаковым значением главного квантового числа образует энергетический уровень .

Структуру атомных электронных уровней можно изобразить двояко: в виде электронных формул и электронографических диаграмм. При написании электронных формул используют два квантовых числа n и l: первый уровень – 1s ; второй – 2s , 2p ; третий – 3s , 3p , 3d ; четвертый – 4s , 4p , 4d , 4f и т.д. (табл.3).

Таблица 3

Структура электронных энергетических уровней атома

Более полно строение электронных уровней описывается с использованием трех квантовых чисел: n , l , m l . Каждая АО условно изображается в виде квантовых ячеек, около которой ставится номер уровня и символ подуровня.

При обсуждении химических свойств атомов и молекул - строения и реакционной способности - большую помощь в качественном решении того или иного вопроса может оказать представление о пространственной форме атомных орбиталей. В общем случае АО записываются в комплексной форме, но, используя линейные комбинации комплексных функций, относящихся к одному и тому же уровню энергии с главным квантовым числом п и с одинаковым значением орбитального момента /, можно получить выражения в действительной форме, которые можно изобразить в реальном пространстве.

Рассмотрим последовательно ряд АО в атоме водорода.

Наиболее просто выглядит волновая функция основного состояния 4^. Она имеет сферическую симметрию

Величина а определяется выражением где величина

называется радиусом Бора. Боровский радиус говорит о характерных размерах атомов. Величина 1/ос определяет масштаб характерного спада функций в одноэлектронных атомах

Из (ЗЛО) видно, что размер одноэлектронных атомов сжимается по мере роста заряда ядра обратно пропорционально значению Z. Например, в атоме Не + волновая функция будет спадать в два раза быстрее, чем в атоме водорода с характерным расстоянием, равным 0,265 А.

График зависимости *F ls от расстояния приведен на рис. 3.3. Максимум функции *Fj находится в нуле. Нахождение электрона внутри ядра не должно вызывать большого удивления, так как ядро нельзя представлять в виде непроницаемой сферы.

Максимальная вероятность обнаружить электрон на некотором расстоянии от ядра в основном состоянии атома водорода приходится на г = а 0 = 0,529 А. Эту величину можно найти следующим образом. Вероятность найти электрон в некотором малом объеме А V равна |*Р| 2 ДЙ. Объем AV полагаем настолько малым, что значение волновой функции можно считать постоянным в пределах этого малого объема. Нас интересует вероятность нахождения электрона на расстоянии г от ядра в тонком слое толщиной Аг. Так как вероятность нахождения электрона на расстоянии г не зависит от направления и конкретное направление нас не интересует, то нужно найти вероятность пребывания электрона в очень тонком сферическом слое толщиной Аг. Так как значение | V F| 2 легко вычисляется, нам необходимо

Рис. 3.3. Зависимость *F 1s от расстояния. Значения функции нормированы на ее величину в при г = О

Рис. 3.4. Схема вычисления объема сферического слоя

найти объем сферического слоя, который обозначим через А К Он равен разности объемов двух шаров с радиусами г и г + Аг (рис. 3.4):

Так как А г мало по сравнению с г, то при вычислении величины (г + Аг) 3 можно ограничиться первыми двумя слагаемыми. Тогда для объема сферического слоя получим

Последнее выражение можно получить и более простым способом. Так как А г мало по сравнению с г, то объем сферического слоя можно принять равным произведению площади сферического слоя на его толщину (см. рис. 3.4). Площадь сферы равна 4кг 2 , а толщина А г. Произведение этих двух величин дает то же выражение (3.11).

Итак, вероятность W найти электрон в этом слое равна

Выражение для *P ls взято из приложения 3.1. Если считать величину Аг постоянной, то максимум приведенной функции наблюдается при г = а 0 .

Если хотят узнать, какова вероятность W обнаружить электрон в объеме V, то необходимо проинтегрировать плотность вероятности обнаружения электрона по этой области пространства в соответствии с выражением (3.6).

Например, какова вероятность обнаружить электрон в атоме водорода в сферической области пространства с центром в ядре и с радиусом й 0 . Тогда

Здесь величина d V в процессе вычислений заменена на 4кг 1 dr по аналогии с (3.11), так как волновая функция зависит только от расстояния и поэтому интегрировать по углам не нужно ввиду отсутствия угловой зависимости интегрируемой функции.

Качественное представление о распределении волновой функции в пространстве дает изображение атомных орбиталей в виде облаков, причем, чем интенсивнее цвет, тем выше значение Ч"-функции. Орбиталь будет выглядеть так (рис. 3.5):

Рис. 3.5.

Орбиталь 2p z B виде облака изображена на рис. 3.6.

Рис. 3.6. Изображение 2р г -орбитали атома водорода в виде облака

Аналогичным образом в виде облака будет выглядеть распределение электронной плотности, которое можно найти, умножив плотность вероятности I"Fj 2 на заряд электрона. В этом случае иногда говорят о размазывании электрона. Однако это ни в коей мере не означает, что мы имеем дело с размазыванием электрона по пространству - никакого реального размазывания электрона по пространству не происходит, и поэтому атом водорода нельзя представлять в виде ядра, погруженного в реальное облако отрицательного заряда .

Однако такие изображения в виде облаков используют редко, а гораздо чаще используют линии, чтобы создать представление об угловой зависимости Ч"-функций. Для этого рассчитывают значения Ч"-функций на сфере, проведенной на некотором расстоянии от ядра. Затем рассчитанные значения откладывают на радиусах с указанием знака Ч"-функций для наиболее информативного для данной Ч"-функций плоского сечения. Например, орбиталь Is обычно изображают в виде окружности (рис. 3.7).

Рис.

На рис. 3.8 2/> г -орбиталь построена на сфере некоторого радиуса. Для получения пространственной картины необходимо произвести вращение фигуры относительно оси z. Индекс «z» при записи функции указывает на ориентацию функции вдоль оси «г». Знаки «+» и «-» соответствуют знакам Ч"-функций. Значения 2/? г -функции положительны в той области пространства, где ^-координата положительна, и отрицательны в той области, где ^-координата отрицательна.

Рис. 3.8. Форма 2p z -орбитали. Построена на сфере некоторого радиуса

Аналогичная ситуация и в случае остальных /ьорбиталей. Например, 2/? х -орбиталь ориентирована вдоль оси х и положительна в той части пространства, где координата х положительна, и ее значения отрицательны там, где значения координаты х отрицательны (рис. 3.9).

Изображение волновых функций с указанием знака имеет важное значение для качественного описания реакционной способности химических соединений, и поэтому изображения типа приведенных на рис. 3.9 встречаются в химической литературе наиболее часто.

Рассмотрим теперь d-орбитали (рис. 3.10). Орбитали d xy , d xz , d yz , выглядят эквивалентным образом. Их ориентация и знаки определяются нижними индексами: индекс ху показывает,

Рис. 3.9. Форма 2р х - орбитали. Построена на сфере некоторого радиуса


что орбиталь ориентирована под углами в 45° по отношению к осям х и у и что знак У-функции положителен там, где произведение индексов х и у положительно.


Рис. 3.10.

Похожим образом дело обстоит и с остальными ^/-орбиталями. Изображение ^/-орбиталей, приведенное на рис. 3.10, наиболее часто встречается в литературе. Видно, что орбитали d , d x2 _ y2 , d z2 не являются эквивалентными. Эквивалентными являются только орбитали d , d xz , d yz . Если для описания структуры молекулы необходимо использовать пять эквивалентных ^/-орбиталей, то их можно построить, используя линейные комбинации орбиталей .

Согласно принципу неопределенности Гейзенберга, положение и момент электрона не поддаются одновременному определению с абсолютной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Область пространства, в которой высока вероятность обнаружения электрона, называется орбиталью. Понятие «орбиталь» не следует отождествлять с понятием орбита, которое используется в теории Бора. Под орбитой в теории Бора понимается траектория (путь) электрона вокруг ядра.

Электроны могут занимать орбитали четырех разных типов, которые называются s-, р-, d- и f-орбиталями. Эти орбитали могут быть представлены трехмерными ограничивающими их поверхностями. Области пространства, ограниченные этими поверхностями, обычно выбираются так, чтобы вероятность обнаружения внутри них одного электрона составляла 95%. На рис. 1.18 схематически изображена форма s- и -орбиталей. s-Орбиталь имеет сферическую форму, а -орбитали - форму гантелей.

Поскольку электрон имеет отрицательный заряд, его орбиталь может рассматриваться как некоторое распределение заряда. Такое распределение принято называть электронным облаком (рис. 1.19).

Рис. 1.18. Форма s- и p-орбиталей.

Рис. 1.19. Электронное облако в поперечном разрезе. Окружностью представлена область вокруг ядра, в пределах которой вероятность нахождения электрона равна 95%.

ОРБИТАЛЬ

ОРБИТАЛЬ , в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ - поверхность пространства вокруг атомного ЯДРА, в которой могут двигаться ЭЛЕКТРОНЫ. Есть большая вероятность присутствия электрона на такой орбитали. Она может содержать один или два электрона. Орбиталь имеет форму и энергию, соответствующую КВАНТОВОМУ ЧИСЛУ атома. В молекулах электроны связи двигаются в объединенном электрическом поле всех ядер. В этом случае атомные орбитали становятся молекулярными орбиталями, областями, которые окружают два ядра, имеющих характерную энергию и содержащих два электрона. Эти молекулярные орбитали, образующиеся из атомных орбиталей, составляют ХИМИЧЕСКИЕ СВЯЗИ.

Атомные орбитали описывают поверхность вокруг ядра атома, в которой скорее всего находятся электроны. Их можно также назвать «энергетическими облаками». Их существованием объясняются химические связи. Электроны содержатся внутри атомных или молекулярных структур, выстраивающихся в энергетические уровни. Для первого уровня характерен только один тип электронов: на нем имеется одна s-орбиталь (А), показанная относительно осей атома х, у и z. Максимальное количество электронов,которые могут находиться на этом энергетическом уровне, равно двум. У второго типа элек тронов орбиталь имеет форму двух соединенных сфер, расположенных симметрично относительно ядра. Такая орбиталь называется р-орбиталью (В) V атома три таких орбитали, и расположены они под прямым углом друг к другу (1,2, 3) Орбитали, которые имеют правильные сферические очертания, для большей ясности картины принято условно обозначать в виде грушевидных облаков. Кроме того, существует также пять d-орбиталей (C-G), каждая из которых состоит из четырех грушевидных долей на двух перпендикулярных осях, пересекающихся в ядре G - комбинация двух р-орбиталей.


Научно-технический энциклопедический словарь .

Смотреть что такое "ОРБИТАЛЬ" в других словарях:

    Орбиталь: Атомная орбиталь. Молекулярная орбиталь. Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из … Википедия

    орбиталь - – полный набор волновых функций электрона, находящегося в поле нуклидов и усредненном поле всех остальных электронов, взаимодействующих с теми же нуклидами. Атомная орбиталь – разрешенное состояние электрона в атоме, геометрический образ,… … Химические термины

    Ф ция пространственныхпеременных одного электрона, имеющая смысл волновой ф ции электрона, находящегосяв поле атомного или молекулярного остова. Если такая ф ция учитывает спинэлектрона, то она наз. спин О. Подробнее см. Молекулярная орбиталъ.… … Физическая энциклопедия

    орбиталь - orbitale. физ. Атомные и и молекулярные волновые функции электрона, находящегося в поле одного или нескольких атомных ядер и в усредненном поле всех остальных электронов рассматриваемого атома или молекулы. НЭС 2000 … Исторический словарь галлицизмов русского языка

    - (от лат. orbita путь, колея), волновая ф ция, описывающая состояние одного электрона в атоме, молекуле или др. квантовой системе. В общем случае квантовохим. термин О. используется для любой ф ции, зависящей от переменных х, у, z одного… … Химическая энциклопедия

    орбиталь - orbitalė statusas T sritis chemija apibrėžtis Banginė funkcija, apibūdinanti elektrono judėjimą atome arba molekulėje; erdvė, kurioje elektrono buvimas labiausiai tikėtinas. atitikmenys: angl. orbital rus. орбиталь … Chemijos terminų aiškinamasis žodynas

    орбиталь - orbitalė statusas T sritis fizika atitikmenys: angl. orbital vok. Orbital, n rus. орбиталь, f pranc. orbitale, f … Fizikos terminų žodynas

    орбиталь - орбит аль, и … Русский орфографический словарь

    орбиталь - с. Орбита буенча башкарыла торган. Орбита буенча хәрәкәт итә торган яки шуның өчен билгеләнгән … Татар теленең аңлатмалы сүзлеге

    орбиталь - Функция, пространственных переменных одного электрона, имеющая смысл волновой функции отдельного электрона в поле эффективного атомного или молекулярного остова … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Химия. Строение вещества (10 таблиц) , . Учебный альбом из 10 листов. Строение атома. Электронная орбиталь. Модели атомов некоторых элементов. Кристаллы. Химическая связь. Валентность. Степень окисления. Изометрия. Гомология. Арт.…

В связи с тем, что при описании элементов их подразделяют на группы с разными орбиталями, очень кратко напомним сущность этого понятия.

Согласно модели атома Бора, электроны вращаются вокруг ядра по круговым орбиталям (оболочкам ). Каждая оболочка имеет строго определенный энергетический уровень и характеризуется некоторым квантовым числом. В природе возможны только определенные энергии электрона, то есть дискретные (квантованные) энергии орбиталей («разрешенные»). Теория Бора приписывает электронным оболочкам К, L, М, N и далее в порядке латинского алфавита, в соответствии с повышающимся энергетическим уровнем оболочек, главное квантовое число п , равное 1, 2, 3, 4 и т.д. В последующем оказалось, что электронные оболочки расщеплены на подоболочки, и каждой свойствен определенный квантовый энергетический уровень, характеризующийся орбитальным квантовым числом l .

Согласно принципу неопределенности Гейзенберга, точно определить местонахождение электрона в любой определенный момент времени невозможно. Однако можно указать вероятность этого. Область пространства, в которой вероятность нахождения электрона наиболее высока, называется орбиталью . Электроны могут занимать 4 орбитали разных типов, которые называются s- (sharp — резкая), р- (principal — главная), d- (diffuse — диффузная) и f- (fundamental — базовая) орбитали. Раньше этими буквами обозначали спектральные линии водорода, но в настоящее время их используют только в качестве символов, без расшифровки.

Орбитали можно представить в виде трехмерных поверхностей. Обычно области пространства, ограниченные этими поверхностями, выбирают так, чтобы вероятность обнаружения внутри них электрона составляла 95%. Схематическое изображение орбиталей представлено на рис. 1.

Рис. 1.

s-Орбиталь имеет сферическую форму, р-орбиталь — форму гантели, d-opбиталь — форму двух гантелей, перекрещивающихся в двух узловых взаимно перпендикулярных плоскостях, s-подоболочка состоит из одной s-орбитали, р-подоболочка — из 3 р-орбиталей, d-подоболочка — из 5 d-орбиталей.

Если не прикладывать магнитное поле, все орбитали одной подоболочки будут иметь одинаковую энергию; их в этом случае называют вырожденными . Однако во внешнем магнитном поле подоболочки расщепляются (эффект Зеемана ). Этот эффект возможен для всех орбиталей, кроме s-орбитали. Он характеризуется магнитным квантовым числом т . Эффект Зеемана используют в современных атомно-абсорбционных спектрофотометрах(ААСФ) для увеличения их чувствительности и снижения предела обнаружения при элементных анализах.

Для биологии и медицины существенно, что орбитали одной симметрии, то есть с одинаковыми числами l и т , но с разным значением главного квантового числа (например, орбитали 1s, 2s, 3s, 4s), различаются по своему относительному размеру. Объем внутреннего пространства электронных орбита-лей больше у атомов с большим значением п . Увеличение объема орбитали сопровождается ее разрыхлением. При комплексообразоваиии размер атома играет важную роль, поскольку определяет структуру координационных соединений. В табл. 1 приведено соотношение количества электронов и главного квантового числа.

Таблица 1. Количество электронов при разных значениях квантового числа п

Помимо трех названных квантовых чисел, характеризующих свойства электронов каждого атома, имеется еще одно — спиновое квантовое число s , характеризующее не только электроны, но и ядра атомов.

Медицинская бионеорганика. Г.К. Барашков

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины