Жаберные дуги у человека развитие. Жаберные дуги эмбриона. Первичная ротовая полость. Основная функция жаберных дуг

Жаберные дуги у человека развитие. Жаберные дуги эмбриона. Первичная ротовая полость. Основная функция жаберных дуг

Эволюция сердца .

Сердце развивается из мезодермы. На низшем этапе развития кровеносной системы сердце отсутствует, и его функцию осуществляют круп­ные сосуды. У ланцетника в замкнутой кровеносной системе функцию сердца выполняет брюшная аорта. У водных позвоночных появляется сердце, ĸᴏᴛᴏᴩᴏᴇ имеет одно предсердие и один желудочек. В серд­це течёт только венозная кровь. У наземных животных сердце получает венозную и артериальную кровь. Появляется перегородка. Сердце становится сначала трёхкамерным (у амфибий и пресмыкающихся), а затем четырёхкамерным. Перегородка развита не до конца. У высших наземных позвоночных сердце разделœено на четыре камеры - два предсердия и два желудочка. Артериальная и венозная кровь не смешана.

Эволюция артериальных жаберных дуг

В связи с тем что основные артериальные сосуды у млекопитающих и человека формируются на базе закладок жаберных артерий, проследим их эволюцию в филогенетическом ряду позвоночных. В эмбриогенезе абсолютного большинства позвоночных закладывается шесть пар артериальных жаберных дуг, соответствующих шести парам висцеральных дуг черепа. В связи с тем что две первые пары висцеральных дуг включаются в состав лицевого черепа, две первые артериальные жаберные дуги быстро редуцируются. Оставшиеся четыре пары функционируют у рыб как жаберные артерии. У наземных позвоночных 3-я пара жаберных артерий теряет связь с корнями спинной аорты и несет кровь к голове, становясь сонными артериями. Сосуды 4-й пары достигают наибольшего развития и вместе с участком корня спинной аорты во взрослом состоянии становятся дугами аорты - основными сосудами большого круга кровообращения.

У земноводных и пресмыкающихся оба сосуда развиты и принимают участие в кровообращении. У млекопитающих также закладываются оба сосуда 4-й пары, а позже правая дуга аорты редуцируется таким образом, что от нее остается лишь небольшой рудимент - плечеголовной ствол. Пятая пара артериальных дуг в связи с тем, что она функционально дублирует четвертую, редуцируется у всех наземных позвоночных, кроме хвостатых амфибий. Шестая пара, которая снабжает венозной кровью кроме жабр еще и плавательный пузырь, у кистеперых рыб становится легочной артерией.

В эмбриогенезе человека рекапитуляции артериальных жаберных дуг происходят с особенностями: все шесть пар дуг никогда не существуют одновременно. В то время, когда две первые дуги закладываются, а затем перестраиваются, последние пары сосудов еще не начинают формироваться. Кроме того, пятая артериальная дуга уже закладывается в виде рудиментарного сосуда, присоединенного обычно к 4-й паре, и редуцируется очень быстро.

Кровеносные системы

Основа для дальйшей эволюции кров. системы, которая характерна для Хордовых, является кров. сис. Бесчерепных – Ланцетника.

У ланцетника кровеносная система наиболее проста.Она замкнута. Круг кровообращения один. Ф-цию сердца выполняет брюшная аорта. По брюшной аорте венозная кровь поступает в приносящие жаберные артерии, которые по количеству соответствуют числу межжаберных перегородок (до 150 пар), где и обогащается кислородом.

По выносящим жаберным артериям кровь поступает в корни спинной аорты, расположенные симметрично с двух сторон тела. Они продолжаются как вперед, неся артериальную кровь к головному мозгу, так и назад. Передние ветви этих двух сосудов являются сонными артериями. На уровне заднего конца глотки задние ветви образуют спинную аорту, которая разветвляется на многочисленные артерии, направляющиеся к органам и распадающиеся на капилляры.

После тканевого газообмена кровь поступает в парные передние или задние кардинальные вены, расположенные симметрично. Передняя и задняя кардинальные вены с каждой стороны впадают в кювьеров проток. Оба кювьеровых протока впадают с двух сторон в брюшную аорту. От стенок пищеварительной системы венозная кровь оттекает через подкишечную вену в воротную систему печени и печеночную вену, по которой кровь поступает в брюшную аорту.

Таким образом, несмотря на простоту кровеносной системы в целом, уже у ланцетника имеются основные артерии, характерные для позвоночных, в том числе для человека: это брюшная аорта, преобразующаяся позже в сердце, восходящую часть дуги аорты и корень легочной артерии; спинная аорта, становящаяся позже собственно аортой, и сонные артерии. Основные вены, имеющиеся у ланцетника, также сохраняются у более высокоорганизованных животных.

Более активный образ жизни рыб предполагает более интенсивный метаболизм. В связи с этим на фоне олигомеризации их артериальных жаберных дуг в количестве до четырех пар отмечается высокая степень дифференцировки: жаберные артерии распадаются на капилляры в жабрах. В процессе интенсификации сократительной функции брюшной аорты часть ее преобразовалась в двухкамерное сердце, состоящее из предсердия и желудочка, венозный синус и артериальный конус. В остальном кровеносная система рыб соответствует строению ее у ланцетника.

В связи с выходом земноводных на сушу и появлением легочного дыхания у них возникает два круга кровообращения. Соответственно этому в строении сердца и артерий появляются приспособления, направленные на разделение артериальной и венозной крови. Перемещение земноводных в основном за счет парных конечностей, а не хвоста обусловливает изменения в венозной системе задней части туловища.

Сердце амфибий расположено каудальнее, чем у рыб, рядом с легкими; оно трехкамерное, но, как и у рыб, от правой половины единственного желудочка начинается единственный сосуд - артериальный конус, разветвляющийся последовательно на три пары сосудов: кожно-легочные артерии, дуги аорты и сонные артерии. Как и у всех более высокоорганизованных классов, в правое предсердие впадают вены большого круга, несущие венозную кровь, в левое - малого с артериальной кровью. При сокращении предсердий в желудочек, внутренняя стенка которого снабжена большим количеством мышечных перекладин, одновременно попадают обе порции крови. Полного их смешения из-за своеобразного строения стенки желудочка не происходит, поэтому при его сокращении первая порция венозной крови поступает в артериальный конус и с помощью спирального клапана, находящегося там, направляется в кожно-легочные артерии. Кровь из середины желудочка, смешанная, поступает таким же образом в дуги аорты, а оставшееся небольшое количество артериальной крови, последней попадающей в артериальный конус, направляется в сонные артерии.

Две дуги аорты, несущие смешанную кровь, огибают сердце и пищевод сзади, образуя спинную аорту, снабжающую все тело, кроме головы, смешанной кровью. Задние кардинальные вены сильно редуцируются и собирают кровь только с боковых поверхностей туловища. Функционально их замещает возникшая заново задняя полая вена, собирающая кровь в основном из задних конечностей. Она располагается рядом со спинной аортой и, находясь позади печени, вбирает в себя печеночную вену, которая у рыб впадала непосредственно в венозный синус сердца. Передние кардинальные вены, обеспечивая отток крови от головы, называют теперь яремными венами, а кювьеровы потоки, в которые они впадают вместе с подключичными венами, - передними полыми венами.

В кровеносной системе пресмыкающихся возникают следующие прогрессивные изменения: в желудочке их сердца имеется неполная перегородка, затрудняющая смешение крови; от сердца отходит не один, а три сосуда, образовавшихся в результате разделения артериального ствола. Из левой половины желудочка начинается правая дуга аорты, несущая артериальную кровь, а из правой -легочная артерия с венозной кровью. Из середины желудочка, в области неполной перегородки, начинается левая дуга аорты со смешанной кровью. Обе дуги аорты, как и у предков, срастаются позади сердца, трахеи и пищевода в спинную аорту, кровь в которой смешанная, но более богата кислородом, чем у земноводных, в связи с тем что до слияния сосудов только по левой дуге течет смешанная кровь. Кроме того, сонные и подключичные артерии с обеих сторон берут начало от правой дуги аорты, в результате чего артериальной кровью снабжается не только голова, но и передние конечности. В связи с появлением шеи сердце располагается еще более каудально, чем у земноводных. Венозная система пресмыкающихся принципиально не отличается от системы вен земноводных.

Млекопитающие.

Прогрессивные изменения кровеносной системы млекопитающих сводятся к полному разделению венозного и артериального кровотоков. Это достигается, во-первых, завершенной четырехкамерностью сердца и, во-вторых, редукцией правой дуги аорты и сохранением только левой, начинающейся от левого желудочка. В результате все органы млекопитающих снабжаются артериальной кровью. В венах большого круга кровообращения также обнаруживаются изменения: остается лишь одна передняя полая вена, располагающаяся справа.

В эмбриональном развитии млекопитающих и человека рекапитулируют закладки сердца и основных кровеносных сосудов предковых классов.Сердце закладывается на первых этапах развития в виде недифференцированной брюшной аорты, которая за счет изгибания, появления в просвете перегородок и клапанов, становится последовательно двух-, трех- и четырехкамерным. Однако рекапитуляции здесь неполны в связи с тем, что межжелудочковая перегородка млекопитающих формируется иначе и из другого материала по сравнению с рептилиями. Поэтому можно считать, что четырехкамерное сердце млекопитающих формируется на базе трехкамерного сердца, а межжелудочковая перегородка является новообразованием, а не результатом доразвития перегородки пресмыкающихся. Таким образом, в филогенезе сердца позвоночных проявляется девиация: в процессе морфогенеза этого органа у млекопитающих рекапитулируют ранние филогенетические стадии, а затем развитие его идет в ином направлении, характерном лишь для этого класса.

Интересно, что место закладки и положение сердца в филогенетическом ряду позвоночных полностью рекапитулируют у млекопитающих и человека. Так, закладка сердца у человека осуществляется на 20-е сутки эмбриогенеза, как у всех позвоночных, позади головы. Позже за счет изменения пропорций тела, появления шейной области, смещения легких в грудную полость осуществляется и перемещение сердца в переднее средостение. Нарушения развития сердца могут выражаться как в возникновении аномалий строения, так и места его положения. Возможно сохранение к моменту рождения двухкамерного сердца. Этот порок совершенно не совместим с жизнью.

Пороки развития аретериальных жаберных дуг у человека.

Из атавистических пороков развития сосудов: с частотой 1 случай на 200 вскрытий детей, умерших от врожденных пороков сердца, встречается персистирование обеих дуг аорты 4-й пары. При этом обе дуги, так же как у земноводных или пресмыкающихся, срастаются позади пищевода и трахеи, образуя нисходящую часть спинной аорты. Порок проявляется нарушением глотания и удушьем. Несколько чаще (2,8 случая на 200 вскрытий) встречается нарушение редукции правой дуги аорты с редукцией левой. Эта аномалия часто клинически не проявляется.

Наиболее частый порок (0,5-1,2 случая на 1000 новорожденных) - персистирование артериального, или боталлова, протока, представляющего собой часть корня спинной аорты между 4-й и 6-й парами артерий слева. Проявляется сбросом артериальной крови из большого круга кровообращения в малый. Очень тяжелый порок развития - персистирование первичного эмбрионального ствола, в результате которого из сердца выходит только один сосуд, располагающийся обычно над дефектом в межжелудочковой перегородке. Он обычно заканчивается смертью ребенка. Нарушение дифференцировки первичного эмбрионального ствола может привести к такому пороку развития, как транспозиция сосудов - отхождение аорты от правого желудочка, а легочного ствола - от левого, что встречается в 1 случае на 2500 новорожденных. Этот порок обычно несовместим с жизнью.

Рекапитуляции проявляются и в эмбриональном развитии крупных вен человека. При этом возможно формирование атавистических пороков развития. Среди пороков развития венозного русла укажем на возможность персистирования двух верхних полых вен. Если обе они впадают в правое предсердие, аномалия клинически не проявляется. При впадении левой полой вены в левое предсердие происходит сброс венозной крови в большой круг кровообращения. Иногда обе полые вены впадают в левое предсердие. Такой порок несовместим с жизнью. Данные аномалии встречаются с частотой 1% от всех врожденных пороков сердечно-сосудистой системы.

Очень редкая врожденная аномалия - неразвитие нижней полой вены. Отток крови от нижней части туловища и ног осуществляется в этом случае через коллатерали непарной и полунепарной вен, являющихся рудиментами задних кардинальных вен.

Характерные признаки хордовых:

  • трёхслойное строение;
  • вторичная полость тела;
  • появление хорды;
  • завоевание всех сред обитания (вода, наземно-воздушная).

В ходе эволюции совершенствовались органы:

  • движения;
  • размножения;
  • дыхания;
  • кровообращения;
  • пищеварения;
  • чувств;
  • нервная (регулирующая и контролирующая работу всех органов);
  • изменялись покровы тела.

Биологический смысл всего живого:

Общая характеристика

Обитают — пресноводные водоёмы; в морской воде.

Продолжительность жизни — от нескольких месяцев до 100 лет.

Размеры — от 10 мм до 9 метров. (Рыбы всю жизнь растут!).

Вес — от нескольких грамм до 2 тонн.

Рыбы — наиболее древние первичноводные позвоночные. Они способны жить только в воде, большинство видов — хорошие пловцы. Класс рыб в процессе эволюции сформировался в водной среде, с ней связаны характерные особенности строения этих животных. Основной тип поступательного движения — боковые волнообразные движения благодаря сокращениям мускулатуры хвостового отдела или всего тела. Грудные и брюшные парные плавники выполняют функцию стабилизаторов, служат для подъёма и опускания тела, поворотов остановок, медленного плавного движения, сохранения равновесия. Непарные спинные и подхвостовой плавники действуют как киль, придавая телу рыбы устойчивость. Слизистый слой, на поверхности кожи, уменьшает трение и способствует быстрому движению, а также защищает тело от возбудителей бактериальных и грибковых заболеваний.

Внешнее строение рыбы

Боковая линия

Хорошо развиты органы боковой линии. Боковая линия воспринимает направление и силу тока воды.

Благодаря этому даже ослеплённая она не натыкается на препятствия и способна ловить движущую добычу.

Внутреннее строение

Скелет

Скелет является опорой для хорошо развитой поперечно-полосатой мускулатуры. Некоторые мышечные сегменты частично перестроились, образовав группы мышц в области головы, челюстей, жаберных крышек, грудных плавников и т.п. (глазные, наджаберные и поджаберные мышцы, мускулатура парных плавников).

Плавательный пузырь

Над кишечником находится тонкостенный мешок — плавательный пузырь, наполненный смесью кислорода, азота и углекислого газа. Пузырь образовался из выроста кишечника. Основная функция плавательного пузыря — гидростатическая. Изменяя давление газов в плавательном пузыре, рыба может изменять глубину погружения.

Если объём плавательного пузыря не изменяется, рыба находится на одной и той же глубине, как бы повисая в толще воды. Когда объём пузыря увеличивается, рыба поднимается вверх. При опускании происходит обратный процесс. Плавательный пузырь у части рыб может участвовать в газообмене (как добавочный орган дыхания), выполнять функции резонатора при воспроизводстве различных звуков и т.д.

Полость тела

Система органов

Пищеварительная

Пищеварительная система начинается ротовым отверстием. У окуня и других хищных костных рыб на челюстях и многих костях ротовой полости находятся многочисленные мелкие острые зубы, которые помогают захватывать и удерживать добычу. Мускулистого языка нет. Через глотку в пищевод пища попадает в большой желудок, где начинает перевариваться под действием соляной кислоты и пепсина. Частично переваренная пища попадает в тонкую кишку, куда впадают протоки поджелудочной железы и печени. Последняя выделяет желчь, которая скопляется в желчном пузыре.

В начале тонкой кишки в неё впадают слепые отростки, благодаря которым увеличивается железистая и всасывающая поверхность кишечника. Непереваренные остатки выводятся в заднюю кишку и через заднепроходное отверстие удаляются наружу.

Дыхательная

Органы дыхания — жабры — расположены на четырёх жаберных дугах в виде ряда ярко-красных жаберных лепестков, покрытых снаружи многочисленными тончайшими складочками, увеличивающими относительную поверхность жабр.

Вода попадает в рот рыбы, процеживается через жаберные щели, омывает жабры, и выбрасывается наружу из-под жаберной крышки. Газообмен происходит в многочисленных жаберных капиллярах, кровь в которых течёт навстречу омывающей жабры воде. Рыбы способны усваивать 46-82% растворённого в воде кислорода.

Напротив каждого ряда жаберных лепестков находятся беловатые жаберные тычинки, имеющие большое значение для питания рыб: у некоторых они образуют цедильный аппарат с соответствующим строением, у других способствуют удерживанию добычи в ротовой полости.

Кровеносная

Кровеносная система состоит из двухкамерного сердца и сосудов. Сердце имеет предсердие и желудочек.

Выделительная

Выделительная система представлена двумя тёмно-красными лентовидными почками, лежащими ниже позвоночного столба почти вдоль всей полости тела.

Почки отфильтровывает из крови продукты распада веществ в виде мочи, которая по двум мочеточникам поступает в мочевой пузырь, открывающийся наружу позади заднепроходного отверстия. Значительная часть ядовитых продуктов распада (аммиак, мочевина и др.) выводятся из организма через жаберные лепестки рыб.

Нервная

Нервная система имеет вид утолщённой впереди полой трубки. Передний её конец образует головной мозг, в котором имеется пять отделов: передний, промежуточный, средний мозг, мозжечок и продолговатый мозг.

Центры разных органов чувств размещены в различных отделах мозга. Полость внутри спинного мозга называется спинномозговым каналом.

Органы чувств

Вкусовые рецепторы , или вкусовые почки, находятся в слизистой оболочке ротовой полости, на голове, усиках, удлиненных лучах плавников, рассеяны по всей поверхности тела. В поверхностных слоях кожи рассеяны осязательные тельца и терморецепторы. Преимущественно на голове рыб концентрируются рецепторы электромагнитного чувства.

Два больших глаза находятся по бокам головы. Хрусталик круглый, не изменяет формы и почти касается уплощённой роговицы (поэтому рыбы близоруки и видят не далее 10-15 метров). У большинства костных рыб сетчатка содержит палочки и колбочки. Это позволяет им адаптироваться в меняющейся освещённости. Большинство костных рыб имеют цветное зрение.

Органы слуха представлены лишь внутренним ухом, или перепончатым лабиринтом, расположенным справа и слева в костях задней части черепа. Звуковая ориентация очень важна для водных животных. Скорость распространения звуков в воде почти в 4 раза больше, чем в воздухе (и близка к звукопроницаемости тканей тела рыб). Поэтому, даже относительно просто устроенный орган слуха позволяет рыбам воспринимать звуковые волны. Органы слуха анатомически связаны с органами равновесия.

От головы до хвостового плавника вдоль тела тянется ряд отверстий — боковая линия . Отверстия связаны с погруженным в кожу каналом, который на голове сильно ветвится и образует сложную сеть. Боковая линия — характерный орган чувств: благодаря ей рыбы воспринимают колебания воды, направление и силу течения, волны, которые отражаются от разных предметов. С помощью этого органа рыбы ориентируются в потоках воды, воспринимают направление движения добычи или хищника, не наталкиваются на твёрдые предметы в едва прозрачной воде.

Размножение

Рыбы размножаются в воде. Большинство видов откладывают икру, оплодотворение наружное, иногда внутреннее, в этих случаях наблюдается живорождение. Развитие оплодотворённой икры длится от нескольких часов до нескольких месяцев. Личинки, которые выходят из икры, имеют остаток желточного мешка с запасом питательных веществ. Сначала они малоподвижны, и питаются лишь этими веществами, а потом начинают активно питаться различными микроскопическими водными организмами. Через несколько недель из личинки развивается покрытый чешуёй и похожий на взрослую рыбу малёк.

Нерест у рыб происходит в разное время года. Большинство пресноводных рыб откладывает икру среди водных растений на мелководье. Плодовитость рыб в среднем гораздо выше плодовитости наземных позвоночных, это связано с большой гибелью икры и мальков.

Иннервация

производные I жаберной дуги - третья ветвь тройничного невра (V пары ЧМН);
производные II - лицевой нерв (VII пара ЧМН);
производные III - языкоглоточный нерв (IX пара ЧМН);
производные IV - верхняя гортанная ветвь блуждающего нерва (X пара ЧМН);
производные V - нижняя гортанная ветвь блуждающего нерва

Жа́берные или висцера́льные ду́ги (лат. Árcus branchiáles seu árcus visceráles ) - парные дугообразные хрящевые пластинки жаберного скелета низших позвоночных и зародышей высших позвоночных, в том числе приматов и человека , часть висцерального скелета позвоночных, костные или хрящевые образования, развивающиеся в стенке глотки между глоточными карманами. У рыб насчитывается от 3 до 7 жаберных дуг, каждая из которых делится на четыре подвижно соединённых отдела и располагается между жаберными щелями; на внешней поверхности жаберной дуги развиваются жабры . У наземных позвоночных жаберные дуги в процессе эмбрионального развития трансформируются: верхние членики редуцируются, а нижние - участвуют в образовании подъязычного аппарата и превращаются в хрящи гортани , трахеи .

Анатомия

Рыбы

Жаберные дуги - система скелетных элементов глотки у круглоротых и рыб, каждый из которых охватывает глотку полукольцом. У большинства современных рыб насчитывается пять жаберных дуг, у круглоротых и некоторых акул - их количество достигает семи. За счёт редуцирования дистальных (расположенных ближе к хвосту) количество жаберных дуг у костистых рыб может сокращаться до трёх. По анатомическому строению жаберные дуги круглоротых, хрящевых , осетровых и двоякодышащих рыб - хрящевые, а у костистых рыб - костные. Полностью сформированные жаберные дуги рыб состоят из 4 подвижно соединённых члеников. У костистых рыб пятая жаберная дуга, называемая нижнеглоточной костью, обычно рудиментарна , однако у карпообразных несёт зубы и бывает весьма массивной .

Эмбриология

Рыбы

По мере развития головного мозга у рыб образуется вокруг него защитная коробка :

  • у хрящевых (акуловых) рыб - хрящевая - приобретает хрящевую ткань и образует хрящевой череп,
  • у костистых рыб - костная - начинает формироваться костный череп.

Земноводные

Пресмыкающиеся

У более развитых классов позвоночных соединительная и хрящевая ткань полностью вытесняется костной - происходит формирование более прочного костного черепа. Таким образом, у наземных позвоночных количество костей уменьшается, а их строение усложняется, так как ряд костей представляет собой результат сращения ранее самостоятельных костных образований .

Птицы

Млекопитающие

У млекопитающих (или зверей) происходит тесное сращение между собой висцерального и мозгового черепа .

Человек разумный

  1. соединительнотканную,
  2. хрящевую,
  3. костную.

Причём переход второй стадии в третью (формирование вторичных костей на месте хряща) у человека происходит на протяжении всей его жизни. Таким образом, даже у взрослого человека сохраняются синхондрозы (хрящевы́е соедине́ния) - остатки хрящевой ткани между костями .

Производные хрящей жаберных дуг :

I - из верхней части первой жаберной (или челюстной ) дуги (лат. Procéssus maxilláris ) формируется верхняя челюсть, на вентральном (обращённом в сторону живота) хряще (лат. Procéssus mandibuláris ) формируется нижняя челюсть, сочленяющаяся с височной костью посредством височно-нижнечелюстного сустава . Остальные части хрящей первой жаберной дуги превращаются в слуховые косточки: молоточек и наковальню .

II - верхний отдел второй жаберной (подъязычной или гиоидной ) дуги даёт начало третьей слуховой косточке - стремени . Таким образом, все три слуховые косточки не имеют отношения к костям лицевого черепа и размещаются в барабанной полости , входящей в состав среднего уха и развивающейся из первого жаберного кармана. Остальная часть подъязычной жаберной дуги идёт на построение фрагментов подъязычной кости : малых рогов и частично её тела, а также шиловидных отростков височной кости и шилоподъязычной связки (лат. Ligaméntum stylohyoídeum ).

III - третья жаберная дуга служит источником для оставшейся части тела подъязычной кости и образует её большие рога.

IV-V (VII) - оставшиеся жаберные дуги служат источником для щитовидного и остальных хрящей гортани и трахеи .

  • неподвижные - верхняя челюсть , нёбная и скуловая кости ;
  • подвижные - нижняя челюсть , подъязычная кость и слуховые косточки.

См. также

  • Жаберные крышки (оперкулюм)

Напишите отзыв о статье "Жаберные дуги"

Примечания

  1. Анатомия человека / Привес М. Г. , Лысенков Н. К. - 9-е изд., перераб. и доп. - М .: Медицина , 1985. - С. 87-89. - 672 с. - (Учебная литература для студентов медицинских институтов). - 110 000 экз.
  2. Анатомия человека в двух томах / Под ред. акад. РАМН проф. М. Р. Сапина . - 5-е изд., перераб. и доп. - М .: Медицина , 2001. - Т. I. - С. 169-173. - 640 с. - (Для студентов медицинских вузов, аспирантов, врачей). - ISBN 5-225-04585-5.
  3. Paul R. Ehrlich., David S. Dobkin, Darryl Wheye. . Birds of Stanford . Stanford University (1988). Проверено 13 декабря 2007. . основано на книге The Birder’s Handbook (Paul Ehrlich, David Dobkin, and Darryl Wheye. 1988. Simon and Schuster, New York.)
  4. Frank Gill. Орнитология = Ornithology. - New York: WH Freeman and Co, 1995. - 720 с. - ISBN 0-7167-2415-4.
  5. В.Д. Ильичев, Н.Н. Карташев, И.А. Шилов. Общая орнитология. - М .: Высшая школа, 1982. - 464 с.

Литература

  • Биологический энциклопедический словарь / Гл. ред. М. С. Гиляров ; Редкол.: А. А. Баев , Г. Г. Винберг, Г. А. Заварзин и др. - М .: Сов. энциклопедия, 1986. - С. 831. - 100 000 экз.
  • Северцов А. Н. Морфология висцерального аппарата эласмобранхий , Собрание соч., т. 4, М. - Л., 1948.
  • Гиммельрейх Г. А. Висцеральный аппарат осетрообразных как орган приёма пищи , в книге: Вопросы эволюционной морфологии позвоночных, М., 1963.

Отрывок, характеризующий Жаберные дуги

Сияние вокруг него стало ярче... и, к моему большому огорчению, он исчез…
Сверкающая громадная «спираль» ещё какое-то время продолжала сиять, а потом начала рассыпаться и полностью растаяла, оставляя за собой только глубокую ночь.
Стелла наконец-то «очнулась» от шока, и всё вокруг тут же засияло весёлым светом, окружая нас причудливыми цветами и разноцветными птицами, которых её потрясающее воображение поспешило скорее создать, видимо желая как можно быстрее освободиться от гнетущего впечатления навалившейся на нас вечности.
– Ты думаешь это я?.. – всё ещё не в состоянии поверить в случившееся, ошарашено прошептала я.
– Конечно! – уже опять весёлым голоском прощебетала малышка. – Это ведь то, что ты хотела, да? Оно такое огромное и страшное, хоть и очень красивое. Я бы ни за что не осталась там жить! – с полной уверенностью заявила она.
А я не могла забыть той невероятно-огромной и такой притягательно-величавой красоты, которая, теперь я знала точно, навечно станет моей мечтой, и желание когда-то туда вернуться станет преследовать меня долгие, долгие годы, пока, в один прекрасный день, я не обрету наконец-то мой настоящий, потерянный ДОМ…
– Почему ты грустишь? У тебя ведь так здорово получилось! – удивлённо воскликнула Стелла. – Хочешь, я покажу тебе что-то ещё?
Она заговорщически сморщила носик, от чего стала похожа на милую, смешную маленькую обезьянку.
И опять всё вверх ногами перевернулось, «приземлив» нас в каком-то сумасшедше-ярком «попугайном» мире… в котором дико кричали тысячи птиц и от этой ненормальной какофонии закружилась голова.
– Ой! – звонко засмеялась Стелла, – не так!
И сразу наступила приятная тишина... Мы ещё долго «шалили» вместе, теперь уже попеременно создавая смешные, весёлые, сказочные миры, что и вправду оказалось совершенно несложно. Я никак не могла оторваться от всей этой неземной красоты и от хрустально-чистой, удивительной девочки Стеллы, которая несла в себе тёплый и радостный свет, и с которой искренне хотелось остаться рядом навсегда…
Но реальная жизнь, к сожалению, звала обратно «опуститься на Землю» и мне приходилось прощаться, не зная, удастся ли когда-то хоть на какое-то мгновение её опять увидеть.
Стелла смотрела своими большими, круглыми глазами, как будто желая и не смея что-то спросить... Тут я решила ей помочь:
– Ты хочешь, чтобы я пришла ещё? – с затаённой надеждой спросила я.
Её смешное личико опять засияло всеми оттенками радости:
– А ты правда-правда придёшь?! – счастливо запищала она.
– Правда-правда приду… – твёрдо пообещала я...

Загруженные «по-горлышко» каждодневными заботами дни сменялись неделями, а я всё ещё никак не могла найти свободного времени, чтобы посетить свою милую маленькую подружку. Думала я о ней почти каждый день и сама себе клялась, что завтра уж точно найду время, чтобы хоть пару часов «отвести душу» с этим чудесным светлым человечком... А также ещё одна, весьма странная мысль никак не давала мне покоя – очень хотелось познакомить бабушку Стеллы со своей, не менее интересной и необычной бабушкой... По какой-то необъяснимой причине я была уверена, что обе эти чудесные женщины уж точно нашли бы о чём поговорить...
Так, наконец-то, в один прекрасный день я вдруг решила, что хватит откладывать всё «на завтра» и, хотя совершенно не была уверена, что Стеллина бабушка именно сегодня будет там, решила, что будет чудесно если сегодня я наконец-то навещу свою новую подружку, ну, а если повезёт, то и наших милых бабушек друг с другом познакомлю.
Какая-то странная сила буквально толкала меня из дома, будто кто-то издалека очень мягко и, в то же время, очень настойчиво меня мысленно звал.
Я тихо подошла к бабушке и, как обычно, начала около неё крутиться, стараясь придумать, как бы ей всё это получше преподнести.
– Ну, что, пойдём что-ли?.. – спокойно спросила бабушка.
Я ошарашено на неё уставилась, не понимая каким образом она могла узнать, что я вообще куда-то собралась?!.
Бабушка хитро улыбнулась и, как ни в чём не бывало, спросила:
– Что, разве ты не хочешь со мной пройтись?
В душе возмутившись такому бесцеремонному вторжению в мой «частный мысленный мир», я решила бабушку «испытать».
– Ну, конечно же хочу! – радостно воскликнула я, и не говоря куда мы пойдём, направилась к двери.
– Свитер возьми, вернёмся поздно – прохладно будет! – вдогонку крикнула бабушка.
Тут уж я дольше выдержать не могла...
– И откуда ты знаешь, куда мы идём?! – нахохлившись, как замёрзший воробей, обижено буркнула я.
Так у тебя ж всё на лице написано, – улыбнулась бабушка.
На лице у меня, конечно же, написано этого не было, но я бы многое отдала, чтобы узнать, откуда она так уверенно всегда всё знала, когда дело касалось меня?
Через несколько минут мы уже дружно топали по направлению к лесу, увлечённо болтая о самых разнообразных и невероятных историях, которых она, естественно, знала намного больше, чем я, и это была одна из причин, почему я так любила с ней гулять.
Мы были только вдвоём, и не надо было опасаться, что кто-то подслушает и кому-то может быть не понравится то, о чём мы говорим.
Бабушка очень легко принимала все мои странности, и никогда ничего не боялась; а иногда, если видела, что я полностью в чём-то «потерялась», она давала мне советы, помогавшие выбраться из той или иной нежелательной ситуации, но чаще всего просто наблюдала, как я реагирую на, уже ставшие постоянными, жизненные сложности, без конца попадавшиеся на моём «шипастом» пути. В последнее время мне стало казаться, что бабушка только и ждёт когда попадётся что-нибудь новенькое, чтобы посмотреть, повзрослела ли я хотя бы на пяту, или всё ещё «варюсь» в своём «счастливом детстве», никак не желая вылезти из коротенькой детской рубашонки. Но даже за такое её «жестокое» поведение я очень её любила и старалась пользоваться каждым удобным моментом, чтобы как можно чаще проводить с ней время вдвоём.
Лес встретил нас приветливым шелестом золотой осенней листвы. Погода была великолепная, и можно было надеяться, что моя новая знакомая по «счастливой случайности» тоже окажется там.
Я нарвала маленький букет каких-то, ещё оставшихся, скромных осенних цветов, и через несколько минут мы уже находились рядом с кладбищем, у ворот которого... на том же месте сидела та же самая миниатюрная милая старушка...
– А я уже думала вас не дождусь! – радостно поздоровалась она.
У меня буквально «челюсть отвисла» от такой неожиданности, и в тот момент я видимо выглядела довольно глупо, так как старушка, весело рассмеявшись, подошла к нам и ласково потрепала меня по щеке.
– Ну, ты иди, милая, Стелла уже заждалась тебя. А мы тут малость посидим...
Я не успела даже спросить, как же я попаду к той же самой Стелле, как всё опять куда-то исчезло, и я оказалась в уже привычном, сверкающем и переливающемся всеми цветами радуги мире буйной Стеллиной фантазии и, не успев получше осмотреться, тут же услышала восторженный голосок:
– Ой, как хорошо, что ты пришла! А я ждала, ждала!..
Девчушка вихрем подлетела ко мне и шлёпнула мне прямо на руки... маленького красного «дракончика»... Я отпрянула от неожиданности, но тут же весело рассмеялась, потому что это было самое забавное и смешное на свете существо!..
«Дракончик», если можно его так назвать, выпучил своё нежное розовое пузо и угрожающе на меня зашипел, видимо сильно надеясь таким образом меня напугать. Но, когда увидел, что пугаться тут никто не собирается, преспокойно устроился у меня на коленях и начал мирно посапывать, показывая какой он хороший и как сильно его надо любить...
Я спросила у Стелы, как его зовут, и давно ли она его создала.
– Ой, я ещё даже и не придумала, как звать! А появился он прямо сейчас! Правда он тебе нравится? – весело щебетала девчушка, и я чувствовала, что ей было приятно видеть меня снова.
– Это тебе! – вдруг сказала она. – Он будет с тобой жить.
Дракончик смешно вытянул свою шипастую мордочку, видимо решив посмотреть, нет ли у меня чего интересненького... И неожиданно лизнул меня прямо в нос! Стелла визжала от восторга и явно была очень довольна своим произведением.
– Ну, ладно, – согласилась я, – пока я здесь, он может быть со мной.
– Ты разве его не заберёшь с собой? – удивилась Стелла.
И тут я поняла, что она, видимо, совершенно не знает, что мы «разные», и что в том же самом мире уже не живём. Вероятнее всего, бабушка, чтобы её пожалеть, не рассказала девчушке всей правды, и та искренне думала, что это точно такой же мир, в котором она раньше жила, с разницей лишь в том, что теперь свой мир она ещё могла создавать сама...
Я совершенно точно знала, что не хочу быть тем, кто расскажет этой маленькой доверчивой девочке, какой по-настоящему является её сегодняшняя жизнь. Она была довольна и счастлива в этой «своей» фантастической реальности, и я мысленно себе поклялась, что ни за что и никогда не буду тем, кто разрушит этот её сказочный мир. Я только не могла понять, как же объяснила бабушка внезапное исчезновение всей её семьи и вообще всё то, в чём она сейчас жила?..
– Видишь ли, – с небольшой заминкой, улыбнувшись сказала я, – там где я живу драконы не очень-то популярны....
– Так его же никто не увидит! – весело прощебетала малышка.
У меня прямо-таки гора свалилась с плеч!.. Я ненавидела лгать или выкручиваться, и уж особенно перед таким чистым маленьким человечком, каким была Стелла. Оказалось – она прекрасно всё понимала и каким-то образом ухитрялась совмещать в себе радость творения и грусть от потери своих родных.
– А я наконец-то нашла себе здесь друга! – победоносно заявила малышка.
– Да ну?.. А ты меня с ним когда-нибудь познакомишь? – удивилась я.
Она забавно кивнула своей пушистой рыжей головкой и лукаво прищурилась.
– Хочешь прямо сейчас? – я чувствовала, что она буквально «ёрзает» на месте, не в состоянии более сдерживать своё нетерпение.
– А ты уверена, что он захочет придти? – насторожилась я.
Не потому, что я кого-то боялась или стеснялась, просто у меня не было привычки беспокоить людей без особо важного на то повода, и я не была уверена, что именно сейчас этот повод является серьёзным... Но Стелла была видимо, в этом абсолютно уверена, потому, что буквально через какую-то долю секунды рядом с нами появился человек.


Концентрация кислорода в водоеме - самый неустойчивый многократно меняющийся в течение суток показатель среды обитания рыб. Тем не менее парциальное давление кислорода и углекислого газа в крови рыб достаточно стабильно и относится к жестким константам гомеостаза. Как дыхательная среда вода уступает воздушной среде (табл. 8.1).

8.1. Сравнение воды и воздуха как среды дыхания (при температуре 20 °С)

Показатели Воздух Вода Вода/воздух

Плотность, г/см 3

Вязкость, Па* с

Коэффициент диффузии О 2 , см /с

При столь невыгодных изначальных условиях для газообмена эволюция пошла по пути создания дополнительных механизмов газообмена у водных животных, которые позволяют им переносить опасные колебания концентрации кислорода в окружающей их среде. Помимо жабр у рыб в газообмене принимают участие кожа, желудочно-кишечный тракт, плавательный пузырь, специальные органы

Жабры орган газообмена в водной среде

Основная нагрузка в обеспечении организма рыб кислородом и удалении из него углекислого газа ложится на жабры. Они выполняют титаническую работу. Если сравнивать жаберное и легочное дыхание, то приходишь к заключению, что рыбе необходимо прокачивать через жабры дыхательной среды в 30 раз больше по объему и в 20 000 (!) раз больше по массе.

Более пристальное изучение показывает, что жабры хорошо приспособлены к газообмену в водной среде. Кислород переходит в капиллярное русло жабр по градиенту парциального давления, который у рыб составляет 40-100 мм рт. ст. Такова же причина перехода кислорода из крови в межклеточную жидкость в тканях.

Здесь градиент парциального давления кислорода оценивается в 1-15ммрт. ст., градиент концентрации углекислого газа - в 3-15 мм.рт.ст. Газообмен в других органах, например через кожу, осуществляется по тем же физическим законам, однако интенсивность диффузии в них гораздо ниже. Жаберная поверхность в 10-60 раз превышает площадь тела рыбы. К тому же жабры, высокоспециализированные на газообмене органы, даже при одинаковой с другими органами площади будут иметь большие преимущества. Самое совершенное строение жаберного аппарата характерно для костистых рыб. Основой жаберного аппарата являются 4 пары жаберных дуг. На жаберных дугах располагаются хорошо васкуляризированные жаберные лепестки, образующие дыхательную поверхность (рис. 8.1).

По стороне жаберной дуги, обращенной в ротовую полость, располагаются более мелкие структуры - жаберные тычинки, которые в большей мере отвечают за механическую очистку воды по мере ее поступления из ротовой полости к жаберным лепесткам.

Поперечно жаберным лепесткам располагаются микроскопические жаберные лепесточки, которые и являются структурными элементами жабр как органов дыхания (см. рис. 8.1; 8.2). Покрывающий лепесточки эпителий имеет клетки трех типов: респираторные, слизистые и опорные. Площадь вторичных ламелей и, следовательно, дыхательного эпителия зависит от биологических особенностей рыбы - образа жизни, интенсивности основного обмена, потребности в кислороде.

Так, у тунца при массе 100 г площадь жаберной поверхности составляет 20-30 см 2 /г, у кефали - 10 см /г, у форели - 2 см /г, У плотвы - 1 см /г.

Рис. 8.1. Строение жабр костистых рыб:

1- жаберные лепестки; 2- жаберные лепесточки; 3-жаберная артерия; 4 - жаберная вена; 5-лепестковая артерия; 6 - лепестковая вена; 7-жаберные тычинки; 8- жаберная дуга

Однако известно, что крупные и активные виды, например тунец, рта не закрывают, и дыхательные движения жаберных крышек у них отсутствуют. Такой тип вентиляции жабр называют "таранным"; он возможен только при больших скоростях перемещения в воде.

Для прохождения воды через жабры и движения крови по сосудам жаберного аппарата характерен противоточный механизм, обеспечивающий очень высокую эффективность газообмена. Пройдя через жабры, вода теряет до 90 % растворенного в ней кислорода (табл. 8.2). 8.2. Эффективность извлечения кислорода из воды разными вилами рыб, %

Жаберные лепестки и лепесточки расположены очень тесно, но благодаря малой скорости движения через них воды они не создают большого сопротивления току воды. Согласно расчетам, несмотря на большой объем работы по перемещению воды через жаберный аппарат (не менее 1 м воды на 1 кг живой массы в сутки), энергетические затраты рыбы при этом невелики.

Нагнетание воды обеспечивают два насоса - ротовой и жаберный. У разных видов рыб возможно превалирование одного из них. Например, у быстроходных кефали и ставриды действует в основном ротовой насос, а у медлительных придонных рыб (камбалы или сома) - жаберный насос.

Частота дыхательных движений у рыб зависит от многих факторов, но наибольшее влияние на этот физиологический показатель оказывают два - температура воды и содержание в ней кислорода. Зависимость частоты дыхания от температуры показана на рис. 8.2.

Жаберный газообмен может быть эффективным только при постоянном токе воды через жаберный аппарат. Вода орошает жаберные лепестки постоянно, и этому способствует ротовой аппарат. Вода устремляется из ротовой полости к жабрам. Такой механизм есть у большинства видов рыб. Таким образом, жаберное дыхание следует рассматривать как очень эффективный механизм газообмена в водной среде с точки зрения эффективности извлечения кислорода, а также энергозатрат на этот процесс. В том случае, когда жаберный механизм не справляется с задачей адекватного газообмена, включаются другие (вспомогательные) механизмы.

Рис. 8.2. Зависимость частоты дыхания от температуры воды у сеголетков карпа

Кожное дыхание рыб

Кожное дыхание развито в разной мере у всех животных, но у некоторых видов рыб оно может быть основным механизмом газообмена.

Кожное дыхание имеет существенное значение для видов, ведущих малоподвижный образ жизни в условиях низкого содержания кислорода или на короткое время покидающих водоем (угорь, илистый прыгун, сомы). У взрослого угря кожное дыхание становится основным и достигает 60% общего объема газообмена

8.3. Доля кожного дыхания у разных видов рыб

Температура, аС

Кожное дыхание, %

Изучение онтогенетического развития рыб свидетельствует о том, что кожное дыхание первично по отношению к жаберному. Эмбрионы и личинки рыб осуществляют газообмен с окружающей средой через покровные ткани. Интенсивность кожного дыхания усиливается с повышением температуры воды, так как повышение температуры усиливает обмен веществ и снижает растворимость кислорода в воде.

В целом интенсивность кожного газообмена определяется морфологией кожи. У угря кожа имеет гипертрофированные по сравнению с другими видами васкуляризацию и иннервацию.

У других видов, например у акул, доля кожного дыхания незначительна, но и кожа у них имеет грубое строение со слаборазвитой системой кровоснабжения. Площадь кровеносных сосудов кожи у разных видов костистых рыб составляет от
0,5 до 1,5 см:/г живой массы. Соотношение площади кожных капилляров и капилляров жабр варьирует в широких пределах - от 3:1 у вьюна до 10:1 у карпа. Толщина эпидермиса, колеблющаяся от 31-38 мкм у камбалы До 263 мкм у угря и 338 мкм у вьюна, определяется количеством и размером мукозных клеток. Однако есть рыбы с очень интенсивным газообменом на фоне ординарной макро- и микроструктуры кожи.

В заключение надо подчеркнуть, что механизм кожного дыхания у животных изучен явно недостаточно. Важную роль в этом процессе играет кожная слизь, в составе которой обнаруживается и гемоглобин, и фермент карбоангидраза.

Кишечное дыхание рыб

В экстремальных условиях (гипоксия) кишечное дыхание используется многими видами рыб. Однако есть рыбы, у которых желудочно-кишечный тракт претерпел морфологические изменения с целью эффективного газообмена. При этом, как правило длина кишки увеличивается. У таких рыб (сомик, пескарь) воздух заглатывается и перистальтическими движениями кишечника направляется в специализированный отдел. В этой части желудочно-кишечного тракта стенка кишки приспособлена к газообмену, во-первых, за счет гипертрофированной капиллярной васкуляризации и, во-вторых, за счет наличия респираторного цилиндрического эпителия. Заглоченный пузырек атмосферного воздуха в кишке находится под определенным давлением, что повышает коэффициент диффузии кислорода в кровь. В этом месте кишка обеспечивается венозной кровью, поэтому возникают хорошая разница парциального давления кислорода и углекислого газа и однонаправленность их диффузии. Кишечное дыхание широко распространено у американских сомиков. Среди них есть виды с приспособленным для газообмена желудком.

Плавательный пузырь не только обеспечивает рыбе нейтральную плавучесть, но и играет определенную роль в газообмене. Он бывает открытым (лососевые) и закрытым (карп). Открытый пузырь связан воздушным протоком с пищеводом, и его газовый состав может быстро обновляться. В закрытом пузыре изменение газового состава происходит только через кровь.

В стенке плавательного пузыря имеется особая капиллярная система, которую принято называть "газовой железой". Капилляры железы образуют круто изогнутые противоточные петли. Эндотелий газовой железы способен выделять молочную кислоту и тем самым локально изменять рН крови. Это, в свою очередь, заставляет гемоглобин отдавать кислород прямо в плазму крови. Получается, что кровь, оттекающая от плавательного пузыря, перенасыщена кислородом. Однако противоточный механизм кровотока в газовой железе приводит к тому, что этот кислород плазмы диффундирует в полость пузыря. Таким образом, пузырь создает запас кислорода, который используется организмом рыбы в неблагоприятных условиях.

Другие приспособления для газообмена представлены лабиринтом (гурами, лялиус, петушок), наджаберным органом (рисовый угорь), легкими (двоякодышащие), ротовым аппаратом (окунь ползун), глоточными полостями (Ophiocephalus sp.). Принцип газообмена в этих органах такой же, как в кишке или в плавательном пузыре. Морфологическая основа газообмена в них -это видоизмененная система капиллярного кровообращения плюс утончение слизистых оболочек (рис. 8.3).


Рис. 8.3. Разновидности наджаберных органов: 1- окунь-ползун: 2- кучия; 3- змееголов; 4- нильский шармут

Морфологически и функционально с органами дыхания связаны псевдобранхии - особые образования жаберного аппарата. Их роль до конца не изучена. То. что к этим структурам притекает кровь от жабр, насыщенная кислородом, свидетельствует о том. что они не участвуют в обмене кислорода. Однако наличие большого количества карбоангидразы на мембранах псевдобранхии допускает участие этих структур в регуляции обмена углекислого газа в пределах жаберного аппарата.

Функционально с псевдобранхиями связана так называемая сосудистая железа, расположенная на задней стенке глазного яблока и окружающая зрительный нерв. Сосудистая железа имеет сеть капилляров, напоминающую таковую в газовой железе плавательного пузыря. Есть точка зрения, что сосудистая железа обеспечивает снабжение сильно насыщенной кислородом кровью сетчатки глаза при максимально низком поступлении в нее углекислого газа. Вероятно, что фоторецепция требовательна к рН растворов, в которых она осуществляется. Поэтому систему псевдобранхии - сосудистая железа можно рассматривать как дополнительный буферный фильтр сетчатки глаза. Если принять во внимание, что наличие этой системы не связано с таксономическим положением рыб, а скорее связано со средой обитания (эти органы имеются чаще у морских видов, обитающих в воде с высокой прозрачностью, и зрение у которых является важнейшим каналом связи с внешней средой), то данное предположение выглядит убедительным.

Перенос газов кровью в организме рыб

Принципиальных отличий в транспортировании газов кровью У рыб нет. Как у легочных животных, у рыб транспортные функции крови реализуются за счет высокого сродства гемоглобина к кислороду, сравнительно высокой растворимости газов в плазме крови, химической трансформации углекислого газа в карбонаты и бикарбонаты.

Основным транспортировщиком кислорода в крови у рыб выступает гемоглобин. Небезынтересно, что гемоглобин рыб функционально делится на два типа- чувствительный к кислоте и нечувствительный к кислоте. Чувствительный к кислоте гемоглобин при понижении рН крови утрачивает способность связывать кислород.

Нечувствительный к кислоте гемоглобин не реагирует на величину рН, причем для рыб его наличие имеет жизненно важное значение, так как их мышечная активность сопровождается большими выбросами в кровь молочной кислоты (естественный результат гликолиза в условиях постоянной гипоксии).

У некоторых арктических и антарктических видов рыб гемоглобина в крови нет вообще. В литературе есть сообщения о таком же явлении у карпа. В экспериментах на форели показано, что рыба не испытывает асфиксии без функционального гемоглобина (весь гемоглобин искусственно связывали при помощи СО) при температуре воды ниже 5 аС. Это свидетельствует о том, что потребность рыб в кислороде значительно ниже, чем у наземных животных (особенно при пониженных температурах воды, когда повышается растворимость газов в плазме крови). В определенных условиях с транспортированием газов справляется одна плазма. Однако в обычных условиях у подавляющего большинства рыб газообмен без гемоглобина практически исключен. Диффузия кислорода из воды в кровь протекает по градиенту концентрации. Градиент сохраняется, когда растворенный в плазме кислород связывается гемоглобином, т.е. диффузия кислорода из воды идет до полного насыщения гемоглобина кислородом. Кислородная емкость крови колеблется от 65 мг/л у ската до 180 мг/л у лосося. Однако насыщение крови углекислотой (диоксидом углерода) может снизить кислородную емкость крови рыб в 2 раза.

Рис. 8.4. Роль карбоангидразы в переносе углекислого газа кровью

Транспортирование углекислого газа кровью осуществляется по-другому. Роль гемоглобина в переносе углекислого газа в виде карбогемоглобина невелика. Расчеты показывают, что гемоглобин переносит не более 15 % углекислого газа, образующегося в результате обмена веществ рыбы. Основной транспортной системой для переноса углекислого газа является плазма крови. Попадая в кровь в результате диффузии из клеток, углекислый газ вследствие его ограниченной растворимости создает повышенное парциальное давление в плазме и таким образом должен тормозить переход газа из клеток в кровяное русло. На самом деде этого не происходит. В плазме под влиянием карбоангидразы эритроцитов осуществляется реакция СО 2 + Н 2 О->Н 2 СО 3- >Н+ + НСО 3

За счет этого парциальное давление углекислого газа у клеточной мембраны со стороны плазмы крови постоянно снижается, и диффузия углекислого газа в кровь протекает равномерно. Схематично роль карбоангидразы показана на рис. 8.4. Образующийся бикарбонат с кровью поступает в жаберный эпителий, который также содержит карбоангидразу. Поэтому в жабрах происходит преобразование бикарбонатов в углекислый газ и воду. Далее по градиенту концентрации СО 2 из крови диффундирует в омывающую жабры воду.

Протекающая через жаберные лепестки вода контактирует с жаберным эпителием не более 1 с, поэтому градиент концентрации углекислого газа не изменяется и он с постоянной скоростью покидает кровеносное русло. Примерно по такой же схеме происходит удаление углекислого газа и в других органах дыхания. Кроме того, значительные количества углекислого газа, образующегося в результате обмена веществ, выделяются из организма в виде карбонатов с мочой, в составе панкреатического сока, желчи и через кожу.



Развитие лицевого черепа и мозгового черепа следует рассматривать отдельно, так как они имеют независимые эмбриональные зачатки, особенности строения и функции, хотя топографоанатомически находятся в тесных взаимоотношениях. В построении мозгового черепа принимает участие более древнее образование- основание черепа, проходящее хрящевую стадию развития, с которым связаны капсулы органов чувств и филогенетически более молодые кости свода черепа и лица, окостеневающие на основе перепончатой соединительной ткани. Основание и свод черепа принимают участие в формировании костного вместилища для центральной нервной системы и защищают головной мозг от повреждения.

Развитие мозговой части черепа . Кости основания черепа проходят три стадии развития: перепончатую, хрящевую и костную.

Первичная сегментация в области головы у эмбрионов наблюдается только в затылочной части, где на уровне заднего мозга появляется скопление мезенхимы вокруг хорды (рис. 69). С ростом мозга развивается и окружающая его мезенхима; ее глубокий листок служит производным мозговых оболочек, а наружный- превращается в перепончатый череп. Перепончатый череп у некоторых водных животных сохраняется на протяжении всей жизни, а у человека встречается только в эмбриональном периоде и после рождения в виде родничков и прослоек перепончатой ткани между костями. В этот период развивающиеся полушария головного мозга не встречают препятствий со стороны перепончатого черепа.

69. Схематизированный рисунок предхрящевых скоплений мезенхимы у эмбриона человека длиной 9 мм (по Бардину).

1 - хорда;
2 - затылочный комплекс;
3 - III шейный позвонок;
4 - лопатка;
5 - кости руки;
6 - ладонная пластинка;
7 - VII ребро;
8 - I поясничный позвонок;
9 - таз;
10 - кости ноги;
11 - крестцовые позвонки.


70. Закладка предхордовых и околохордовых пластинок развивающегося черепа.

1 - предхордовые пластинки (перекладины);
2 - околохордовые пластинки;
3 - хорда;
4 - обонятельная капсула;
5 - зрительная ямка;
6 - слуховая капсула;
7 - основоглоточный канал.

На 7-й неделе внутриутробного развития наблюдается превращение перепончатой ткани основания черепа в хрящевую, а крыша и лицевая его часть остаются перепончатыми. Хрящевая ткань основания черепа разделяется на черепные перекладины, лежащие впереди хорды - прехордально и по краям хорды- парахордальные пластинки и капсулы органов чувств (рис. 70). В этот период развития черепа кровеносные сосуды и нервы прорастают его хрящевое основание и принимают участие в формировании будущих отверстий, щелей и каналов костей основания черепа (рис. 71. А, Б). Черепные перекладины и парахордальные пластинки срастаются в общую пластинку, которая имеет отверстие на месте будущего турецкого седла, находящегося около переднего конца хорды. Через это отверстие проходят клетки задней стенки глотки, формирующие переднюю долю гипофиза Общая хрящевая пластинка также срастается с обонятельными, глазными и слуховыми капсулами и с перепончатой крышей черепа. Передний конец хрящевого основания черепа преобразуется в вертикальную пластинку между обонятельными капсулами в виде будущей носовой перегородки.

Позднее, на 8-10-й неделе внутриутробного развития, в хрящевом основании и крыше перепончатого черепа возникают костные точки (см. Развитие отдельных костей черепа).


71. Хрящевое основание черепа (по Hertwig).
А - эмбрион 7 нед; Б - плод 3 мес; 1 - обонятельная капсула; 2 - решетчатая кость; 3 - верхняя глазничная щель; 4 - большое крыло клиновидной кости; 5 - турецкое седло; 6 - рваное отверстие; 7 - слуховая капсула; 8 - яремное отверстие; 9 - внутреннее слуховое отверстие; 10 - большое затылочное отверстие.

Развитие лицевой части черепа . Развитие костей лица необходимо рассматривать и сопоставлять с развитием и строением костей водных животных. У них на протяжении всей жизни сохраняется жаберный аппарат, а у эмбриона человека его зачатки существуют сравнительно короткое время. У человека и млекопитающих в стадии развития перепончатого основания и свода черепа закладывается семь жаберных дуг. В этот период лицевой череп имеет много общих черт с черепом акулы (рис. 72).


72. Череп акулы (по Е. Гундричу).
1 - мозговой череп; 2 - отверстие для выхода II, III, IV и V пар черепно-мозговых нервов; 3 - небно-квадратный хрящ; 4 - меккелев хрящ; 5 - подвисочный хрящ; 6 - подъязычный хрящ; 7 - собственно подъязычный хрящ; I - VII - жаберные дуги.

Различия заключаются в том, что у акулы имеется открытое сообщение между наружными и внутренними жаберными карманами. У эмбриона человека жаберные щели закрыты соединительной тканью. В дальнейшем из жаберных дуг образуются различные органы (таблица 2).

Таблица 2. Производное жаберных дуг (по Браусу)
Образования черепа, существующие в эмбриональном периоде у водных животных Образования черепа, существующие у взрослых водных животных и в эмбриональном периоде у человека Производное жаберных дуг у человека
I жаберная дуга Дорсальный хрящ
Вентральный хрящ
Наковальня (слуховая косточка) Нижняя челюсть Молоточек (слуховая косточка)
II жаберная дуга Подъязычно-челюстной хрящ (верхняя часть) Подъязычный хрящ (нижняя часть) Стремя (слуховая косточка) Шиловидный отросток височной кости, малые рога подъязычной кости, шилоподъязычная связка
Полость между I и II жаберными дугами Брызгальце Барабанная полость Слуховая труба
III жаберная дуга Жаберная дуга
Непарный хрящ для соединения жаберных дуг
Большие рога подъязычной кости, тело подъязычной кости
IV жаберная дуга Жаберная дуга Щитовидный хрящ гортани
V жаберная дуга » »
VI жаберная дуга Жаберные дуги у водных животных
VII жаберная дуга » » Редуцируются

Таким образом, из жаберного аппарата развивается только часть костей лицевого черепа (нижняя челюсть, подъязычная кость, слуховые косточки).

Процесс формирования лицевого черепа прослеживается у эмбриона человека и нижестоящих видов животных. На примере развития черепа можно убедиться, что человек прошел сложный путь эволюционного развития от водного предка до наземного животного. Бальфур и Дорн показали, что голова представляет преобразованный передний конец тела, который до развития центральной нервной системы имел такое же строение, как и все тело, и был сегментирован. С формированием органов чувств и головного мозга на переднем конце тела и соответствующим преобразованием жаберных дуг в челюстную и подчелюстную дуги отделы позвонков хордальной части головы слились друг с другом и дали основу для черепа. Следовательно, прехордальная и парахордальные пластинки являются преобразованными частями осевого скелета.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины