Устройство и технические характеристики цифровых слуховых аппаратов. Морфо-функциональная характеристика слухового анализатора и органа равновесия. Концепция линейного усиления

Устройство и технические характеристики цифровых слуховых аппаратов. Морфо-функциональная характеристика слухового анализатора и органа равновесия. Концепция линейного усиления

05.03.2020


В зависимости от функций слуховых аппаратов существует несколько вариантов их классификации:

По месту ношения слуховые аппараты разделяются на четыре вида:

  • заушные
  • внутриушные
  • карманные
  • очковые

Заушный СА помещается за ушной раковиной. К нему с помощью звукопроводящей трубочки присоединен ушной вкладыш, который вставляется в слуховой проход. Он проводит звук в ухо и обеспечивает фиксацию аппарата. Заушный СА обеспечивает большее усиление и предоставляет дополнительные технические возможности по сравнению с внутриушным СА.

Внутриушной СА полностью размещается в слуховом проходе. Все электронные комплектующие находятся в корпусе аппарата, который изготавливается индивидуально, в соответствии с анатомическим строением уха владельца. Основное достоинство аппарата заключается в его малозаметности и в том, что отверстие приема звука располагается внутри ушной раковины, то есть, там, где это предусмотрено природой.

Внутриканальный СА располагается глубоко в слуховом проходе. Самый маленький аппарат CIC (с английского – "полностью внутри канала") размещается у барабанной перепонки и снаружи практически не виден.

Карманный СА состоит из прямоугольного корпуса, в котором расположены микрофон, усилитель и источник питания. Телефон карманного аппарата при помощи шнура соединяется с корпусом и помещается в ухо вместе с вкладышем. Карманный СА, в отличие от других конструкций, может иметь максимальную мощность, так как микрофон и телефон находятся на значительном расстоянии, что предотвращает возникновение акустической обратной связи.

По способу звукопроведения СА разделяются на два вида:

  • костной проводимости.
  • воздушной проводимости.

СА костной проводимости применяется для протезирования только кондуктивных потерь слуха. Его телефон выполнен в виде костного вибратора, который помещается за ухом и плотно прилегает к сосцевидному отростку. Усиленный звуковой сигнал в таком аппарате преобразуется в вибрационный.

СА воздушной проводимости используется для протезирования всех видов потерь слуха. Звук с телефона передается через ушной вкладыш, который помещается в слуховом проходе.

По способу обработки сигнала слуховые аппараты делятся на два типа:

  • аналоговые
  • цифровые

Аналоговый СА состоит из трех основных частей: микрофона, электронного усилителя и телефона. Микрофон воспринимает механические звуковые колебания и преобразует их в аналоговые электрические сигналы, направляемые в усилитель. Там они усиливаются и передаются на телефон, превращающий электрические сигналы вновь в звуковые колебания.

Цифровой СА дополнительно преобразует аналоговые сигналы в цифровые, после чего обрабатывает их с помощью компьютерной технологии.

Аналоговый сигнал переводится в двоичный код, как это происходит при записи на компакт-диск. В новейших моделях СА уже появились цифровые микрофоны, исключающие эту операцию. Цифровой процессор обрабатывает сигналы, то есть усиливает и изменяет их характеристики в зависимости от индивидуальной потери слуха. После этого цифровой сигнал вновь превращается в аналоговый и посылается на телефон.

Цифровые технологии, бурно развивающиеся в последнее время, позволили достигнуть невиданных ранее возможностей электроакустической коррекции слуха. Крошечный микрочип обладает быстродействием самых современных компьютерных процессоров, что позволяет реализовать очень сложные и высокоэффективные алгоритмы обработки звука. Фактически цифровой СА можно назвать "разумной слуховой системой" и даже "слуховым компьютером".

Он "умеет" отличать речь от шума, выделяя и усиливая ее при одновременном подавлении шумового сигнала, что значительно облегчает понимание речи в сложной акустической обстановке. Его частотный диапазон разделен на несколько каналов, в каждом из которых проводится независимая настройка параметров. Цифровой аппарат имеет комфортное звучание, приближенное к естественному, благодаря практически полному отсутствию искажений и собственных шумов.

Наконец, он устойчив к воздействию электромагнитных полей, что позволяет в условиях активной современной жизни без помех пользоваться мобильным телефоном и компьютером.

По способу настройки слуховые аппараты также делятся на два типа:

Непрограммируемый СА настраивается вручную, а громкость звучания по мере необходимости изменяет сам владелец посредством регулятора.

Параметры программируемого СА настраиваются при помощи компьютера, что обеспечивает более точное соответствие индивидуальным особенностям слуха пользователя.

Аппарат может сохранять и изменять запрограммированную настройку. Большинство программируемых СА имеют две и более программы с разными настройками: для прослушивания речи в шумной обстановке и музыки, программу комфортного звучания и пр.

Существует еще одна вспомогательная классификация слуховых аппаратов: по способу усиления они делятся на линейные и нелинейные.

Линейный СА усиливает входные сигналы независимо от их громкости на одну и ту же величину, зафиксированную при помощи регулятора усиления. В линейных аппаратах с выходным уровнем звукового давления, превышающим 130 дБ, предусматривается его ограничение (пик-клиппирование), которое вводится в действие при ощущении пациентом дискомфорта, вызванного громкими звуками.

Коэффициент усиления нелинейных СА, имеющих функцию автоматической регулировки усиления (АРУ) зависит от интенсивности входного сигнала. До тех пор, пока уровень входного сигнала не достигнет определенной величины, называемой порогом срабатывания АРУ, коэффициент усиления остается постоянным, как у линейного аппарата. При превышении входным сигналом порога срабатывания АРУ, который устанавливается слухопротезистом в соответствии с индивидуальной потерей слуха, коэффициент усиления аппарата снижается, что очень важно для протезирования сенсоневральной тугоухости с ФУНГом.

Технические характеристики слуховых аппаратов.

Цифровые алгоритмы подавления обратной связи. Обратной связью в слухопротезировании называется тот самый неприятный "свист" слухового аппарата, который возникает иногда при ношении слухового аппарата и очень мешает как самому пациенту, так и окружающим людям. Чаще всего это происходит при неправильно изготовленной отопластике или настройке аппарата, но иногда - вследствие чрезмерной подвижности нижней челюсти, особенностей строения слухового прохода, т.е. по независящим от человека причинам. Цифровые слуховые аппараты имеют специальные алгоритмы для выявления обратной связи еще до того момента, когда пациент или окружающие могут услышать "свист". При настройке такого аппарата специалист включает режим тестирования, и аппарат сам находит и запоминает ту частоту звука, которая вызывает обратную связь. В дальнейшем, при появлении малейших признаков обратной связи, аппарат самостоятельно отфильтровывает ту частоту, на которой происходит обратная связь. Современные алгоритмы подавления обратной связи адаптивные. Это значит что вышеописаные фильтры автоматически применяются только в тех случаях, когда они действительно нужны. В случаях, когда обратной связи более не наблюдается, фильтр, после повторной проверки, автоматически снимается.

Направленные микрофонные системы. Современный слуховой аппарат обладает направленной микрофонной системой, состоящей из 2-х или даже 3-х микрофонов. Направленная система позволяет выделять собеседника из шума или из числа других собеседников одним поворотом головы. Все дело в том, что такие системы более чувствительны к звукам, поступающим с фронтального направления (спереди). Звуки с других направлений звучат для пациента более приглушенно. Кроме того, это более физиологично для человека, т.к. нормальная ушная раковина, вследствие своей анатомической формы, обладает небольшой направленностью. Поворачивая голову в сторону собеседника, человек еще и концентрирует на нем свое внимание, что также является нормальным физиологическим рефлексом. Современные микрофонные системы обладают адаптивной направленностью. Система автоматически вычисляет направление основного источника шума и настраивает чувствительность микрофонной системы таким образом, чтобы восприятие шума было минимальным, а речи - максимальным.

Система Распознавания Речи. Работа Системы Распознавания Речи основана на различиях в структуре звуков речи и шума. Большинство источников шума представляют собой звуковой сигнал определенной частоты (например, шум холодильника, вентилятора - низкочастотный), не меняющий громкость с течением времени. Во время разговора же громкость речи постоянно изменяется: гласные звуки громче согласных, человек делает короткие паузы между словами и отдельными слогами и т. д. Таким образом, по колебаниям громкости (амплитуды звука) с течением времени можно отличить речь от шума. Это и делает процессор слухового аппарата.
Все аппараты, имеющие Систему Распознавания Речи, многоканальные, то есть весь спектр воспринимаемых ими звуков разделяется на несколько частотных диапазонов - каналов. Канал – это тот частотный диапазон, в котором СА производит свою независимую (независимую от другого канала) обработку звука (шумоподавление, выделение речи и т.д.). В каждом из каналов находится "датчик" - устройство, отличающее речь от шума по вышеупомянутым признакам.

Слуховой анализатор включает в себя ухо, нервы и слуховые центры, расположенные в коре головного мозга

Человеческое ухо представляет собой орган слуха, в котором располагается периферический отдел слухового анализатора, содержащий механорецепторы, чувствительные к звукам, к силе тяжести и к перемещению в пространстве.Большинство структур уха предназначены для восприятия, усиления и преобразования звуковой энергии в электрические импульсы, которые, поступая в слуховые зоны мозга, вызывают слуховое ощущение.

Орган слуха человека (рис. 2) включает наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины 1, улавливающей и направляющей звуковые волны в наружный слуховой проход 2. Слуховой проход довольно широкий, но примерно в середине он значительно суживается. Это обстоятельство следует иметь в виду при извлечении из уха инородного тела. Кожа слухового прохода покрыта тонкими волосками. В просвет прохода открываются протоки желез, вырабатывающие ушную серу. Волоски и ушная сера выполняют защитную функцию – предохраняют слуховой проход от проникновения в него пыли, насекомых, микроорганизмов.

За слуховым проходом, на границе его со средним ухом находится тонкая упругая барабанная перепонка 3. За ней располагается полость среднего уха 4. Внутри этой полости имеются три слуховые косточки – молоточек 6, наковальня 7 и стремечко 8. Полость среднего уха сообщается с полостью рта через евстахиеву (слуховую) трубу 5. Евстахиева труба служит для выравнивания давления в полости среднего уха с наружным. Если возникает разность давлений, то нарушается острота слуха, а если разность давлений окажется очень большой, то может произойти разрыв барабанной перепонки. Чтобы этого не произошло, необходимо открыть рот и сделать несколько глотательных движений.

Во внутреннем ухе располагается спиралевидной формы улитка 9. Внутри в одном из каналов улитки, заполненных жидкостью, расположенаосновная мембрана, на которой находится звуковоспринимающий аппарат – кортиев орган . Он состоит из 3 – 4 рядов рецепторных клеток, общее число которых достигает 24000.

Рис. 2. Орган слуха человека: а – наружное ухо; б – среднее ухо; в – внутреннее ухо; 1 – ушная раковина; 2 – наружный слуховой проход; 3 – барабанная перепонка; 4 – полость среднего уха; 5 – евстахиева труба; 6 – молоточек; 7 – наковальня; 8 – стремечко; 9 – улитка; 10 – вестибулярный аппарат; 11 – преддверие; 12 – полукружные каналы; 13 – слуховой нерв; 14 – нерв преддверия.

Звуковые волны, улавливаемые ушной раковиной, вызывают колебания барабанной перепонки и затем через систему слуховых косточек и возникающих в улитке колебаний жидкости передаются воспринимающим фоно-рецепторным клеткам кортиева органа , вызывая их раздражение. Слуховое раздражение, преобразованное в нервное возбуждение (нервный импульс), по слуховому нерву 13 попадает в кору головного мозга, где происходит высший анализ звуков – возникают слуховые ощущения.

Одна из основных характеристик слуха заключается в восприятии звуков определенного диапазона частот . Ухо человека способно слышать звуки с частотой колебаний от 16 до 20000 Гц.

Важной характеристикой слуха является острота слуха или чувствительность слуха . Чувствительность слуха можно оценивать абсолютным пороговым звуковым давлением (Па), вызывающим слуховое ощущение. Минимальное звуковое давление, которое воспринимается ухом человека, называется порогом слышимости . Величина порога слышимости зависит от частоты звука. На практике для удобства оценки восприятия звуков принято использовать относительную величину: уровень звукового давления, измеряемый в децибелах (дБ). Порог слышимости на частоте 1000 Гц, принятой в качестве стандартной частоты сравнения в акустике, примерно соответствует порогу чувствительности уха человека и равен 0 дБ.

При высоких уровнях звукового давления (120 – 130 дБ) возможно появление неприятного ощущения, а затем и боли в органах слуха. Наименьшая величина звукового давления, при которой возникают болевые ощущения, называется порогом болевого ощущения . В диапазоне слышимых частот этот порог больше порога слышимости в среднем на 80 – 100 дБ.

Существенной характеристикой слуха является способность дифференцировать звуки различной интенсивности по ощущению их громкости. Минимальная величина ощущаемого различия звуков по их интенсивности называется дифференциальным порогом восприятия силы звука. Для звуков средней части звукового спектра эта величина составляет около 0,7 – 1,0 дБ.

Поскольку слух является средством общения людей, особое значение в его оценке имеет способность восприятия речи или речевой слух. Особенно важно в оценке слуха сопоставление показателей речевого и тонального слуха, что дает представление о состоянии различных отделов слухового анализатора. Большое значение имеет функция пространственного слуха, заключающаяся в определении положения и перемещения источника звука.

ГОУ ВПО «Курский государственный университет»

Кафедра медицины и логопедии

Реферат по анатомии, физиологии и патологии органов, слуха, речи

На тему: «Анатомо-физиологические особенности органов слуха и гравитации»

выполнил:

Студентка деффака

3/3,5 лого з/о (бюджет)

Бекирова Линара

Проверил:

Профессор Иванов В. А.

Курск - 2007

План

I . Слуховой анализатор

1. Структурно-функциональная характеристика слухового анализатора

1.1 Строение органа слуха

1.2 Рецепторы

1.3 Проводящие пути слухового анализатора

2 Возрастные особенности слухового анализатора

3 Гигиена слухового анализатора

II . Аппарат гравитации

Литература

II. Слуховой анализатор

1. Структурно-функциональная характеристика слухового анализатора

Слуховой анализатор – это второй по значению анализатор в обеспечении адаптивных реакций и познавательной деятельности Человека. Его особая роль у человека связана с членораздельной речью. Слуховое восприятие – основа членораздельной речи. Ребенок, потерявший слух в раннем детстве, утрачивает и речевую способность, хотя весь артикуляционный аппарат у него остается ненарушенным.

Адекватным раздражителем слухового анализатора являются звуки.

Рецепторный (перефирический) отдел слухового анализатора, превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа (орган Корти), находящимися в улитке.

Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20000наружных волосковых клеток, которые расположены на основной мемране внутри среднего канала внутреннего уха.

1.1 Строение органа слуха

Внутреннее ухо- (звуковоспринимающий аппарат), среднее ухо(звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха.(рис.1)


Рис.1 Строение органа слуха:

1 - ушная раковина, 2 - наружный слуховой проход, 3 - барабанная перепонка, 4 - молоточек, 5 - наковальня, 6 - стремечко, 7 - улитка, 8 - отолитовый аппарат, 9 - полукружные каналы, 10 - евстахиева труба, 11 - слуховой нерв

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Обеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.

На границе между наружным и средним ухом находится барабанная перепонка.- тонкая соединительнотканная пластинка, толщиной около 0,1 мм, снаружи покрыта эпителием, а изнутри слизистой оболочкой.

Барабанная перепонка расположена наклонна и начинает колебаться, когда на нее падают со стороны наружного слухового прохода звуковые колебания. Барабанная перепонка не имеет собственного периода колебания, она колеблется при всяком звуке соответственно его длине волны.

Среднее ухо представлено барабанной полостью. В ней находится цепь слуховых косточек: молоточек, наковальня и стремя.

Рукоятка молоточка срастается с барабанной перепонкой, а его головка образует сустав с наковальней, которая также соединяется суставом с головкой стремени.

На медиальной стенке барабанной полости находятся отверстия: окно преддверия (овальное) и окно улитки (круглое). Основание стремени закрывает окно преддверия, ведущее в полость внутреннего уха, а окно улитки затянуто вторичной барабанной перепонкой. Барабанная полость соединяется с носоглоткой посредством слуховой,

Или евстахиевой, трубы. Через нее из носоглотки в полость среднего уха попадает воздух, благодаря чему выравнивается давление на барабанную перепонку со стороны наружного слухового прохода и барабанной полости.

^ Внутреннее ухо - полое костное образование в височной кости, разделенное на костные каналы и полости, содержащие рецепторный аппарат слухового и стаокинетического (вестибулярного) анализаторов.

Внутреннее ухо находится в толще каменистой части височной кости и состоит из системы сообщающихся друг с другом костных каналов – костного лабиринта, в котором расположен перепончатый лабиринт. Очертания костного лабиринта почти полностью повторяют очертания перепончатого. Пространство между костным и перепончатым лабиринтом, называемое перилимфатическим, заполнено жидкостью - перилимфой, которая по составу сходна с цереброспинальной жидкостью. Перепончатый лабиринт погружен в перилимфу, он прикреплен к стенкам костного футляра соединительнотканными тяжами и заполнен жидкостью - эндолимфой, по составу несколько отличающейся от перилимфы. Перилимфатическое пространство связано с субарахноидальным узким костным каналом - водопроводом улитки. Эндолимфатическое пространство замкнуто, имеет слепое выпячивание, выходящее за пределы внутреннего уха и височной кости - водопровод преддверия. Последний заканчивается эндолимфатическим мешочком, заложенным в толще твердой мозговой оболочки на задней поверхности пирамиды височной кости.

Костный лабиринт (рис.2) состоит из трех отделов: преддверия, полукружных каналов и улитки. Преддверие образует центральную часть лабиринта. Кзади оно переходит в полукружные каналы, а кпереди - в улитку. Внутренняя стенка полости преддверия обращена к задней черепной ямке и составляет дно внутреннего слухового прохода. Ее поверхность делится небольшим костным гребнем на две части, одна из которых называется сферическим углублением, а другая - эллиптическим углублением. В сферическом углублении расположен перепончатый сферический мешочек, соединенный с улитковым ходом; в эллиптическом - эллиптический мешочек, куда впадают концы перепончатых полукружных каналов. В срединной стенке обоих углублений расположены группы мелких отверстий, предназначенных для веточек вестибулярной части преддверно-улиткового нерва. Наружная стенка преддверия имеет два окна - окно преддверия и окно улитки, обращенные к барабанной полости. Полукружные каналы расположены в трех почти перпендикулярных друг к другу плоскостях. По расположению в кости различают: верхний (фронтальный), или передний, задний (сагиттальный) и латеральный (горизонтальный) каналы.

Рис. 2.Общая схема костного и находя-щегося в нем перепончатого лабиринта:

/ -кость; 2 - полость среднего уха; 3 - стремя;

4 - окно преддверия; 5- окно улитки; 6 - улит-ка; 7 и 8 - отолитовый аппарат (7 - саккулус или круглый мешочек; 8 - утрикулус, или овальный мешочек); 9, 10и 11 - полукружные каналы 12 - пространство между костным и перепончатым лабиринтами, заполненное перилимфой.

Костная улитка представляет собой извитой канал, отходящий от преддверия; он спирально 2,5 раза огибает свою горизонтальную ось (костный стержень) и постепенно суживается к верхушке. Вокруг костного стержня спирально извивается узкая костная пластинка, к которой прочно прикреплена продолжающая ее соединительная перепонка - базальная мембрана, составляющая нижнюю стенку перепончатого канала (улиткового хода). Кроме того, от костной спиральной пластинки под острым углом латерально кверху отходит тонкая соединительнотканная перепонка - преддверная (вестибулярная) мембрана, называемая также рейсснеровой мембраной; она составляет верхнюю стенку улиткового хода. Образующееся между базальной и вестибулярной мембраной пространство с наружной стороны ограничено соединительнотканной пластинкой, прилегающей к костной стенке улитки. Это пространство называется улитковым ходом (протоком); оно заполнено эндолимфой. Кверху и книзу от него находятся перилимфатические пространства. Нижнее называется барабанной лестницей, верхнее - лестницей преддверия. Лестницы на верхушке улитки соединяются друг с другом отверстием улитки. Стержень улитки пронизан продольными кольцами, через которые проходят нервные волокна. По периферии стержня тянется спирально ее обвивающий канал, в нем помещаются нервные клетки, образующие спиральный узел улитки). К костному лабиринту из черепа ведет внутренний слуховой проход, в котором проходят преддверно-улитковый и лицевой нервы.

Перепончатый лабиринт состоит из двух мешочков преддверия, трех полукружных протоков, протока улитки, водопроводов преддверия и улитки. Все эти отделы перепончатого лабиринта представляют собой систему сообщающихся друг с другом образований.

1.2 Рецепторы

В перепончатом лабиринте волокна преддверно-улиткового нерва оканчиваются в нейроэпителиальных волосковых клетках (рецепторах), находящихся в определенных местах. Пять рецепторов относятся к вестибулярному анализатору, из них три расположены в ампулах полукружных каналов и называются ампулярными гребешками, а два находятся в мешочках и носят название пятен. Один рецептор является слуховым, он располагается на основной мембране улитки и называется кортиевым (спиральным)органом(рис.3) . Во внутреннем ухе расположены рецепторы слухового и статокинетического анализаторов. Рецепторный (звуковоспринимающий) аппарат слухового анализатора находится в улитке и представлен волосковыми клетками спирального (кортиева) органа. Улитка и заключенный в ней рецепторный аппарат слухового анализатора называются кохлеарным аппаратом. Звуковые колебания, возникающие в воздухе, передаются через наружный слуховой проход, барабанную перепонку и цепь слуховых косточек на вестибулярное окно лабиринта, вызывают волнообразные перемещения перилимфы, которые, распространяясь, передаются на спиральный орган. Рецепторный аппарат статокинетического анализатора, расположенный в полукружных каналах и мешочках преддверия, носит название вестибулярного аппарата.

Рис. 3 Схема строения кортиева органа:

1 -основная пластинка; 2- костная спиральная пластинка; 3- спиральный канал;

4 -нервные волокна; S-столбовые клетки, образующие тоннель (6); 7 -слуховые, или волосковые, клетки; 8 -опорные клетки; 9 -покровная пластинка.

1.1.3 Проводящие пути слухового анализатора

Проводящие пути от рецептора до коры больших полушарий, составляют проводниковый отдел слухового анализатора.

Проводниковый отдел слухового анализатора представлен перефирическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового или (кохлеарного) нерва, образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга(второй нейрон). Затем после частичного перекрестка волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый) нейрон. В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.

^ Рис. 4Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где " расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (ниж-няя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.

1.4 Корковый (центральный) отдел слухового анализатора

Корковый, или центральный, отдел слухового анализатора находится в верхней части височной доли большого мозга (верхняя височная) извилина, поля 41 и 42 по Бродмону). Важное значение для функции слухового анализатора имеют поперечные височные обеспечивающими регуляцию деятельности всех уровней извилины (извилины) Гешля. Наблюдения показали, что при двустороннем разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полушарием, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

Слуховая сенсорная система дополняется механизмами обратной связи, обеспечивающими регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей. Такие пути начинаются от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах метаталамуса, задних (нижних) буграх четверохолмия, в ядрах кохлеарного комплекса. Входя в состав слухового нерва, центробежные волокна достигают волосковых клеток кортиева органа и настраивают их на восприятие опрелеленных звуковых сигналов.

^ 2. Возрастные особенности слухового анализатора

Ухо новорождённого в общих чертах морфологически развито, но имеются некоторые особенности:

Наружный слуховой проход короткий;

Барабанная перепонка имеет почти такие же размеры как у взрослого, но расположена более горизонтально;

Слуховая труба короткая и широкая;-

Среднее ухо до рождения безвоздушно, оно заполнено слизистой жидкостью;

После рождения барабанная полость через слуховую трубу постепенно (в течение месяца) заполняется воздухом, чему способствуют дыхательные и глотательные движения.

Звуковая чувствительность

Реакция на сильные звуки отмечается ещё у плода. В последние месяцы внутриутробного развития звуковые раздражения могут вызвать шевеление плода.

Реакция на звук в виде вздрагивания отмечается не только у доношенных но и недоношенных новорождённых. Иногда она сопровождается изменениям дыхания, закрыванием глаз, открыванием рта, появлением пульсации родничка.

Для исследования слуха новорождённых применяется регистрация движений век в ответ на звук. Определяют также интенсивности звуков, вызывающих электроэнцефалографическую реакцию пробуждения у спящего ребёнка или появление на ЭЭГ так называемого вертекс-потенциала.

Новорождённые поворачивают голову и глаза в сторону источника звука, т.е. обладают элементами пространственного слуха. Условный защитный (мигательный) рефлекс на звуковое раздражение образуется в конце 1-го месяца после рождения.

Дифференцирование различных звуков, например, гудка и звука колокольчика, возможно на 3-м месяце.

С первых дней после рождения самые низкие пороги звуковой чувствительности лежат в области средних звуковых частот (1000 Гц). Пороги на низкие частоты меньше, чем на высокие. В процессе онтогенеза происходит постепенное уменьшение порогов, что указывает на увеличение звуковой чувствительности.

Наименьшая величина порогов ощущения звуков достигается в 14-19 лет. По сравнению с этим возрастом слуховая чувствительность ниже как у детей более младшего возраста, так и у людей старше 20 лет.

В развитии речевого и музыкального слуха большое значение имеет общение со взрослыми. Такая тренировка способствует развитию слуха и обогащению словарного запаса детей. Большое значение имеет также музыкальное воспитание.

^ 3. Гигиена слухового анализатора

Гигиена слуха- система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слухового анализатора, способствующих нормальному его развитию и функционированию.

Различают специфическое и неспецифическое действие шума на организм человека.

Специфическое действие проявляется в разной степени нарушения слуха, неспецифическое – в разного рода отклонениях со стороны ЦНС, вегетативной реактивности, в эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта.

Ослабление или потеря слуха могут быть связанны с нарушением передачи звуковых колебаний к внутреннему уху, с повреждением рецепторов внутреннего уха, с нарушением передачи нервных импульсов по слуховому нерву к слуховой зоне коры больших полушарий. Ослабление слуха может быть вызвано накоплением в наружном слуховом проходе ушной серы. Скапливаясь в наружном звуковом проходе, ушная сера образует пробку и она может препятствовать проникновению звука. Поэтому периодически следует прочищать наружный слуховой проход. При ангине, гриппе и др. заболеваниях микроорганизмы, вызывающие эти заболевания могут попасть из носоглотки в носовую трубу в среднее ухо и вызвать воспаление. При этом теряется подвижность слуховых косточек и нарушается передача звуковых колебаний к внутреннем уху. Если воспалительный процесс распространится на внутреннее ухо, то могут быть повреждены слуховые рецепторы и наступит полная глухота. При болях в ухе нужно срочно обратится к врачу. Нарушение слуха может быть вызвано сильными звуками. Большой вред слуху наносят сильные шумы действующие на ухо изо дня в день, барабанная перепонка колеблется с большим размахом, из-за этого она теряет свою эластичность и у человека притупляется слух. При ослаблении слуха следует носить слуховой аппарат.

Снижение уровней шума и неблагоприятного воздействия на детей достигается проведением ряда комплексных мероприятий: строительных, архитектурных, технических и организационных.

Участок дошкольных учреждений, общеобразовательных школ, школ-интернатов ограждают по всему периметру живой изгородью высотой не менее 1,2м. Ширина зеленой зоны со стороны улицы не менее 6м. Целесобразна вдоль этой полосы, на расстоянии не менее 10 м от здания, посадка деревьев, кроны которых задерживают распространение шума. Большое влияние на величину звукоизоляции оказывает плотность с которой закрыты двери.

Важное значение в снижении шума имеет гигиенически правильное размещение помещений в зданиях школ, детских садов.

Выявление состояния слуха детей и подростков производится при осмотре врачом-оториноларингологом.

Негромкая, ясная, небыстрая речь учителя и воспитателя, эмоционально окрашенная, способствует наилучшему ее слуховому восприятию детьми и усвоению материала. Слова следует произносить четко. Речь учителя и воспитателя должна быть живой, богатой разнообразными интонациями, образной и как можно чаще адресовываться к зрительному воображению детей.

II. Аппарат гравитации

Вестибулярный анализатор обеспечивает ориентацию в пространстве: восприятие действия на организм силы земного притяжения, положения тела в пространстве, характера перемещения тела (ускорение, замедление, вращение). При любом изменении положения тела или головы в пространстве раздражаются рецепторы органа равновесия, возникший нервный импульс проводится по вестибулярному нерву в составе преддверно-улиткового нерва в головной мозг: средний мозг, мозжечок, таламус и, наконец, в кору теменной доли.

Орган равновесия является частью внутреннего уха и вместе с улиткой заключен в костный лабиринт височной кости. Он представлен:


  • преддверием внутреннего уха с двумя расширениями - овальным и округлым мешочками

  • тремя полукружными каналами . Округлый и овальный мешочки и полукружные каналы заполнены жидкостью - эндолимфой .
Внутренняя поверхность мешочков образована слоем эпителиальных клеток, среди которых имеются чувствительные волосковые клетки с тонкими чувствительными выростами. Чувствительные отростки рецепторных клеток погружены в тонкий слой студенистой массы, в которой лежит большое количество очень мелких кристалликов углекислого кальция - статолитов . Любые изменения тела или головы в пространстве, вибрационные воздействия, ускорение или замедление прямолинейного движения вызывают перемещение статолитов. При этом статолиты раздражают определенные группы рецепторных клеток, в результате человек получает сигнал об изменении положения тела.

^ Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Участки полукружных каналов, обращенные к преддверию, имеют расширения - ампулы . На внутренней поверхности ампул также имеются рецепторные клетки с чувствительными волосками, и они также погружены в тонкий слой студенистой жидкости, лежащий по внутренней поверхности ампул. Рецепторные клетки ампул тонко реагируют на малейшие перемещения эндолимфы и студенистой жидкости полукружных каналов. Перемещения жидкости возникают в результате перемещения тела или головы: ускорения, замедления движения и вращательные движения. Поскольку полукружные каналы ориентированы в трех взаимно перпендикулярных плоскостях, то любой по ворот головы или тела воспринимается вестибулярными рецепторами.

Таким образом, работа вестибулярного анализатора позволяет постоянно оценивать положение и движение тела в пространстве и в соответствии с этим рефлекторно изменять тонус скелетных мышц, в необходимом направлении менять положение головы и тела.

При повреждении вестибулярного аппарата возникают головокружения, нарушается равновесие, проявляются симптомы морской болезни.

У человека чувство равновесия и оценка положения тела в пространстве связано не только с органом равновесия, но и с наличием большого количества рецепторов (барорецепторов ) в мышцах и коже, которые воспринимают механическое давление на них.

Литература.


  1. Н.Н. Леонтьева, К.В. Маринова Анатомия и физиология детского организма Москва «Просвещение» 1986 г. (с.224-228)

  2. А.Г. Хрипкова, М.В. Антропова, Д.А. Фарбер Возрастная физиология и школьная гигиена. Москва «Просвещение» 1990 г (с.87-96,222-234)

  3. Анатомия человека в двух томах. Том 2 Под редакцией академика Российской АМН ПРОФ. М.р. Сапина, Москва «Медицина» 1997г.(с.90-117)

  4. Анатомия и физиология человека. Федюкович Н.И. Ростов на Дону «Феникс» 2004г.(с.239-245,387-396)
5.Смирнов В.М, С.М. Будылина Физиология сенсорных систем и высшая нервная деятельность Москва, Издательский центр «Академия» 2003г. (с.54-60)

Каждый человек, который имеет нарушения слуха, должен пройти детальное медицинское обследование. По его результатам врач может назначить слуховой аппарат. Сегодня существует довольно много разновидностей данных устройств, которые позволяют улучшить качество жизни.

Слуховые аппараты

Слуховой аппарат считается сложным устройством, которое позволяет компенсировать . Многие люди путают данные приборы с бюджетными усилителями звука. Однако последние лишь увеличивают громкость звуков, тогда как слуховые аппараты делают речь более четкой и внятной, очищая ее от посторонних шумов. Это очень важно для слабослышащих людей с разной степенью , и имеющих инвалидность.

Схема работы

Слуховые аппараты оснащены микрофоном, который улавливает звук. После чего сигнал попадает на усилитель. Данный элемент увеличивает громкость звуков и передает их на телефон. Именно там они трансформируются в звуковые вибрации.

Современные устройства оснащены также микропроцессором. Он отвечает за обработку полученной информации. Благодаря этому удается отделить речь от посторонних звуков. Помимо этого, данный элемент позволяет менять звуковые характеристики с учетом индивидуальных особенностей пациента.

Схема работы цифрового слухового аппарата

Виды, характеристики

Все слуховые аппараты можно разделить на две группы – аналоговые и цифровые. Первая группа устройств считается устаревшей. Они обладают простым принципом действия, который заключается в одинаковом увеличении громкости звуков на всех частотах. В условиях повышенного шума это вызывает сильный дискомфорт. Управлять уровнем громкости помогает лишь специальный регулятор.

Аналоговые устройства значительно уступают электронным. Слух обычно снижается неравномерно по разным частотам. Аналоговые приборы не могут подстраиваться под данную особенность.

Обладают несколькими бесспорными достоинствами. Они имеют компактные размеры и просты в применении. Такие приспособления можно настраивать с учетом индивидуальных особенностей. Качество звука, которое передается данными приборами, намного выше. Благодаря их применению можно сделать речь более разборчивой.

Помимо этого, данные устройства имеют возможность полной автоматизации. В данном случае человеку не требуется ничего регулировать – при необходимости это сделает сам аппарат.

Современные слуховые аппараты

В зависимости от способа настройки выделяют такие виды устройств:

  1. Непрограммируемый аппарат – его нужно настраивать вручную посредством специальных регуляторов.
  2. Программируемый прибор – посредством кабеля подключается к компьютеру. Настройка данного устройства проводится в цифровом виде, что позволяет учитывать особенности слуха.

По способу усиления существуют такие группы приспособлений:

  1. Линейные – увеличивают интенсивность звуков вне зависимости от громкости на одинаковую величину.
  2. Нелинейные – оснащены функцией автоматического регулирования усиления. Их работа зависит от уровня звукового сигнала.

В зависимости от метода звукопроведения существуют такие виды аппаратов:

  1. Устройство костной проводимости – используется при . В этом случае телефон сделан в форме костного вибратора. Он располагается за ухом и плотно прилегает к сосцевидному отростку. После чего усиленный сигнал трансформируется в вибрационный, а не звуковой.
  2. Прибор воздушной проводимости – применяется для коррекции различных видов слуховых нарушений. Звук с телефона поступает через ушной вкладыш, который помещают в слуховой проход.

В зависимости от локализации устройства существуют такие виды слуховых аппаратов:

  1. – отличается простотой применения и надежностью. Такие устройства можно размещать за ухом. С их помощью удается компенсировать любые нарушения слуха. Подобные аппараты подходят для всех в том числе и .
  2. – компактное мини приспособление, которое помещают в ушную раковину. Такие модели позволяют компенсировать довольно . Корпус устройства делают по индивидуальному слепку, который в точности повторяет строение уха. Благодаря этому удается добиться максимального комфорта.
  3. – находится внутри слухового прохода. Такие модели имеют самые маленькие размеры. Они не видны окружающим, поскольку находятся внутри слухового прохода. С помощью подобных приспособлений удается добиться отличного качества звука и прекрасной разборчивости речи.

Виды слуховых аппаратов

Чтобы , нужно учитывать немало критериев. По принципу действия такие устройства бывают цифровыми и аналоговыми. Первая категория позволяет получить более качественное звучание. Такие модели можно настраивать под индивидуальные потребности человека. Многие производители такой техники полностью отказались от изготовления аналоговых приборов.

При выборе обязательно нужно определиться с количеством приборов. Конечно, бинауральное применение устройств для двух ушей обладает целым рядом преимуществ. Так, оно помогает выявлять источник звука, обеспечивает хорошую разборчивость речь, справляется с эффектом тени головы.

Тем не менее, данный вид применения слуховых аппаратов показан не всем. Некоторые люди и вовсе сталкиваются с определенными сложностями или не испытывают в них особенной необходимости. Большое значение имеет и цена устройства – оно будет стоит значительно дороже.

Выбирая аппарат, обязательно нужно учитывать его мощность. Данный показатель должен иметь достаточный запас. Это поможет компенсировать снижение слуха, поскольку устройство обычно покупают сразу на несколько лет.

Немаловажное значение имеет число каналов. Под данным термином понимают диапазон частот, в котором можно регулировать усиление. Благодаря большому количеству каналов можно настроить аппарат в зависимости от конкретного нарушения слуха. Это позволяет добиться максимальной разборчивости речи.

Еще одним ключевым параметром считается система компрессии. Она заключается в неравномерном усилении звуков, которые имеют различную громкость. Благодаря этому аппарат можно настроить так, чтобы тихие звуки были слышны, тогда как громкие при этом не будут вызывать дискомфорта.

Еще одним важной особенностью является возможность подавления шума. Наличие данной системы делает применение аппарата более комфортным в условиях повышенного шума. Существуют устройства, которые могут подавлять шум и при этом усиливать речь.

При выборе непременно следует обращать внимание на наличие системы микрофонов. Данные элементы могут быть направленными или ненаправленными. Самым лучшим вариантом считается адаптивная направленность, которая меняется автоматически в зависимости от обстановки. Также очень удобно пользоваться аппаратами, которые позволяют самостоятельно управлять направленностью микрофона.

При устройства нужно отдавать предпочтение известным компаниям, которые имеют огромный опыт изготовления подобных устройств. Такие организации имеют богатый выбор аппаратов и аксессуаров к ним. Помимо этого, подобные компании предоставляют на свою продукцию гарантию и имеют отличную систему сервисных центров.

Если же выбрать прибор малоизвестного производителя, есть риск появления проблем с сервисным обслуживанием. Также могут возникнуть сложности с настройкой или приобретением аксессуаров.

Как подключить слуховой аппарат

Сверхмощные приборы

Одним из главных параметров, который необходимо учитывать при покупке слухового аппарата, является мощность. Она должна быть достаточной, чтобы усиливать звуки в настоящее время и впоследствии, ведь проблемы со слухом могут прогрессировать.

Сегодня в продаже есть приборы не только средней или малой мощности, но и сверхмощные, карманные или заушные устройства. Последняя категория применяется при . Обычно их используют при снижении слуха до 120 дБ.

Смотрите в нашем видео отзывы о разных видах слуховых аппаратов:

Правильно подобранные слуховые аппараты помогают компенсировать потери слуха и вернуться к полноценной жизни. Чтобы решить данную задачу, рекомендуется вовремя обратиться к врачу. После тщательной диагностики специалист выберет оптимальное устройство, которое компенсирует ухудшение слуха.

В системах управления значительная часть инфор­мации поступает к человеку в форме звуковых сигна­лов. Отражающие эти сигналы ощущения вызываются действием звуковой энергии на слуховой анализатор. Он состоит из уха, слухового нерва и сложной систе­мы нервных связей и центров мозга. В аппарат, обо­значаемый термином «ухо», входят: наружное (звуко­улавливающий аппарат), среднее (звукопередающий аппарат) и внутреннее (звуковоспринимающий аппа­рат) ухо. Ухо воспринимает определенные частоты звуков благодаря функциональной способности волокон его мембраны к резонансу. Физиологическое значение наружного и среднего уха заключается в проведении и усилении звуков. Слуховой анализатор человека улав­ливает форму волны, частотный спектр чистых тонов и шумов, осуществляет анализ и синтез в определенных пределах частотных компонент звуковых раздражении, обнаруживает и опознает звуки в большом диапазоне интенсивностей и частот. Слуховой анализатор позво­ляет дифференцировать звуковые раздражения и оп­ределять направление звука, а также удаленность его источника. Источником звуковых волн может быть любой процесс, вызывающий местное изменение дав­ления или механические напряжения в среде. Слухо­вой аппарат человека воспринимает как слышимый звук колебания с частотой 16 Гц - 20 кГц; ухо наибо­лее чувствительно к колебаниям в области средних частот - от 1000 до 4000Гц. Звуки частот ниже 16 Гц называются инфразвуками, а выше 20кГц - ультразву­ками. Инфразвуки и ультразвуки также могут оказы­вать воздействие на организм, но оно не сопровожда­ется слуховым ощущением.

Физически звук характеризуется амплитудой (ин­тенсивностью), частотой и формой звуковой волны. Интенсивностью звукового сигнала принято считать силу звука в Вт/м2. Так как сила звука пропорциональ­на квадрату звукового давления, то в практике пси­хофизиологической акустики чаще всего используется непосредственно звуковое давление, выраженное в децибелах от исходного уровня, равного 2x10-5 Па. Сила звука в децибелах определяется выражением

где J - сила звука данного сигнала; J 0 - исходный уровень силы звука эталонного сигнала.

Так как , то

где а - коэффициент пропорциональности; Р зв - зву­ковое давление; - исходный уровень давления.

Давление 210 -5 Па при частоте 2000 Гц соот­ветствует силе звука, равной 10 ~12 Вт/м2, и считается абсолютным порогом звукового анализатора.

В реальных условиях деятельности человеку прихо­дится воспринимать звуковые сигналы на том или ином фоне. При этом фон может маскировать полезный сигнал, что, естественно, затрудняет его обнаружение. При разработке и конструировании акустических ин­дикаторов задача борьбы с эффектом маскировки и поисков оптимального отношения интенсивности полезного сигнала к интенсивности шума (фона) являет­ся одной из важнейших.



Основными количественными характеристиками слухового анализатора являются абсолютный и диф­ференциальный пороги. Нижний абсолютный порог соответствует интенсивности звука в децибелах, обна­руживаемого испытуемым с вероятностью 0,5; верхний порог - интенсивность, при которой возникают раз­личные болевые ощущения (щекотание, покалывание, головокружение и т.д.). Между ними расположена область восприятия речи (рис. 11.7).

Рис. 11.7. Линии равной громкости.

Рис. 11.8. Дифференциальные пороги слухового анализатора:

а - по интенсивности (D 13); б - по частоте (D F).

Человек оценивает звуки, различные по интенсив­ности, как равные по громкости, если частоты их так­же различны. Например, тон с интенсивностью 120 дБ и частотой 10 Гц оценивается как равный по громкости тону, имеющему интенсивность 100 дБ и частоту 1000 Гц. Таким образом, снижение интенсивности как бы компенсируется увеличением частоты. Субъектив­ное ощущение интенсивности звука называется гром­костью и измеряется в фонах. Уровень громкости в фонах численно равен интенсивности звука в децибе­лах для чистого тона частотой 1000 Гц, воспринимае­мого как равногромкий с данным звуком.

Величина едва различимой прибавки к исходному звуковому раздражителю зависит не только от его интенсивности, но и от частоты. В пределах среднего участка диапазона изменения звука по частоте и интенсивности величина энергетического дифференци­ального порога примерно постоянна и составляет 0,1 от исходной интенсивности раздражителя (рис. 11.8, а).



Дифференциальный порог по частоте зависит как от частоты исходного звука, так и от его интенсивно­сти. В пределах от 60 до 2000 Гц при интенсивности звука выше 30 дБ абсолютная величина едва различи­мой прибавки равна примерно 2 - 3 Гц. Для звуков выше 2000 Гц эта величина резко возрастает и изменя­ется пропорционально росту частоты (рис. 11.8, б). От­носительная величина дифференциального порога для звуков в зоне 200- 16000 Гц является почти констант­ной и равна примерно 0,002. При сокращении интен­сивности звука ниже 30 дБ величина дифференциаль­ного порога резко возрастает.

Временной порог чувствительности акустического анализатора, т. е. длительность звукового раздражите­ля, необходимая для возникновения ощущения, так же как пороги по громкости и высоте, не является посто­янной величиной. С увеличением как интенсивности, так и частоты он сокращается. При достаточно высо­кой интенсивности (30 дБ и более) и частоте (1000 Гц и более) слуховое ощущение возникает уже при дли­тельности звукового раздражителя, равной всего 1 мс. Однако при уменьшении интенсивного звука той же частоты до 10 дБ временной порог достигает 50 мс. Аналогичный эффект дает и уменьшение частоты.

Оценка громкости и высоты очень коротких зву­ков затруднена. При длительности синусоидального тона 2 - 3 мс человек лишь отмечает его наличие, но не может определить его качеств. Любой звук оценивается только как «щелчок». С увеличением длительности звука слуховое ощущение постепенно проясняется: человек начинает различать высоту и громкость. Минимальное время, необходимое для отчетливого ощу­щения высоты тона, равно примерно 50 мс.

Дифференцировка двух звуков по частоте и интен­сивности также зависит от отношения их по длитель­ности и от интервала между ними. Как правило, звуки, равные по длительности, различаются точнее, чем не­равные.

Акустический анализатор обеспечивает также от­ражение и положения источника звука в простран­стве: его расстояние и направление относительно субъекта.

Пороги зависят от времени предъявления сигна­ла, положения головы испытуемого, адаптации и изме­няются с течением времени для одного и того же ис­пытуемого. Эти изменения могут составлять до 5 дБ за 0,5 мин, тогда как в некоторых условиях ярко выражен­ной тенденции к увеличению или уменьшению порога может и не быть даже в течение часа. Сравнение каж­додневных изменений порогов, полученных в течение некоторого периода времени, с усредненными данны­ми этих изменений показывает, что колебание измене­ний в 3 - 4 раза превышает усредненное. Иногда по­рог может изменяться даже в течение нескольких секунд. Если стимул состоит из пяти сигналов одного тона длительностью по 0,4 с, следующих друг за дру­гом с интервалом в 0,6 с, то все они будут восприняты только при интенсивности, на 6 дБ превышающей аб­солютный порог, когда не слышно ни одного из этих сигналов. Значительное влияние на величину порогов оказывает длительность сигнала. Так, для синусоидаль­ных сигналов средних и высоких частот в диапазоне длительностей от 10 до 100 - 200 мс удвоение длитель­ности приводит к понижению порога на 3 дБ.

Специфическим видом слухового восприятия яв­ляется восприятие речевых сообщений. Речь представ­ляет одно из наиболее эффективных исторически сло­жившихся средств передачи информации человеку. Вопрос о характеристиках речевых сигналов прежде всего возникает при разработке аппаратуры, предназ­наченной для передачи информации от человека к человеку. Однако этим его значение не ограничивается. В связи с развитием синтетической телефонии откры­ваются возможности использования речевых сигналов также при обмене информацией между человеком и машиной.

Проблема речи имеет кардинальное значение в психологии. Она выступает в той или иной форме при изучении сенсорных процессов, памяти, умственных действий, двигательных навыков, свойств личности и т. д. Данные, накопленные в экспериментальной пси­хологии, позволили раскрыть ряд существенных ас­пектов механизмов восприятия речи и речеобразования. Они послужили основой для постановки проблемы речевой коммуникации в плане инженер­ной психологии.

Задачи техники связи потребовали изучения зави­симости восприятия речевых сигналов от их акусти­ческих характеристик, определения разборчивости речи в условиях шума, поиска путей повышения раз­борчивости и т. п.

Форма волны является функцией, которая связы­вает мгновенное речевое давление со временем. Рече­вое давление есть сила, с которой речевая волна давит на единицу площади, обычно перпендикулярной к гу­бам говорящего и расположенной в произвольном, но определенном участке по отношению к говорящему, на расстоянии 1 м от него.

Речевой звук является сложным. Он включает ряд обертонов, находящихся в гармоничном отношении к основному тону (гармоник). Для повышения разборчи­вости речи увеличивают ее интенсивность.

Важным условием восприятия речи является раз­личение длительности произнесения отдельных звуков и их комбинаций. Среднее время длительности произ­несения гласного равно примерно 0,35 с. Длительность согласных колеблется от 0,02 до 0,3 с. При восприятии потока речи особенно важно различение интервалов между словами или группами слов. Исключение пауз или их неверная расстановка может привести к иска­жению смысла воспринимаемой речи.

Речь обладает не только акустическими, но и неко­торыми другими специфическими характеристиками. Слово имеет определенный фонетический, фонематический, слоговой, морфологический состав, является определенной частью речи, несет определенную смыс­ловую нагрузку. Важным фактором, влияющим на опоз­нание слов, является их частотная характеристика. Чем чаще встречается слово, тем при более низком отно­шении речи к шуму оно опознается.

При восприятии отдельных слогов и слов суще­ственную роль играют их фонетические характерис­тики; при восприятии словосочетаний в действие всту­пают синтаксические зависимости, а фонетические отступают на второй план.

Слушатель улавливает синтаксическую связь меж­ду словами, которая помогает ему восстановить сооб­щение, разрушенное шумом. Если абстрагироваться от лексико-семантических характеристик словосочетаний и представить только модель связи, то оказывается, что слушатель легче всего улавливает согласование, затем управление и, наконец, примыкание. Интересно отме­тить, что стереотипные словосочетания, фразеологиз­мы опознаются згачительно хуже, чем можно было бы ожидать исходя из вероятностной модели восприятия. Слишком большое сужение сочетательных возможно­стей слова ограничивает возможность поиска. Увели­чение количества возможных ответов как бы расширя­ет «зону поиска» и тем самым повышает вероятность правильного опознания. Это лишний раз подтверждает положение о том, что аудирование есть активный про­цесс.

При переходе к фразам слушатель начинает ориен­тироваться уже не на отдельные элементы предложе­ния, а на весь его сложный грамматический каркас.

Изучалось также восприятие речевых сообщений, которые включали фразы, допускающие неоднознач­ную интерпретацию (вызывающие «семантический шум»). Было показано, что в этих условиях процесс восприятия замедляется, возникает необходимость повторного восприятия тех частей текста, которые предшествуют критической фразе. В ходе восприятия человек, преодолевая неоднозначность, осуществляет трансформацию фраз.

Приведенные данные показывают, что аудирова­ние представляет собой многоуровневый процесс, в котором сочетаются фонетический, синтаксический и семантический уровни. При этом вышележащие уров­ни играют ведущую роль, определяя ход всего процес­са аудирования, что необходимо иметь в виду при орга­низации речевых сообщений.

На качество восприятия и понимания речевых сообщений оператором оказывает влияние два основ­ных интегральных фактора: правильное построение аудиотекста и организация речевого сообщения.

Аудиотекстом называется текст, предназначенный для смыслового восприятия на слух. Звуковая речевая связь в деятельности оператора очень часто принима­ет именно такую форму логического и семантического объединения отдельных слов и предложений в смыс­ловые блоки - сверхфазовые единства (СФЕ). Пони­мание звучащего сообщения во многом обусловлено действием двух факторов: логико-смысловой структу­ры аудиотекста и его паралингвистической реализа­ции (скорости речи, распределения фраз, интонации).

Логико-смысловая структура аудиотекста опреде­ляется способом изложения мыслей. Наиболее опти­мальным считается дедуктивный способ их изложения (от общего к частному), при котором первое предложе­ние нацеливает аудитора на восприятие определенной темы, после чего следует ряд конкретных положений, доказывающих правильность посылок умозаключений. В психолингвистических исследованиях при анализе текстов исходят из следующих положений:

■ расчленение всего текста на смысловые блоки - СФЕ;

■ представление схемы всего текста в виде логической це­почки, являющейся каркасом, на который как бы нанизы­вается весь текст;

■ вычисление в выделенных СФЕ информации с помощью некоторых формализованных процедур.

Информационная ценность аудиотекста может быть усилена с помощью полного или частичного по­вторения, особенно ключевых слов в СФЕ. Это обеспе­чивает избыточность сообщения и его помехоустойчи­вость. Большое значение при организации аудиотекста имеет также выбор слов для компоновки текстов и выбор грамматических конструкций. Словарь текста должен быть максимально ограничен условиями дея­тельности: чем он меньше, тем выше помехоустойчи­вость аудиотекста. Все слова должны быть понятны и знакомы, частота их встречаемости должна быть высо­кой. Грамматические конструкции и связи между сло­вами должны быть четкими и простыми. Любое услож­нение ведет к ухудшению понимания и разборчивости. Определенное значение имеет длина предложений аудиотекста (не более 9-11 слов) и компоновка смыс­ловых блоков (не более 7). В противном случае проис­ходит перегрузка оперативной памяти.

Организация речевого сообщения предусматрива­ет построение его в форме, наиболее пригодной для восприятия оператором. Правильная организация ре­чевого сообщения позволяет обеспечить требуемые уровни разборчивости речи. Она оценивается процен­тным отношением числа правильно принятых слуша­телем элементов речевой передачи к числу передан­ных. Элементами речи считаются: форманты (области концентрации энергии в спектре данного звука), от­дельные звуки (фонемы), слоги, слова, словосочетания (фразы).

Разборчивость речи можно определить экспери­ментально с помощью артикуляционных таблиц и рас­четным методом, исходя из разборчивости формант и известных функциональных зависимостей. Нормы разборчивости речи приведены в табл. 11.5.

Таблица 11.5

Нормы разборчивости речи

Разборчивость речи является важнейшей характе­ристикой, определяющей качество ее восприятия. В ус­ловиях тишины основным фактором, влияющим на разборчивость, является интенсивность. Частота голоса не оказывает существенного влияния на разборчи­вость речи: высокий и низкий голос понимаются оди­наково хорошо. Оптимальный диапазон интенсивнос­ти речи составляет от 40 до 60 дБ. Основным фактором, влияющим на разборчивость

Рис. 11.9. Влияние уровня шума на разборчивость речи.

речи в условиях шума, является отношение мощности речи к мощности шума (рис. 11.9). Обычно речь бывает понятной, если интен­сивность речи превышает интенсивность шума на 6 дБ.

Большое значение на разборчивость оказывает правильный выбор слов. В условиях шума двухслож­ные слова опознаются на 30% лучше, чем однослож­ные, а трехсложные - на 50%. Слова с ударением на последнем слоге опознаются лучше, чем с ударением на первом. Важным фактором является также вероят­ностная характеристика слов: чем чаще оно встречает­ся, тем лучше опознается. Наибольшей помехоустой­чивостью к белому шуму обладают звуки Р, Л, М, Н, наихудшей - С, Ф, Ц, Т, Г. Распознаваемость слов повышается, если они начинаются с гласных. Опти­мальным считается темп речи от 60 до 80 слов в мину­ту, допустимым - до 120 слов в минуту.

Длина фразы не должна превышать 7±2 слов, что определяется объемом оперативной памяти. Наиболее значащие слова следует располагать в первой трети фразы. В разрешающих фразах, командах разрешение следует располагать в конце фразы, после содержания действия, в запрещающих - наоборот.

Повышению разборчивости речи способствует зрительный контроль (возможность видеть говорящего). Эффективным при интенсивности речи более 85 дБ является применение шумозаглушек. Однако при уров­не более 95 дБ применение шумозаглушек может ока­заться неэффективным. Большое значение имеет вы­полнение специальных требований к говорящему: достаточная интенсивность и оптимальный темп речи; большая продолжительность слогов; повышенная ва­риативность звуковых высот; преобладание (по време­ни) речевых звуков, а не пауз; повторение передачи должно иметь ту же структуру и те же слова, что в первоначальном случае.

С помощью речи формируется особый вид сигна­лов, называемых речевыми. Любой сигнал является носителем информации (см. главу И). Речевой сигнал и представляемая им информация используются в дея­тельности оператора, а следовательно являются объек­том изучения инженерной психологии в следующих случаях:

■ при организации общения между операторами (речевая коммуникация);

■ при организации взаимодействия между человеком и ЭВМ (речевой ввод и вывод информации);

■ при проведении контроля функционального состояния оператора: по анализу спектрально-временных характе­ристик речи можно судить о состоянии человека в про­цессе его работы;

■ при организации подсказки оператору о необходимых действиях.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины