Расшифровка генома человека. Расшифровка генома человека оказалась бессмысленной. Как были достигнуты результаты

Расшифровка генома человека. Расшифровка генома человека оказалась бессмысленной. Как были достигнуты результаты

01.11.2019

Сейчас последовательность ДНК человека раскодирована практически на 100%. При этом остаются небольшие пробелы, заполнение которых считается слишком дорогостоящим, но система, способная делать из генетических данных медицинские и научные выводы, уже хорошо отработана.

Институт Сэнгера, единственное британское учреждение, участвующее в масштабном международном проекте, выполнил почти треть всего объема работ. Большего вклада в расшифровку генома не сделал ни один научный институт в мире.

По словам его директора профессора Алана Брэдли, расшифровка генома человека - это важнейший шаг на долгом пути, и те выгоды, которые со временем получит медицина от этих исследований, поистине феноменальны.

"Только одна часть нашей работы - последовательность хромосомы 20 - уже позволила ускорить поиски генов, ответственных за развитие диабетов, лейкемии и детской экземы, - говорит профессор. - Не стоит ожидать немедленного прорыва, но нет сомнений в том, что мы завершаем одну из самых удивительных глав книги жизни".

Высокие стандарты

Не менее значительная доля работы по раскодированию легла на плечи американских ученых.

Доктор Фрэнсис Коллинс, директор Национального института исследований генома США, также указывает на долгосрочные перспективы. "Один из наших проектов предусматривал идентификацию генов предрасположенности к диабету II типа, - говорит он. - Этим заболеванием страдает каждый 20-й человек старше 45 лет, и эта доля со временем только возрастает. При помощи общедоступной карты генетических последовательностей мы сумели отобрать один ген в хромосоме 20, наличие которого в геноме, похоже, как раз и увеличивает вероятность возникновения диабета II типа".

Когда о проекте расшифровки генома человека было официально объявлено, некоторые специалисты утверждали, что на его реализацию потребуется лет 20 или даже больше. Но ход выполнения работ невероятно ускорили появление роботов-манипуляторов и суперкомпьютеров. Подстегнула деятельность ученых в этом направлении и информация о том, что параллельно геном человека расшифровывает и частно финансируемая компания Celera Genomics.

В последние три года основной целью биологов было заполнение брешей, остававшихся в уже раскодированных последовательностях ДНК, и более детальное уточнение всех остальных данных, на основе которых можно было бы выработать "золотой стандарт", который лег бы в основу дальнейших разработок в этой области.

"Нам удалось намного раньше, чем мы надеялись, достичь тех пределов, которые мы установили в своей работе, - говорит доктор Джейн Роджерс, глава отделения ДНК-последовательностей в институте Сэнгера, - сохранив при этом невероятно высокие стандарты качества. Эта работа позволяет исследователям немедленно приступить к целому ряду биомедицинских проектов. Теперь у них нас есть великолепно отшлифованный конечный продукт, который окажет им неоценимую помощь. Это как перейти от записи первой демонстрационной музыкальной кассеты к работе над полноценным классическим компакт-диском".

Зная практически всю последовательность почти трех миллиардов букв-нуклеотидов генетического кода нашей ДНК, ученые смогут вплотную заняться теми проблемами жизни человека, которые вызываются генетическими причинами.

Еще в начале апреля сэр Джон Салстон, возглавляющий британскую часть работы над проектом почти с самого его начала, заявил, что эти исследования позволят "раскопать генетические данные человека, которыми можно будет пользоваться всегда".

Работа по идентификации генов теперь может длиться дни, а не годы, как раньше. Но главная задача практической медицины заключается теперь в том, чтобы знание о том, какие именно гены работают неправильно или вызывают определенные нарушения, трансформировать в знание того, что с этим можно сделать.

А для этого им понадобится лучше понять, как, строя и поддерживая наше тело, взаимодействуют между собой белки (они же протеины) - сложные молекулы, построенные по генетическим "шаблонам" ДНК.

Наука геномика уже существует и активно развивается, но наука протеоника еще только в зачаточном состоянии. И здесь, как сказал профессор Брэдли, впереди еще "долгий путь".


Международные проект «Геном человека» был начат в 1988 г. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн. долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн. долларов, а частные компании – и того больше. В проекте задействованы несколько тысяч ученых из более чем 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.

Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Проект включает в качестве подпроектов изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов. Ожидается, что затем исследователи определят все функции генов и разработают возможности использования полученных данных.

Что же представляет собой основной предмет проекта – геном человека?

Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и в митохондриях) человека содержится 23 пары хромосом, каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца.

Как же помещаются в ядре такие длиннющие молекулы? Оказывается, в ядре существует механизм «насильственной» укладки ДНК в виде хроматина - уровни компактизации.

Первый уровень предполагает организацию ДНК с гистоновыми белками – образование нуклеосом. Две молекулы специальных нуклеосомных белков образуют октамер в виде катушки, на которую наматывается нить ДНК. На одной нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот уровень укладки позволяет уменьшить линейные размеры ДНК в 6–7 раз.

На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый виток составляет 6-7 нуклеосом, при этом линейные размеры ДНК уменьшаются до 1 мм, т.е. в 25-30 раз.

Третий уровень компактизации – петельная укладка фибрилл – образование петельных доменов, которые под углом отходят от основной оси хромосомы. Их можно увидеть в световой микроскоп как интерфазные хромосомы типа «ламповых щеток». Поперечная исчерченность, характерная для митотических хромосом, отражает в какой-то степени порядок расположения генов в молекуле ДНК.

Если у прокариот линейные размеры гена согласуются с размерами структурного белка, то у эукариот размеры ДНК намного превосходят суммарные размеры значимых генов. Это объясняется, во-первых, мозаичным, или экзон-интронным, строением гена: фрагменты, подлежащие транскрипции – экзоны, перемежаются незначащими участками – интронами. Последовательность генов сначала полностью транскрибируется синтезирующейся молекулой РНК, из которой затем вырезаются интроны, экзоны сшиваются и в таком виде информация с молекулы иРНК считывается на рибосоме. Второй причиной колоссальных размеров ДНК является большое количество повторяющихся генов. Некоторые повторяются десятки или сотни раз, а есть и такие, у которых встречается до 1 млн. повторов на геном. Например, ген, кодирующий рРНК повторяется около 2 тыс. раз.

Еще в 1996 г. считалось, что у человека около 100 тыс. генов, сейчас специалисты по биоинформатике предполагают, что в геноме человека не более 60 тыс. генов, причем на их долю приходится всего 3% общей длины ДНК клетки, а функциональная роль остальных 97% пока не установлена.

Каковы же достижения ученых за десять с небольшим лет работы над проектом?

Первым крупным успехом стало полное картирование в 1995 г. генома бактерии Haemophilus influenzae. Позднее были полностью описаны геномы еще более 20 бактерий, среди которых возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 г. картировали ДНК первой эукариотической клетки – дрожжей, а в 1998 г. впервые был картирован геном многоклеточного организма – круглого червя Caenorhabolitis elegans. К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека.

Ниже приведены известные данные по количеству генов, вовлеченных в развитие и функционирование некоторых органов и тканей человека.

Название органа, ткани, клетки и количество генов

1. Слюнная железа 17

2. Щитовидная железа 584

3. Гладкая мускулатура 127

4. Молочная железа 696

5. Поджелудочная железа 1094

6. Селезенка 1094

7. Желчный пузырь 788

8. Тонкий кишечник 297

9. Плацента 1290

10. Скелетная мышца 735

11. Белая кровяная клетка 2164

12. Семенник 370

13. Кожа 620

14. Мозг 3195

15. Глаз 547

16. Легкие 1887

17. Сердце 1195

18. Эритроцит 8

19. Печень 2091

20. Матка 1859

За последние годы были созданы международные банки данных о последовательностях нуклеотидов в ДНК различных организмов и о последовательностях аминокислот в белках. В 1996 г. Международное общество секвенирования приняло решение о том, что любая вновь определенная последовательность нуклеотидов размером 1–2 тыс. оснований и более должна быть обнародована через Интернет в течение суток после ее расшифровки, в противном случае статьи с этими данными в научные журналы не принимаются. Любой специалист в мире может воспользоваться этой информацией.

В ходе выполнения проекта «Геном человека» было разработано много новых методов исследования, большинство из которых в последнее время автоматизировано, что значительно ускоряет и удешевляет работу по расшифровке ДНК. Эти же методы анализа могут использоваться и для других целей: в медицине, фармакологии, криминалистике и т.д.

Остановимся на некоторых конкретных достижениях проекта, в первую очередь, конечно, имеющих отношение к медицине и фармакологии.

В мире каждый сотый ребенок рождается с каким-либо наследственным дефектом. К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. – наследственные. Уже выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли. Обнаружены гены, ответственные за одну из форм эпилепсии, гигантизм и др. Ниже приведены некоторые болезни, возникающие в результате повреждения генов, структура которых полностью расшифрована к 1997 г.

Болезни, возникающие в результате повреждения генов

1. Хpoнический грануломатоз
2. Кистозный фиброз
3. Болезнь Вильсона
4. Ранний рак груди/яичника
5. Мышечная дистрофия Эмери-Дрейфуса
6. Атрофия мышц позвоночника
7. Альбинизм глаза
8. Болезнь Альцгеймера
9. Наследственный паралич
10. Дистония

Вероятно, в ближайшие годы станет возможной сверхранняя диагностика тяжелых заболеваний, а значит, и более успешная борьба с ними. Сейчас активно разрабатываются методы адресной доставки лекарств в пораженные клетки, замены больных генов здоровыми, включения и выключения боковых путей метаболизма за счет включения и выключения соответствующих генов. Уже известны примеры успешного применения генотерапии. Так, например, удалось добиться существенного облегчения состояния ребенка, страдающего тяжелым врожденным иммунодефицитом, путем введения ему нормальных копий поврежденного гена.

Кроме болезнетворных генов обнаружены еще некоторые гены, имеющие прямое отношение к здоровью человека. Выяснилось, что существуют гены, обуславливающие предрасположенность к развитию профессиональных заболеваний на вредных производствах. Так, на асбестовых производствах одни люди болеют и умирают от асбестоза, а другие устойчивы к нему. В будущем возможно создание специальной генетической службы, которая будет давать рекомендации по поводу возможной профессиональной деятельности с точки зрения предрасположенности к профессиональным заболеваниям.

Оказалось, что предрасположенность к алкоголизму или наркомании тоже может иметь генетическую основу. Открыто уже семь генов, повреждения которых связаны с возникновением зависимости от химических веществ. Из тканей больных алкоголизмом был выделен мутантный ген, который приводит к дефектам клеточных рецепторов дофамина – вещества, играющего ключевую роль в работе центров удовольствия мозга. Недостаток дофамина или дефекты его рецепторов напрямую связаны с развитием алкоголизма. В четвертой хромосоме обнаружен ген, мутации которого приводят к развитию раннего алкоголизма и уже в раннем детстве проявляются в виде повышенной подвижности ребенка и дефицита внимания.

Интересно, что мутации генов не всегда приводят к негативным последствиям – они иногда могут быть и полезными. Так, известно, что в Уганде и Танзании инфицированность СПИДом среди проституток доходит до 60–80%, но некоторые из них не только не умирают, но и рожают здоровых детей. Видимо, есть мутация (или мутации), защищающая человека от СПИДа. Люди с такой мутацией могут быть инфицированы вирусом иммунодефицита, но не заболевают СПИДом. В настоящее время создана карта, примерно отражающая распределение этой мутации в Европе. Особенно часто (у 15% населения) она встречается среди финно-угорской группы населения. Идентификация такого мутантного гена могла бы привести к созданию надежного способа борьбы с одним из самых страшных заболеваний нашего века.

Выяснилось также, что разные аллели одного гена могут обуславливать разные реакции людей на лекарственные препараты. Фармацевтические компании планируют использовать эти данные для производства определенных лекарств, предназначенных различным группам пациентов. Это поможет устранить побочные реакции от лекарств, точнее, понять механизм их действия, снизить миллионные затраты. Целая новая отрасль – фармакогенетика – изучает, как те или иные особенности строения ДНК могут ослабить или усилить воздействие лекарств.

Расшифровка геномов бактерий позволяет создавать новые действенные и безвредные вакцины и качественные диагностические препараты.

Конечно, достижения проекта «Геном человека» могут применяться не только в медицине или фармацевтике.

По последовательностям ДНК можно устанавливать степень родства людей, а по митохондриальной ДНК – точно устанавливать родство по материнской линии. Разработан метод «генетической дактилоскопии», который позволяет идентифицировать человека по следовым количествам крови, чешуйкам кожи и т.п. Этот метод с успехом применяется в криминалистике – уже тысячи людей оправданы или осуждены на основании генетического анализа. Сходные подходы можно использовать в антропологии, палеонтологии, этнографии, археологии и даже в такой, казалось бы, далекой от биологии области, как сравнительная лингвистика.

В результате проведенных исследований появилась возможность сравнивать геномы бактерий и различных эукариотических организмов. Выяснилось, что в процессе эволюционного развития у организмов увеличивается количество интронов, т.е. эволюция сопряжена с «разбавлением» генома: на единицу длины ДНК приходится все меньше информации о структуре белков и РНК (экзоны) и все больше участков, не имеющих ясного функционального значения (интроны). Это одна из больших загадок эволюции.

Раньше ученые–эволюционисты выделяли две ветви в эволюции клеточных организмов: прокариоты и эукариоты. В результате сравнения геномов пришлось выделить в отдельную ветвь архебактерии – уникальные одноклеточные организмы, сочетающие в себе признаки прокариот и эукариот.

В настоящее время также интенсивно изучается проблема зависимости способностей и талантов человека от его генов. Главная задача будущих исследований – это изучение однонуклеотидных вариаций ДНК в клетках разных органов и выявление различий между людьми на генетическом уровне. Это позволит создавать генные портреты людей и, как следствие, эффективнее лечить болезни, оценивать способности и возможности каждого человека, выявлять различия между популяциями, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке и т.д.

Напоследок необходимо упомянуть об опасности распространения генетической информации о конкретных людях. В связи с этим в некоторых странах уже приняты законы, запрещающие распространение такой информации, и юристы всего мира работают над этой проблемой. Кроме того, проект «Геном человека» иногда связывают с возрождением евгеники на новом уровне, что тоже вызывает тревогу специалистов.

Анализ генома человека завершен.

В Вашингтоне 6 апреля 2000 г. состоялось заседание комитета по науке Конгресса США, на котором д-р Дж.Крейг Вентер заявил, что его компания, Celera Genomics, завершила расшифровку нуклеотидных последовательностей всех необходимых фрагментов генома человека. Он ожидает, что предварительная работа по составлению последовательностей всех генов (их около 80 тыс., и они содержат примерно 3 млрд. «букв» ДНК) будет завершена через 3–6 недель, т.е. гораздо раньше, чем планировалось. Скорее всего, окончательная расшифровка генома человека будет завершена к 2003 г.

Компания Celera включилась в исследования по проекту «Геном человека» 22 месяца назад. Используемые ею подходы сначала подвергались критике со стороны так называемого открытого консорциума участников проекта, однако завершенный ею в прошлом месяце подпроект по расшифровке генома плодовой мушки показал их действенность.

На этот раз никто не критиковал прогнозы К.Вентера, сделанные им в присутствии советника президента США по науке д-ра Н.Лэйна и представителя консорциума, крупнейшего специалиста по секвенированию генома д-ра Роберта Ватерстона.

Предварительная карта генома будет содержать около 90% всех генов, но, тем не менее, она будет большим подспорьем в работе ученых и врачей, поскольку позволит довольно точно отыскивать необходимые гены. Д-р Вентер заявил, что теперь собирается использовать свои 300 секвенаторов для анализа генома мыши, знание которого поможет понять, как работают гены человека.

Расшифрованный геном принадлежит мужчине, поэтому содержит как X-, так и Y-хромосомы. Имя этого человека не известно, и это не имеет значения, т.к. обширные данные по индивидуальной изменчивости ДНК собраны и продолжают собираться как компанией Celera, так и консорциумом исследователей. Между прочим, консорциум использует в своих исследованиях генетический материал, полученный от различных людей. Д-р Вентер охарактеризовал полученные консорциумом результаты как 500 тыс. расшифрованных, но не упорядоченных фрагментов, из которых очень трудно будет составить целые гены.

Д-р Вентер заявил, что после того, как структура генов будет определена, он устроит конференцию для того, чтобы привлечь сторонних экспертов к установлению положения генов в молекулах ДНК и определению их функций. После этого другие исследователи получат бесплатный доступ к данным по геному человека.

Между Вентером и консорциумом исследователей велись переговоры о совместной публикации полученных результатов, причем один из основных пунктов соглашения должен был предусматривать, что патентование генов возможно лишь после точного определения их функций и положения в ДНК.

Однако переговоры были прерваны из-за разногласий по поводу того, что считать завершением расшифровки генома. Проблема состоит в том, что в ДНК эукариот, в отличие от ДНК прокариот, есть фрагменты, которые не поддаются расшифровке современными методами. Размеры таких фрагментов могут быть от 50 до 150 тыс. оснований, но, к счастью, эти фрагменты содержат очень немного генов. В то же время и в участках ДНК, богатых генами, есть фрагменты, которые также не могут быть пока расшифрованы.

Определение положения и функций генов предполагается осуществить с помощью специальных компьютерных программ. Эти программы будут анализировать структуру генов и, сравнивая ее с данными по геномам других организмов, предлагать варианты их возможных функций. По мнению компании Celera, работу можно считать завершенной, если гены определены практически полностью и точно известно, как расшифрованные фрагменты располагаются на молекуле ДНК, т.е. в каком порядке. Этому определению удовлетворяют результаты Celera, в то время как результаты консорциума не позволяют однозначно определить положение расшифрованных участков относительно друг друга.

Компания Celera предполагает после составления полной карты генома человека сделать эти данные доступными для других исследователей по подписке, при этом для университетов плата за пользование банком данных будет очень низкой, 5–15 тыс. долларов в год. Это составит серьезную конкуренцию базе данных Genbank, принадлежащей университетам.

Участники заседания комитета по науке резко критиковали такие компании, как Incyte Pharmaceuticals и Human Genome Sciences, которые каждую ночь копировали данные консорциума, доступные по Интернету, а затем подавали заявки на патентование всех генов, обнаруженных ими в этих последовательностях.

На вопрос, не могут ли данные о геноме человека быть использованы для создания биологического оружия нового типа, например, опасного только для некоторых популяций, д-р Вентер ответил, что гораздо большую опасность представляют данные по геномам болезнетворных бактерий и вирусов. На вопрос одного из конгрессменов, не станет ли теперь реальностью целенаправленное изменение человеческой расы, д-р Вентер ответил, что для полного определения функций всех генов может потребоваться около ста лет, а до тех пор о направленных изменениях в геноме говорить не приходится.

Напомним, что в декабре 1999 г. исследователи Великобритании и Японии объявили об установлении структуры 22-й хромосомы. Это была первая декодированная хромосома человека. Она содержит 33 млн. пар оснований, и в ее структуре остались нерасшифрованными 11 участков (около 3% длины ДНК). Для этой хромосомы определены функции примерно половины генов. Установлено, например, что с дефектами этой хромосомы связано 27 различных заболеваний, среди которых такие, как шизофрения, миелоидная лейкемия и трисомия 22 – вторая по значению причина выкидышей у беременных.

В то время британские ученые резко критиковали методы секвенирования, используемые компанией Celera, считая, что они потребуют слишком длительного времени для расшифровки последовательностей и определения взаимного расположения их фрагментов. Тогда на основе известного объема декодированного материала делались прогнозы, что следующими будут картированы 7-, 20- и 21-й хромосомы.

Через неделю после объявления о завершении расшифровки нуклеотидных последовательностей в геноме человека, состоялось собрание Американской ассоциации за прогресс в науке, на которой министр по энергетике США Билл Ричардсон объявил, что ученые Объединенного института генома определили структуры 5-, 16- и 19-й хромосом человека.

Эти хромосомы содержат примерно 300 млн. пар оснований, что составляет 10–15 тыс. генов, или около 11% генетического материала человека. Пока удалось картировать 90% ДНК этих хромосом – остались не поддающиеся дешифровке участки, содержащие незначительное число генов.

На картах хромосом обнаружены генетические дефекты, которые могут приводить к некоторым заболеваниям почек, раку простаты и прямой кишки, лейкемии, гипертонии, диабету и атеросклерозу. По словам Ричардсона, ближе к лету информация о структуре хромосом будет доступна всем исследователям бесплатно.



Геном человека - международная программа, конечной целью которой является определение нуклеотидной последовательности (секвенирование ) всей геномной ДНК человека, а также идентификация генов и их локализация в геноме (картирование ).

Исходная идея проекта зародилась в 1984 среди группы физиков, работавших в Министерстве энергетики США и желавших заняться другой задачей после завершения работ в рамках ядерных проектов. В 1988 Объединенный комитет, куда входили Министерство энергетики США и Национальные институты здоровья, представили обширный проект, в задачи которого – помимо секвенирования генома человека – входило всестороннее изучение генетики бактерий, дрожжей, нематоды, плодовой мушки и мыши (эти организмы широко использовались в качестве модельных систем в изучении генетики человека). Кроме того, предусматривался детальный анализ этических и социальных проблем, возникающих в связи с работой над проектом. Комитету удалось убедить Конгресс выделить на проект 3 млрд. долларов (один нуклеотид ДНК – за один доллар), в чем немалую роль сыграл ставший во главе проекта Нобелевский лауреат Дж. Уотсон . Вскоре к проекту присоединились другие страны (Англия, Франция, Япония и др.). В России в 1988 с идеей секвенирования генома человека выступил академик А.А.Баев , и в 1989 в нашей стране был организован научный совет по программе «Геном человека».

В 1990 была создана Международная организация по изучению генома человека (HUGO ), вице-президентом которой в течение нескольких лет был академик А.Д.Мирзабеков . С самого начала работ по геномному проекту ученые договорились об открытости и доступности всей получаемой информации для его участников независимо от их вклада и государственной принадлежности. Все 23 хромосомы человека были поделены между странами-участницами. Российские ученые должны были исследовать структуру 3-й и 19-й хромосом. Вскоре финансирование этих работ в нашей стране было урезано, и реального участия в секвенировании Россия не принимала. Программа геномных исследований в нашей стране была полностью перестроена и сконцентрирована на новой области – биоинформатике, которая пытается с помощью математических методов понять и осмыслить все, что уже расшифровано. Закончить работу предполагалось через 15 лет, т.е. примерно к 2005. Однако скорость секвенирования с каждым годом возрастала, и если в первые годы она составляла несколько миллионов нуклеотидных пар за год по всему миру, то на исходе 1999 частная американская фирма «Celera» , возглавляемая Дж.Вентером (J.Venter) , расшифровывала не менее 10 млн. нуклеотидных пар в сутки. Этого удалось достичь благодаря тому, что секвенирование осуществляли 250 роботизированных установок; они работали круглосуточно, функционировали в автоматическом режиме и сразу же передавали всю информацию непосредственно в банки данных, где она систематизировалась, аннотировалась и становилась доступной ученым всего мира. Кроме того, фирма «Celera» широко использовала данные, полученные в рамках Проекта другими его участниками, а также разного рода предварительные данные. 6 апреля 2000 состоялось заседание Комитета по науке Конгресса США, на котором Вентер заявил, что его компания завершила расшифровку нуклеотидной последовательности всех существенных фрагментов генома человека и что предварительная работа по составлению нуклеотидной последовательности всех генов (предполагалось, что их 80 тыс. и что они содержат примерно 3 млрд. нуклеотидов), наконец, завершена.

Доклад был сделан в присутствии представителя HUGO, крупнейшего специалиста по секвенированию д-ра Р.Уотерсона. Расшифрованный фирмой «Celera» геном принадлежал анонимному мужчине, т.е. содержал как X-, так и Y-хромосомы, а HUGO использовали в своих исследованиях материал, полученный от разных людей. Между Вентером и HUGO велись переговоры о совместной публикации результатов, однако они закончились безрезультатно из-за разногласий по поводу того, что считать завершением расшифровки генома. По мнению компании «Celera», об этом можно говорить лишь в том случае, если гены полностью секвенированы и известно, как расшифрованные сегменты располагаются в молекуле ДНК. Этому требованию удовлетворяли результаты «Celera», в то время как результаты HUGO не позволяли однозначно определить взаимное положение расшифрованных участков. В результате в феврале 2001 в специальных выпусках двух авторитетнейших научных журналов, «Science» и «Nature» , были раздельно опубликованы результаты исследований «Celera» и HUGO и приведены полные нуклеотидные последовательности генома человека, охватывающие около 90% его длины.

Исследования генома человека «потянули» за собой секвенирование геномов огромного числа других организмов, гораздо более простых; без геномного проекта эти данные были бы получены гораздо позже и в гораздо меньшем объеме. Их расшифровка ведется все возрастающими темпами. Первым крупным успехом стало полное картирование в 1995генома бактерии Haemophilus influenzae , позже были полностью расшифрованы геномы более 20 бактерий, среди которых – возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 картировали геном первой эукариотической клетки (клетки, содержащей оформленное ядро) – дрожжевой , а в 1998 впервые секвенировали геном многоклеточного организма – круглого червя Caenorhabolits elegans (нематоды ). Завершена расшифровка генома первого насекомого – плодовой мушки дрозофилы и первого растения – арабидопсиса . У человека уже установлено строение двух самых маленьких хромосом – 21-й и 22-й. Все это создало основы для создания нового направления в биологии – сравнительной геномики .

Знание геномов бактерий, дрожжей и нематоды дает биологам-эволюционистам уникальную возможность сравнения не отдельных генов или их ансамблей, а целиком геномов. Эти гигантские объемы информации только начинают осмысливаться, и нет сомнения, что нас ждет появление новых концепций в биологической эволюции. Так, многие «личные» гены нематоды, в отличие от генов дрожжей, скорее всего, связаны с межклеточными взаимодействиями, характерными именно для многоклеточных организмов. У человека генов только в 4–5 раз больше, чем у нематоды, следовательно, часть его генов должна иметь «родственников» среди известных теперь генов дрожжей и червя, что облегчает поиск новых генов человека. Функции неизвестных генов нематоды изучать гораздо проще, чем у аналогичных генов человека: в них легко вносить изменения (мутации) или выводить их из строя, одновременно прослеживая изменения свойств организма. Выявив биологическую роль генных продуктов у червя, можно экстраполировать эти данные на человека. Другой подход – подавление активности генов с помощью особых ингибиторов и отслеживание изменений в поведении организма.

Весьма интересным представляется вопрос о соотношении кодирующих и некодирующих областей в геноме. Как показывает компьютерный анализ, у C.elegans примерно равные доли – 27 и 26% соответственно – занимают в геноме экзоны (участки гена, в которых записана информация о структуре белка или РНК) и интроны (участки гена, не несущие подобной информации и вырезаемые при образовании зрелой РНК). Остальные 47% генома приходится на повторы, межгенные участки и т.д., т.е. на ДНК с неизвестными функциями. Сравнив эти данные с дрожжевым геномом и геномом человека, мы увидим, что доля кодирующих участков в расчете на геном в ходе эволюции резко уменьшается: у дрожжей она очень высока, у человека очень мала. Налицо парадокс: эволюция эукариот от низших форм к высшим сопряжена с «разбавлением» генома – на единицу длины ДНК приходится все меньше информации о структуре белков и РНК и все больше информации «ни о чем», на самом деле просто непонятой и непрочитанной нами. Много лет назад Ф.Крик , один из авторов «двойной спирали» – модели ДНК, – назвал эту ДНК «эгоистической», или «мусорной». Возможно, какая-то часть ДНК человека действительно относится к такому типу, однако теперь ясно, что основная доля «эгоистической» ДНК сохраняется в ходе эволюции и даже увеличивается, т.е. почему-то дает ее обладателю эволюционные преимущества.

Еще один важный результат, имеющий общебиологическое (и практическое) значение – вариабельность генома . Вообще говоря, геном человека высококонсервативен. Мутации в нем могут либо повредить его, и тогда они приводят к тому или иному дефекту или гибели организма, либо оказаться нейтральными. Последние не подвергаются отбору, поскольку не имеют фенотипического проявления. Однако они могут распространяться в популяции, и если их доля превышает 1%, то говорят о полиморфизме (многообразии) генома. В геноме человека очень много участков, различающихся всего одним-двумя нуклеотидами, но передающихся из поколения в поколение. С одной стороны, этот феномен мешает исследователю, поскольку ему приходится разбираться, имеет ли место истинный полиморфизм или это просто ошибка секвенирования, а с другой – создает уникальную возможность для молекулярной идентификации отдельного организма. С теоретической точки зрения вариабельность генома создает основу генетики популяций, которая ранее основывалась на чисто генетических и статистических данных.

Самые большие надежды и ученые, и общество возлагают на возможность применения результатов секвенирования генома человека для лечения генетических заболеваний . К настоящему времени в мире идентифицировано множество генов, ответственных за многие болезни человека, в том числе и такие серьезные, как болезнь Альцгеймера, муковисцидоз, мышечная дистрофия Дюшенна, хорея Гентингтона, наследственный рак молочной железы и яичников. Структуры этих генов полностью расшифрованы, а сами они клонированы. Еще в 1999 была установлена структура 22-й хромосомы и определены функции половины ее генов. С дефектами в них связано 27 различных заболеваний, в том числе шизофрения, миелолейкоз и трисомия 22 – вторая по распространенности причина спонтанных абортов. Самым эффективным способом лечения таких больных была бы замена дефектного гена здоровым. Для этого, во-первых, необходимо знать точную локализацию гена в геноме, а во-вторых – чтобы ген попал во все клетки организма (или хотя бы в большинство), а это при современных технологиях невозможно. Кроме того, даже попавший в клетку нужный ген мгновенно распознается ею как чужой, и она пытается избавиться от него. Таким образом, «вылечить» удается только часть клеток и только на время. Еще одно серьезное препятствие на пути применения генной терапии – мультигенная природа многих заболеваний, т.е. их обусловленность более чем одним геном. Итак, массового применения генной терапии в ближайшем будущем вряд ли стоит ожидать, хотя успешные примеры такого рода уже есть: удалось добиться существенного облегчения состояния ребенка, страдающего тяжелым врожденным иммунодефицитом, путем введения ему нормальных копий поврежденного гена. Исследования в этой области ведутся по всему миру, и, может быть, успехи будут достигнуты раньше, чем предполагается, как это и произошло с секвенированием генома человека.

Еще одно важное применение результатов секвенирования – идентификация новых генов и выявление среди них тех, которые обусловливают предрасположенность к тем или иным заболеваниям . Так, есть данные о генетической предрасположенности к алкоголизму и наркомании, открыто уже семь генов, дефекты в которых приводят к токсикомании. Это позволит проводить раннюю (и даже пренатальную) диагностику заболеваний, предрасположенность к которым уже установлена.

Широкое применение несомненно найдет и еще один феномен: обнаружилось, что разные аллели одного гена могут обусловливать разные реакции людей на лекарственные препараты. Фармацевтические компании планируют использовать эти данные для производства лекарств, предназначенных разным группам пациентов. Это поможет избежать побочных эффектов терапии, снизить миллионные затраты. Возникает целая новая отрасль – фармакогенетика , которая изучает, как те или иные особенности строения ДНК могут повлиять на эффективность лечения. Появятся совершенно новые подходы к созданию лекарственных средств, основанные на открытии новых генов и изучении их белковых продуктов. Это позволит перейти от неэффективного метода «проб и ошибок» к целенаправленному синтезу лекарственных веществ.

Важный практический аспект вариабельности генома – возможность идентификации личности . Чувствительность методов «геномной дактилоскопии» такова, что достаточно одной капли крови или слюны, одного волоса, чтобы с абсолютной достоверностью (99,9%) установить родственные связи между людьми. После секвенирования генома человека этот метод, использующий теперь не только специфические маркеры в ДНК, но и однонуклеотидный полиморфизм, станет еще более надежным. Вариабельность генома породила направление геномики – этногеномику . Этнические группы, населяющие Землю, имеют некоторые групповые генетические признаки, характерные для данного этноса. Получаемая информация в ряде случаев может подтвердить или опровергнуть те или иные гипотезы, циркулирующие в рамках таких дисциплин, как этнография, история, археология, лингвистика. Еще одно интересное направление – палеогеномика , занимающаяся исследованием древней ДНК, извлеченной из останков, найденных в могильниках и курганах.

Финансирование «геномной гонки» и участие в ней тысяч специалистов основывались прежде всего на постулате, что расшифровка нуклеотидной последовательности ДНК сможет решить фундаментальные проблемы генетики. Оказалось, однако, что лишь 3% генома человека кодируют белки и участвуют в регуляции действия генов в ходе развития. Каковы функции остальных участков ДНК и есть ли они вообще – остается совершенно неясным. Около 10% генома человека составляют так называемые Alu-элементы длиной 300 п.н. Они появились неизвестно откуда в ходе эволюции у приматов, и только у них. Попав к человеку, они размножались до полумиллиона копий и распределились по хромосомам самым причудливым образом, то образуя сгустки, то прерывая гены.

Другая проблема касается самих кодирующих участков ДНК. При чисто молекулярно-компьютерном анализе возведение этих участков в ранг генов требует соблюдения сугубо формальных критериев: есть в них знаки пунктуации, необходимые для прочитывания информации, или нет, т.е. синтезируется ли на них конкретный генный продукт и что он собой представляет. В то же время роль, время и место действия большинства потенциальных генов пока неясны. По мнению Вентера, для определения функций всех генов может потребоваться не меньше ста лет.

Далее необходимо договориться, что вкладывать в само понятие «геном». Часто под геномом понимается лишь генетический материал как таковой, однако с позиции генетики и цитологии его составляет не только структура элементов ДНК, но и характер связей между ними, который определяет, как гены будут работать и как пойдет индивидуальное развитие при определенных условиях среды. И, наконец, нельзя не упомянуть о феномене так называемой «неканонической наследственности» , привлекшем к себе внимание в связи с эпидемией «коровьего бешенства». Эта болезнь стала распространяться в Великобритании в 1980-х годах после того, как в корм коровам стали добавлять переработанные головы овец, среди которых встречались овцы, больные скрэпи (нейродегенеративное заболевание). Сходная болезнь стала передаваться людям, употреблявшим в пищу мясо больных коров. Обнаружилось, что инфекционным агентом являются не ДНК или РНК, а белки-прионы. Проникая в клетку-хозяина, они изменяют конформацию нормальных белков-аналогов. Феномен прионов обнаружен также у дрожжей.

Таким образом, попытка представить расшифровку генома как чисто научно-техническую задачу несостоятельна. А между тем такой взгляд широко пропагандируется даже весьма авторитетными учеными. Так, в книге «Код кодов» (The Code of Codes, 1993) У.Гилберт , открывший один из методов секвенирования ДНК, рассуждает о том, что определение нуклеотидной последовательности всей ДНК человека приведет к изменениям в наших представлениях о самих себе. «Три миллиарда пар оснований могут быть записаны на одном компакт-диске. И любой может вытащить из кармана свой диск и сказать: «Вот он – Я!» Между тем необходимо знать не только порядок следования звеньев в цепи ДНК и не только взаимное расположение генов и их функции. Важно выяснить характер связей между ними, который определяет, как гены будут работать в конкретных условиях – внутренних и внешних. Ведь многие болезни человека обусловливаются не дефектами в самих генах, а нарушениями их согласованных действий, системы их регуляции.

Расшифровка генома человека и других организмов не только привела к прогрессу во многих областях биологии, но и породило множество проблем. Одна из них – идея «генетического паспорта», в котором будет указано, несет ли данный человек опасную для здоровья мутацию. Предполагается, что эти сведения будут конфиденциальными, но никто не может гарантировать, что не произойдет утечки информации. Прецедент уже был в случае «генетической паспортизации» афроамериканцев с той целью, чтобы определить, являются ли они носителями гена гемоглобина, содержащего мутацию, которая связана с серповидноклеточной анемией. Эта мутация распространена в Африке в малярийных районах, и если она присутствует в одном аллеле, то обеспечивает носителю устойчивость к малярии, обладатели же двух копий (гомозиготы) умирают в раннем детстве. В 1972 в рамках борьбы с малярией на «паспортизацию» было истрачено более 100 млн. долл., а после выполнения программы выяснилось, что а) у здоровых людей, носителей мутации, возникает комплекс вины, эти люди чувствуют себя не совсем нормальными, и такими их начинают воспринимать окружающие; б) появились новые формы сегрегации – отказ в приеме на работу. В настоящее время некоторые страховые компании выделяют средства на проведение ДНК-тестов в отношении ряда заболеваний, и если будущие родители, носители нежелательного гена, не соглашаются на прерывание беременности и у них рождается больной ребенок, им могут отказать в социальной поддержке.

Другая опасность – эксперименты по трансгенозу, созданию организмов с пересаженными от других видов генами, и распространению таких «химер» в окружающей среде. Здесь особую опасность представляет необратимость процесса. Если атомную станцию можно закрыть, использование ДДТ и аэрозолей прекратить, то изъять из биологической системы новый организм невозможно. Мобильные гены, открытые МакКлинток у растений, и сходные с ними плазмиды микроорганизмов передаются в природе от вида к виду. Ген, вредный или полезный (с точки зрения человека) для одного вида, может со временем перейти к другому виду и непредсказуемым образом изменить характер своего действия. В Америке мощная биотехнологическая компания «Монсанто» создала сорт картофеля, в клетки которого включен бактериальный ген, кодирующий токсин, который убивает личинок колорадского жука. Утверждается, что этот белок безвреден для человека и животных, однако страны Европы не дали разрешения на выращивание у себя этого сорта. Картофель испытывается в России. Опыты с трансгенными растениями предусматривают строжайшую изоляцию делянок с подопытными растениями, однако на охраняемых полях с трансгенными растениями Института фитопатологии в Голицыне под Москвой ремонтные рабочие выкопали картошку и тут же ее съели. На юге Франции ген устойчивости к насекомым «перескочил» от культурных растений к сорнякам. Другой пример опасного трансгеноза – выпуск в озера Шотландии лосося, который набирает вес в 10 раз быстрее, чем обычный лосось. Существует опасность, что этот лосось попадет в океан и нарушит сложившееся популяционное равновесие у других видов рыб.

Вот как сформулировал прогноз Ф.Коллинз, руководитель программы "Геном человека" (США).

2010 год

Генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсестры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, яростно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Не всем доступны практические приложения геномики, особенно в развивающихся странах.

2020 год

На рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Терапия рака, прицельно направленная на свойства раковых клеток. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Демонстрация безопасности генотерапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.

2030 год

Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее 1000 $. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека.

Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.

2040 год

Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (при/до рождения).

Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни детектируются на ранних стадиях путем молекулярного мониторинга.

Для большинства заболеваний доступна генная терапия.

Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря социоэкономическим мерам. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.

Как всякое научное открытие, расшифровка генома человека привела к появлению новых важных научных направлений, бурным развитием которых ознаменовалось начало 21 века – функциональная геномика (functional genomics), генетическое разнообразие (human genome diversity), этические, правовые и социальные аспекты исследований генома человека (ethical’legal and social implications - ELSI).

Задачей функциональной геномики является изучение функций новых генов, точнее генных ансамблей, так называемых «генных сетей» в нормальном развитии органов, тканей и при различных заболеваниях. Исследование генетического разнообразия проливает свет на эволюцию человека, проблемы этногенеза, т.е. происхождение рас, национальностей, этнических групп и пр. Они особенно важны и для выяснения наследственной предрасположенности человека к различным, в том числе и наиболее частым заболеваниям. Огромное значение на современном этапе приобретают исследования путей адаптации человека к серьезным переменам в медицине и обществе, вызванными быстро нарастающей «генетизацией» человечества.

Одним из важнейших итогов изучения генома человека является возникновение и быстрое развитие нового направления медицинской науки – молекулярной медицины - медицины, основанной на диагностике, лечении и профилактике наследственных и ненаследственных болезней с помощью самих генов, точнее нуклеиновых кислот. Что же отличает молекулярную медицину от обычной медицины? Прежде всего, универсальность диагностики основанная на точных методах анализа самих генов. Ее профилактическая направленность, то есть возможность диагностировать или с высокой вероятностью предсказывать то или иное заболевание (предиктивная медицина). Четко выраженная индивидуальность лечения (лекарства должны подбираться каждому больному строго индивидуально). Наконец, использования для лечения разных наследственных и ненаследственных болезней самих генов и их продуктов (генная терапия). Что же такое предиктивная медицина? Как показывают результаты сравнительного анализа, частота индивидуальной вариабельности молекулярной структуры геномов разных людей составляет около 0,1%. Это означает, что такие различия (замены отдельных букв) встречаются очень часто – примерно через каждые 400 знаков, что предполагает наличие 9 000 000 замен на каждый геном. Важно, что такие варианты не редко встречаются внутри самих генов. Их результатом могут быть замены букв в генетическом коде (полиморфизмы), в результате которых синтезируются белки с необычными, часто сильно измененными свойствами, отличными от нормальных. Наличие таких функционально различных белков (изоферментов), гормонов и пр. создает уникальный биохимический паттерн каждого человека.

Подобные замены в генах (полиморфизмы) далеко не всегда нейтральны. Они, а точнее продукты таких генов, как правило, работают менее эффективно и делают человека уязвимым к тому или иному заболеванию. Особенно ярко эту мысль выразил Фрэнсис Коллинз - директор Международной Программы "Геном Человека": «Никто из нас не совершенен. Все больше генетических тестов становится доступно и каждый из нас, в конечном счете, обнаруживает у себя мутацию, предрасполагающую к какой-нибудь болезни». Действительно, именно при помощи генетических тестов у человека любого возраста, а при необходимости даже внутриутробно, можно установить предрасположенность к тому или иному заболеванию. При этом, естественно, тестированию подвергаются не все, а только определенные гены (гены «предрасположенности», то есть гены, полиморфизмы (мутации) которых совместимы с жизнью, но при определенных неблагоприятных воздействиях внешних факторов (лекарства, диета, загрязнения воды, воздуха и пр.) или продуктов других генов могут быть причиной различных, так называемые мультифакториальных заболеваний. Существенно подчеркнуть, что причиной большинства заболеваний являются мутации не отдельных, а многих разных генов (т.н. генных сетей), обеспечивающих соответствующие метаболические процессы. В последнее время именно расшифровка составляющих элементов таких генных сетей при различных заболеваниях, выяснение роли полиморфизмов отдельных генов в их возникновении составляет горячую область предиктивной медицины.

Важным разделом предиктивной медицины является фармакогенетика - выяснение генетически обусловленных особенностей индивидуальной реакции организма на различные фармпрепараты. По некоторым данным ежегодно в мире погибает более 100 000 человека в связи с неправильной дозировкой лекарственных веществ, игнорирующей индивидуальную вариабельность действия лекарств. В настоящее время разработаны и широко используются в различных лабораториях и диагностических центрах, многочисленные генетические тесты. Часть из них направлена на выявление носителей мутантных генов, приводящих к различным тяжелым наследственным заболеваниям. Эти тесты особенно актуальны в семьях высокого риска, где уже есть больной ребенок. Они позволяют выяснить в семье носителей соответствующих мутантных генов и предотвратить рождение заведомо больного ребенка после своевременной дородовой (пренатальной) диагностики. Существует, однако, большая группа нейродегенеративных и некоторых онкологических заболеваний, первые клинические проявления которых наблюдаются сравнительно поздно, уже у взрослых. Для таких болезней разработаны методы досимптоматической диагностики.

В настоящее время, как показывает анализ мировой литературы, уже доступны для клинического применения около 150-200 генетических тестов Их широко применяют в различных центрах США и стран Западной Европы, особенно во Франции, Великобритании и в Германии. Во Франции, например, разработана и уже используется в медицинской практике система SESAM (System Expert Specialisee aux Analyae Medicale). Она основана на компьютерной интерпретации результатов генетического тестирования, а так же результаты биохимических, серологических и иммунологических анализов. В ходе ее выполнения уже используют свыше 80 тестов, которые обрабатывают при помощи специальной компьютерной программы. Особенно существенный вклад вносит данная программа в Предиктивную Медицину. Основной упор при этом делается на интерпретацию результатов различных генетических тестов, и, в первую очередь, тестов по изучению состояния генов системы детоксикации, ответственных за чувствительность человека к самым различным внешним воздействиям, особенно к химическим препаратам, лекарствам и другим ксенобиотикам. В Великобритании уже началось осуществление масштабного проекта по созданию Биобанка , содержащего генетическую информацию более 500 000 британцев разных рас и этнических групп с целью изучения диабета, рака, болезни Альцгеймера, сердечно-сосудистых заболеваний. Предполагается, что данный проект, в случае его успешной реализации, станет началом новой эры в медицине, так как с его помощью станет возможным прогнозировать и лечить заболевания, основываясь на индивидуальных генетических особенностях пациентов.

Программа массовой генетической паспортизации всего населения и, прежде всего, молодежи уже начата в Эстонии. В России такая Программа пока отсутствует. Однако различные предиктивные генетические тесты уже проводятся в разных молекулярных лабораториях и центрах Москвы, Санкт-Петербурга, Новосибирска, Томска и Уфы.

Естественно, что гены системы детоксикации (они же - гены метаболизма) представляют собой лишь одно из многих семейств генов, тестирование которых важно для целей предиктивной медицины. Существенная роль в наследственной предрасположенности принадлежит и другим генам, в частности, генам, контролирующим трансмембранный перенос метаболитов, а так же генам, продукты которых играют ключевую роль в клеточном метаболизме (гены-триггеры).

Таким образом, как ни печально, приходится признать, что человек рождается уже с набором генов, предрасполагающих его к тому или иному тяжелому заболеванию. При чем в каждой семье и у каждого человека выраженность наследственной предрасположенности к конкретной болезни сугубо индивидуальна. Тестирование соответствующих генов позволяет не только выявить лиц с повышенным риском этих и других мультифакториальных заболеваний, но и оптимизировать стратегию их лечения.

Существенно подчеркнуть, что достаточно объективная информация о наследственной предрасположенности к любому мультифакториальному заболеванию, которую мы унаследовали от родителей, может быть получена в результате тестирования не одного или двух, но сразу нескольких различных генов - главных генов предрасположенности в той или иной генной сети. В настоящее время методы тестирования многокомпонентных геннных сетей разработаны для более 25 мультифакториальных заболеваний. Ко всему сказанному добавим: идентификация всех генов человека, открытие новых генных сетей неизмеримо увеличивает возможности генетического тестирования наследственной предрасположенности и медико-генетического консультирования. Существенную помощь в этом могут оказать новые технологии. В частности, методы анализа с помощью микрочипов, которые позволяет одномоментно тестировать тысячи генетических полиморфизмов у одного человека или сразу несколько полиморфизмов у многих тысяч людей. Последний подход особенно важен для суждения о генетической структуре населения целого государства, что важно для планирования наиболее эффективной системы профилактики частых мультифакториальных болезней.

Итак, с помощью генетических тестов можно получить достаточно объективную информацию о том, какие болезни уже "выбрали" нас в момент формирования нашего генома на начальных этапах эмбрионального развития, то есть носителями каких мутантных генов мы являемся. Вполне реально уже сегодня узнать в какой мере уникальные особенности нашего генома могут представлять реальную угрозу для здоровья наших детей и близких родственников, могут привести нас самих к тяжелым, неизлечимым заболеваниям. Совокупность таких сведений о геноме каждого человека и позволяет говорить об индивидуальной базе данных. Внедрение в практическую медицину пренатальной (дородовой) диагностики наследственных болезней, скрининг (массовое обследование) носительства мутантных генов и генетических тестов активно способствуют формированию баз данных для отдельных индивидуумов и целых семей. Дополненная сведениями о кариотипе (наборе хромосом) и генетическим номером (уникальный генетический код каждого человека, устанавливаемый методами геномной дактилоскопии) и является основой расширенной индивидуальной базы данных человека - его "генетическим паспортом"). Проблема, однако, заключается в том, что далеко не каждый человек хочет и готов знать о подводных камнях своей наследственности. Не менее серьезной оказывается и проблема обязательной строгой конфиденциальности такой информации. Естественно, что решение этих и многих других проблем на пути широкого внедрения достижений современной генетики в жизнь требует их детального осмысления учеными и обществом. Назрела необходимость четкой юридической регламентации и гармоничной социальной адаптации применения достижений предиктивной медицины в практике здравоохранения.

Стратегические направления исследований генома человека.

Исследования генома человека уже привели к возникновению таких новых научных направлений, и, соответственно, программ как "Функциональная Геномика"; "Генетическое Разнообразие Человека"; "Этические, Правовые и Социальные Аспекты Исследований Генома Человека". Эти направления активно проникают во все сферы жизни человека, и позволяют уже сейчас говорить о быстро нарастающей "генетизации" человечества.

1. По мере стремительного увеличения числа картированных генов, все более очевидным становится недостаток данных об их функциях и, прежде всего, о функциональной значимости тех белков, которые они кодируют. Из более 30 тысяч генов уже идентифицированных на физической карте генома человека на сегодняшний день изучены в функциональном отношении не более 5-6 тыс. Какова функция остальных 25 тысяч уже картированных и такого же числа еще некартированных генов составляет важную стратегическую задачу исследований в программе "Функциональная Геномика" . Методы направленного мутагенеза эмбриональных стволовых клеток, создание банков кДНК различных тканей и органов на разных стадиях онтогенеза; разработка методов изучения функций участков ДНК, некодирующих белки; развитие новых технологий по сравнительному анализу экспрессии генов - вот уже существующие подходы в решении проблем функциональной геномики.

2. Геномы всех людей, за исключением однояйцовых близнецов, различны. Выраженные популяционные, этнические и, главное, межиндивидуальные различия геномов как в их смысловой части (экзоны структурных генов), так и в их некодирующих последовательностях (межгенные промежутки, интроны, пр.) обусловлены различными мутациями, приводящими к генетическому полиморфизму. Последний является предметом пристального изучения быстро набирающей силы программы "Генетическое Разнообразие Человека" . Решение многих проблем этногенеза, геногеографии, происхождения человека, эволюции генома в филогенезе и этногенезе - вот круг фундаментальных проблем, стоящих перед этим быстро развивающимся направлением. Близко примыкают к нему и исследования по Сравнительной Геномике (Comparative Genomics). Одновременно с человеком проводится секвенирование геномов других млекопитающих (мышь), а также насекомых (дрозофилы), червей (Caenorhabditis elegans). Есть основания предполагать, что компьютеризованный анализ геномов различных животных позволит создать Периодическую Систему Геномов. Будет ли она по аналогии с известной Периодической Системой Химических Элементов Д.И.Менделеева двумерной или окажется многомерной покажет будущее. Однако сама возможность создания такой Биологической Периодической Системы сегодня уже не представляется фантастичной.

3. По мере все более полной "генетизации" жизни человека, т.е. проникновения генетики не только во все разделы медицины, но и далеко за ее пределы, в том числе в социальные сферы, нарастающей заинтересованностью всех слоев мирового сообщества в достижениях генетики, все более очевидным для ученых, чиновников, правительств и просто образованных людей становится необходимость решения многочисленных этических, юридических, правовых и социальных проблем порождаемых успехами в изучении генома человека и познании его функций. Серии Этических, Правовых и Социальных программ, направленных на изучение проблем адаптации человека и общества в целом к восприятию достижений генетики.

Ученые расшифровали последнюю хромосому генома человека. Составлена карта самой сложной хромосомы человека. Хромосома 1 содержит почти в два раза больше генов, чем обычная хромосома, и составляет 8% генетического кода человека. Это самая крупная хромосома стала последней из 23 хромосом человека (22 парных плюс половые), расшифрованной в рамках проекта "Геном человека" (Human Genome), сообщает Reuters.

В данной хромосоме содержится 3141 ген, в том числе те, которые связаны с такими заболеваниями, как рак, болезни Альцгеймера и Паркинсона. "Данное достижение закрывает важный этап проекта "Геном человека", - говорит Саймон Грегори, руководитель проекта, которым занимается британский Институт Сэнгера.

Хромосома 1 является самой крупной и содержит наибольшее число генов. "Поэтому с этим участком генома связано наибольшее число заболеваний", - говорит Грегори.

На секвенсирование хромосомы 1 понадобилось 10 лет работы 150 британских и американских ученых. Результаты работы помогут исследователям во всем мире развивать методы диагностики и лечение рака, аутизма, психических расстройств и других заболеваний.

Хромосомы находятся в ядре клетки, они представляют нитеобразные структуры и содержат гены, которые определяют индивидуальные характеристики человека. Геном человека, по оценкам, состоит из 20-25 тыс. генов. В ходе секвенсирования хромосомы 1 было обнаружено 1000 новых генов.

Библиография

Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асеев М.В. Геном человека и гены "предрасположенности": Введение в предиктивную медицину. СПб., 2000
Боринская С.А., Янковский Н.К. Структура генома прокариот // Молекулярная биология. 1999. Т. 33. № 6
Бочков Н.П. Генетика человека и клиническая медицина // Вестн. РАМН. 2001. № 10
Генная терапия - медицина будущего / Под ред. А.В.Зеленина. М., 2000
Горбунова В.Н., Баранов В.С Введение в молекулярную диагностику и генотерапию наследственных заболеваний. СПБ., 1997
Пузырев В.П., Степанов В.А. Патологическая анатомия генома человека. Новосибирск, 1997
Тяжелова Т.В., Иванов Д.В., Баранова А.В., Янковский Н.К. Новые гены человека в области 13q14.3, обнаруженные in silico // Генетика. 2003. Т. 39. №6
Янковский Н.К., Боринская С.А. Геном человека: научные и практические достижения и перспективы: Аналитический обзор // Вестник РФФИ. 2003. № 2
Baranova A.V., Lobashev A.V., Ivanov D.V., Krukovskaya L.L., Yankovsky N.K., Kozlov A.P. In silico screening for tumour-specific expressed sequences in human genome // FEBS Lett. 2001. Nov. V. 9. № 508 (1)
Collins F.S., Green E.D., Guttmacher A.E., Guyer M.S. A vision for the future of genomics research. 2003. Nature. № 422
Mitochondrial DNA sequence diversity in Russians. Orekhov V., Poltoraus A., Zhivotovsky L.A., Spitsyn V., Ivanov P., Yankovsky N. // FEBS Lett. 1999. Feb. V. 19. № 445 (1)
Orekhov V., Ivanov P., Zhivotovsky L., Poltoraus A., Spitsyn V., Ginter E., Khusnutdinova E., Yankovsky N. MtDNA sequence diversity in three neighbouring ethnic groups of three language families from the European part of Russia // Archaeogenetics: DNA and the Population Prehistory of Europe / Ed. by. C. Renfrew, K. Boyle. Cambridge, 2000
The Human Genome // Nature. 2001. № 409
The Human Genome // Nature. 2003. № 421
Venter J.C., Adams M.D., Myers E.W. et al. The sequence of the human genome // 2001. Science. № 291

Материал взят из архива программы А. Гордона из раздела «Специальные проекты» сайта http://promo.ntv.ru, а также с сайта http://www.newsru.com из статьи «Ученые расшифровали последнюю хромосому генома человека» от 18 мая 2006 г.

Ученые, работавшие над расшифровкой последовательности генетического кода человека, заявили, что завершили свой труд на два года раньше запланированного срока. Это объявление последовало менее чем через три года после опубликования в мировой прессе "черновика" генома. В июне 2000 года премьер-министр Великобритании Тони Блэр и тогдашний президент США Билл Клинтон заявили, что расшифровано 97% "книги жизни".

Как сообщает Би-Би-Си , сейчас последовательность ДНК человека раскодирована практически на 100%. При этом остаются небольшие пробелы, заполнение которых считается слишком дорогостоящим, но система, способная делать из генетических данных медицинские и научные выводы, уже хорошо отработана. Институт Сэнгера, единственное британское учреждение, участвующее в масштабном международном проекте, выполнил почти треть всего объема работ. Большего вклада в расшифровку генома не сделал ни один научный институт в мире.

Не менее значительная доля работы по раскодированию легла на плечи американских ученых. Доктор Фрэнсис Коллинс, директор Национального института исследований генома США, также указывает на долгосрочные перспективы. "Один из наших проектов предусматривал идентификацию генов предрасположенности к диабету II типа, - говорит он. - Этим заболеванием страдает каждый 20-й человек старше 45 лет, и эта доля со временем только возрастает. При помощи общедоступной карты генетических последовательностей мы сумели отобрать один ген в хромосоме 20, наличие которого в геноме, похоже, как раз и увеличивает вероятность возникновения диабета II типа".

Когда о проекте расшифровки генома человека было официально объявлено, некоторые специалисты утверждали, что на его реализацию потребуется лет 20 или даже больше. Но ход выполнения работ невероятно ускорили появление роботов-манипуляторов и суперкомпьютеров. Подстегнула деятельность ученых в этом направлении и информация о том, что параллельно геном человека расшифровывает и частно финансируемая компания Celera Genomics. В последние три года основной целью биологов было заполнение брешей, остававшихся в уже раскодированных последовательностях ДНК, и более детальное уточнение всех остальных данных, на основе которых можно было бы выработать "золотой стандарт", который лег бы в основу дальнейших разработок в этой области. Зная практически всю последовательность почти трех миллиардов букв-нуклеотидов генетического кода нашей ДНК, ученые смогут вплотную заняться теми проблемами жизни человека, которые вызываются генетическими причинами.

Работа по идентификации генов теперь может длиться дни, а не годы, как раньше. Но главная задача практической медицины заключается теперь в том, чтобы знание о том, какие именно гены работают неправильно или вызывают определенные нарушения, трансформировать в знание того, что с этим можно сделать. А для этого им понадобится лучше понять, как, строя и поддерживая наше тело, взаимодействуют между собой белки (они же протеины) - сложные молекулы, построенные по генетическим "шаблонам" ДНК.

1000 Genomes Project — масштабный проект, запущенный в январе 2008 года, изначальной целью которого было полное секвенирование (расшифровка) геномов тысячи человек — представителей разных рас и национальностей. В работе приняли участие команды исследователей из США, Великобритании, Италии, Перу, Кении, Нигерии, Китая и Японии. Расшифровка полного генома человека — задача непростая, так как

он содержит 20-25 тыс. активных генов. Впрочем, это составляет очень незначительную часть всех генов — остальные относятся к так называемой «мусорной ДНК», то есть не кодируют никаких белков. Но с учетом «мусорной ДНК» объем генома человека достигает около 3 млрд пар нуклеотидов.

Масштабная работа, проделанная учеными, имеет непосредственное отношение ко всем живущим на планете людям. В ходе работы ученым удалось расшифровать геномы 2504 человек, представляющих 26 разных популяций. Исследователям удалось установить, какие именно вариации имеет каждый человеческий ген — а это может помочь в том, чтобы понять, за какое генетическое заболевание он отвечает. Ученым уже удалось понять,

какие именно генетические вариации ответственны за возникновение заболеваний сердечной мышцы (миокарда), хронических воспалений желудочно-кишечного тракта, серповидноклеточной анемии (нарушений строения гемоглобина) или болезни Гоше — наследственного заболевания, которое приводит к накоплению сложных жиров во многих тканях, включая селезенку, печень, почки, легкие, головной мозг и костный мозг.

Данные, полученные в результате работы, доступны на сайте самого проекта . В ночь со вторника на среду в журнале Nature вышли две статьи , представляющие последние обзорные данные, которые были получены в ходе работы. Корреспонденту отдела науки «Газеты.Ru» удалось пообщаться с тремя учеными, которые принимали непосредственное участие в расшифровке генома человека: Полом Фличеком (одним из ведущих исследователей 1000 Genomes Project и ведущим научным сотрудником Европейской молекулярно-физической лаборатории), Гонсало Абекасисом (профессором Мичиганского университета) и Адамом Отоном (Нью-йоркский медицинский колледж им. Альберта Эйнштейна) и поговорить с ними о дальнейших планах и возможности практического применения результатов семилетней работы.

— В 2008 году, когда проект только начинался, перед учеными была поставлена цель: расшифровать полный геном тысячи человек. В октябре 2012 года журнал Nature объявил о том, что окончена расшифровка 1092 геномов. На текущий момент — к окончанию проекта — вам удалось секвенировать 2504 генома. Скажите, как вам удалось так существенно перевыполнить план?

Пол Фличек: Нам удалось секвенировать так много образцов, потому что за последние годы технологии, позволяющие осуществлять секвенирование генома, получили существенное развитие. Именно поэтому нам удалось получить примерно в 25 раз больше данных, чем было заявлено изначально.

Гонсало Абекасис: Не стоит забывать и о стоимости подобного анализа. Если в 2008 году полная расшифровка генома человека стоила около $100 тыс., то теперь эта сумма составляет менее $2 тыс.

— 30 сентября было объявлено о том, что финальная стадия проекта завершена. Можно ли говорить о полном завершении работ или же вы собираетесь идти дальше и ставить перед собой новые цели?

Пол Фличек: Перед нами стоит множество новых целей, касающихся как секвенирования ДНК, так и поиска взаимосвязей между вариациями разных генов, возникновения генетических заболеваний и других характеристик человека. Завершение 1000 Genomes Project — это действительно кульминация усилий, которые мы начали предпринимать еще 15 лет назад и целью которых было создание открытого ресурса, содержащего информацию о человеческих генах.

В будущем мы планируем расширить базу наших исследований и привлечь к нему людей, представляющих большее число популяций из разных стран мира, — в Африке, Азии и на Среднем Востоке остаются популяции, не вовлеченные в исследование. Теперь эта работа будет проводиться в рамках проекта .

Гонсало Абекасис: Кроме того, в дальнейшем мы планируем фокусироваться на том, как вариации каждого гена влияют на течение конкретной болезни. Для этого нужно изучить как можно большее число случаев течения и лечения подобных заболеваний.

Адам Отон: А еще мы собираемся проверить, как генетические вариации влияют на фенотип человека.

— А можно ли применять полученную вами информацию на практике уже сейчас? Или все-таки еще требуется дополнительное время на обработку данных?

Гонсало Абекасис: Собранная нами информация полезна для исследователей уже сейчас — она помогает ученым понять, сколько вариаций имеет каждый ген, какие из этих вариаций несут ответственность за возникновение разных заболеваний. Правда, до того момента, когда эти знания приведут к разработке новых лекарств, еще пройдет определенное время.

Адам Отон: Информация активно используется, и не только врачами, а вообще всеми желающими. Если исследователь — из любой сферы — хочет узнать, какие функции выполняет какой-либо ген, как он распространен среди населения земного шара или как выглядит какой-то участок генома, он может с легкостью получить эту информацию.

Пол Фличек: Я считаю, основная практическая польза полученных нами данных — это то, что они помогают составить карту распространения какого-то гена на планете.

Допустим, у человека родом из Азии обнаружили редкое генетическое заболевание. Но данные нашего проекта говорят, что вариация какого-то гена (вызывающего это заболевание) есть только в ДНК африканцев. Это будет означать, что корни заболевания надо искать в изменениях другого гена. Кроме того, мы стали лучше понимать, как разные популяции людей мигрировали по миру.

— Если бы вас попросили описать результаты семилетней работы в одном-двух предложениях, что бы вы сказали?

Пол Фличек: Важнейший результат 1000 Genomes Рroject — это составление каталога вариаций человеческих генов и анализ методов и инструментов, которые могут быть использованы для дальнейшего секвенирования генома человека. Этот каталог полностью бесплатен и находится в открытом доступе.

Гонсало Абекасис: Теперь у нас есть каталог, где представлены разные версии каждой последовательности ДНК, а значит, каждого гена, и с помощью которого мы можем определить, в каких регионах планеты распространена каждая версия. Мы можем использовать эту информацию, чтобы сократить время и затраты, необходимые на расшифровку генома других людей.

Адам Отон: 1000 Genomes Project самым существенным образом улучшил наше понимание того, как вариации человеческих генов распространены в мире.

— И последний вопрос: что вы чувствуете сейчас, когда семилетний проект, в котором вы принимали самое непосредственное участие, завершен?

Гонсало Абекасис: Я чувствую, что пришло время принять следующий вызов: применить то, что мы узнали, на практике и начать разрабатывать методы лечения генетических заболеваний.

Адам Оттон: Проект стал базой для дальнейшей работы: все хотят знать, что вариации генов могут рассказать нам о различных заболеваниях. Несколько следующих лет обещают быть очень насыщенными.

Пол Фличек: Мне немного грустно. Наш проект был яркой демонстрацией того, на что способны современные технологии. Проект постоянно рос и развивался — вместе с развитием технологий, а его завершение действительно означает конец целой эпохи. Хотя, само собой, использование данных, полученных при расшифровке ДНК, еще только начинается, и мне кажется, что 1000 Genomes Project можно сравнить с ребенком, которому еще расти и расти.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины