Ноцицептивные рецепторы. Теории боли физиология. Электрическая стимуляция околоводопроводного серого вещества или большого ядра шва почти полностью подавляет болевые сигналы, идущие через задние корешки спинного мозга. В свою очередь, стимуляция вышележащ

Ноцицептивные рецепторы. Теории боли физиология. Электрическая стимуляция околоводопроводного серого вещества или большого ядра шва почти полностью подавляет болевые сигналы, идущие через задние корешки спинного мозга. В свою очередь, стимуляция вышележащ

29.06.2020

Это первый из описанных врачами Древней Греции и Рима симптомов – признаков воспалительного повреждения. Боль – это то, что сигнализирует нам о каком-либо неблагополучии, возникающем внутри организма или о действии некоего разрушающего и раздражающего фактора извне.

Боль, по мнению широко известного русского физиолога П. Анохина, призвана мобилизовывать разнообразные функциональные системы организма для его защиты от воздействия вредящих факторов. Боль включает в себя такие компоненты как: ощущение, соматические (телесные), вегетативные и поведенческие реакции, сознание, память, эмоции и мотивации. Таким образом, боль есть объединяющая интегративная функция целостного живого организма. В данном случае – человеческого организма. Ибо живые организмы, даже не обладая признаками высшей нервной деятельности, могут испытывать боль.

Имеются факты изменения электрических потенциалов у растений, которые фиксировались при повреждении их частей, а также такие же электрические реакции, когда исследователи наносили травму соседним растениям. Таким образом, растения реагировали на причиняемые им или соседним растениям повреждения. Только боль имеет такой своеобразный эквивалент. Вот такое интересное, можно сказать, универсальное свойство всех биологических организмов.

Виды боли – физиологическая (острая) и патологическая (хроническая).

Боль бывает физиологической (острой) и патологической (хронической) .

Острая боль

По образному выражению академика И.П. Павлова, является важнейшим эволюционным приобретением, и требуется для защиты от воздействия разрушающих факторов. Смысл физиологической боли заключается в отбрасывании всего, что угрожает жизненному процессу, нарушает равновесие организма с внутренней и внешней средой.

Хроническая боль

Это явление несколько более сложное, которое формируется в результате длительно существующих в организме патологических процессов. Процессы эти могут быть как врожденными, так и приобретенными в течение жизни. К приобретенным патологическим процессам относят следующие – длительное существование очагов воспаления, имеющих различные причины, всевозможные новообразования (доброкачественные и злокачественные), травматические повреждения, операционные вмешательства, исходы воспалительных процессов (например, образование спаек между органами, изменение свойств тканей, входящих в их состав). К врожденным патологическим процессам относятся следующие – различные аномалии расположения внутренних органов (например, расположение сердца снаружи грудной клетки), врожденные аномалии развития (например, врожденный дивертикул кишечника и прочие). Таким образом, длительно существующий очаг повреждения, приводит к постоянным и небольшим повреждениям структур организма, что также постоянно создает болевую импульсацию о повреждениях данных структур организма, затронутых хроническим патологическим процессом.

Так как данные повреждения минимальны, то и болевые импульсы довольно таки слабые, а боль становится постоянной, хронической и сопровождает человека повсеместно и практически круглосуточно. Боль становится привычной, однако никуда не исчезает и остается источником длительного раздражающего воздействия. Болевой синдром, существующий у человека шесть или более месяцев, приводит к значительным изменениям в организме человека. Происходит нарушение ведущих механизмов регуляции важнейших функций организма человека, дезорганизация поведения и психики. Страдает социальная, семейная и личностная адаптация данного конкретного индивида.

Как часто встречаются хронические боли?
Согласно исследованиям Всемирной Организации Здравоохранения (ВОЗ), каждый пятый житель планеты страдает хроническими болями, причиняемыми всевозможными патологическими состояниями, связанными с заболеваниями различных органов и систем организма. Это означает, что как минимум 20% людей страдают хроническими болями разной степени выраженности, различной интенсивности и длительности.

Что такое боль и как она возникает? Отдел нервной системы ответственный за передачу болевой чувствительности, вещества вызывающие и поддерживающие болевые ощущения.

Ощущение боли представляет собой сложный физиологический процесс, включающий периферические и центральные механизмы, и имеющий эмоциональную, психическую, а зачастую и вегетативную окраску. Механизмы болевого феномена полностью на сегодняшний день не раскрыты, несмотря на многочисленные научные исследования, которые продолжаются вплоть до сегодняшнего времени. Однако рассмотрим основные этапы и механизмы восприятия боли.

Нервные клетки, передающие болевой сигнал, виды нервных волокон.


Самый первый этап восприятия боли представляет собой воздействие на болевые рецепторы (ноцицепторы ). Данные болевые рецепторы расположены во всех внутренних органах, костях, связках, в коже, на слизистых оболочках различных органов, соприкасающихся с внешней средой (например, на слизистой кишечника, носа, горла и т.д.).

На сегодняшний день выделяют два основных вида болевых рецепторов: первые – это свободные нервные окончания, при раздражении которых возникает ощущение тупой, разлитой боли, а вторые представляют собой сложные болевые рецепторы, при возбуждении которых возникает чувство острой и локализованной боли. То есть характер болевых ощущений напрямую зависит от того, какие болевые рецепторы восприняли раздражающее воздействие. Относительно специфических агентов, которые могут раздражать болевые рецепторы, можно сказать, что к ним относятся различные биологически активные вещества (БАВ) , образующиеся в патологических очагах (так называемые, алгогенные вещества ). К данным веществам относятся различные химические соединения – это и биогенные амины, и продукты воспаления и распада клеток, и продукты локальных иммунных реакций. Все эти вещества, совершенно разные по химической структуре, способны оказывать раздражающее действие на болевые рецепторы различной локализации.

Простагландины – вещества, поддерживающие воспалительную реакцию организма.

Однако, существует ряд химических соединений, участвующих в биохимических реакциях, которые сами непосредственно не могут воздействовать на болевые рецепторы, однако усиливают эффекты веществ вызывающих воспаление. К классу данных веществ, например, относятся простагландины. Простагландины образуются из особых веществ – фосфолипидов , которые составляют основу клеточной мембраны. Данные процесс протекает следующим образом: некий патологический агент (например, ферментов образуются простагландины и лейкотриены. Простагландины и лейкотриены в целом называются эйкозаноиды и играют важную роль в развитии воспалительной реакции. Доказана роль простагландинов в формировании болевых ощущений при эндометриозе, предменструальном синдроме, а также синдроме болезненных менструаций (альгодисменорее).

Итак, мы рассмотрели первый этап формирования болевого ощущения – воздействие на специальные болевые рецепторы. Рассмотрим, что происходит дальше, каким образом человек чувствует боль определенной локализации и характера. Для понимания данного процесса необходимо ознакомиться с проводящими путями.

Как болевой сигнал поступает в головной мозг? Болевой рецептор, периферический нерв, спинной мозг, таламус – подробнее о них.


Биоэлектрический болевой сигнал, сформировавшийся в болевом рецепторе, по нескольким типам нервных проводников (периферическим нервам), минуя внутриорганные и внутриполостные нервные узлы, направляется к спинальным нервным ганглиям (узлам) , расположенным рядом со спинным мозгом. Эти нервные ганглии сопровождают каждый позвонок от шейных до некоторых поясничных. Таким образом, образуется цепочка нервных ганглиев, идущая справа и слева вдоль позвоночного столба. Каждый нервный ганглий связан с соответствующим участком (сегментом) спинного мозга. Дальнейший путь болевого импульса из спинальных нервных ганглиев направляется в спинной мозг, который непосредственно соединен с нервными волокнами.


На самом деле спинной мог – это неоднородная структура – в нем выделяют белое и серое вещество (как и в головном мозге). Если спинной мозг рассмотреть на поперечном разрезе, то серое вещество будет выглядеть как крылья бабочки, а белое будет окружать его со всех сторон, формируя округлые очертания границ спинного мозга. Так вот, задняя часть этих крылышек бабочки называется задними рогами спинного мозга. По ним нервные импульсы переправляются к головному мозгу. Передние же рога, по логике должны располагаться в передней части крыльев – так оно и происходит. Именно передние рога проводят нервный импульс от головного мозга к периферическим нервам. Так же в спинном мозге в центральной его части существуют структуры, которые непосредственно соединяют нервные клетки передних и задних рогов спинного мозга – благодаря этому имеется возможность формирования так называемой «кроткой рефлекторной дуги», когда некоторые движения происходят неосознанно - то есть без участия головного мозга. Примером работы короткой рефлекторной дуги является одергивание руки от горячего предмета.

Поскольку спинной мозг имеет сегментарное строение, следовательно, в каждый сегмент спинного мозга входят нервные проводники со своей зоны ответственности. При наличии острого раздражителя с клеток задних рогов спинного мозга возбуждение может резко переключаться на клетки передних рогов спинномозгового сегмента, что вызывает молниеносную двигательную реакцию. Коснулись рукой горячего предмета – одернули сразу руку. При этом болевая импульсация все равно достигает коры головного мозга, и мы осознаем, что прикоснулись к горячему предмету, хотя руку уже рефлекторно отдернули. Подобные нервно-рефлекторные дуги для отдельных сегментов спинного мозга и чувствительных периферических участков могут различаться в построении уровней участия центральной нервной системы.

Как нервный импульс достигает головного мозга?

Далее из задних рогов спинного мозга путь болевой чувствительности направляется в вышележащие отделы центральной нервной системы по двум путям – по так называемым «старым» и «новым» спиноталамическим (путь нервного импульса: спинной мозг – таламус) путям. Названия «старый» и «новый» являются условными и говорят лишь о времени появления указанных путей на историческом отрезке эволюции нервной системы. Не будем, однако, вдаваться в промежуточные этапы довольно сложного нервного пути, ограничимся лишь констатацией факта, что оба указанных пути болевой чувствительности оканчиваются в участках чувствительной коры головного мозга. И «старый», и «новый» спиноталамические пути проходят через таламус (особый участок головного мозга), а «старый» спиноталамический путь – еще и через комплекс структур лимбической системы мозга. Структуры лимбической системы мозга во многом участвуют в образовании эмоций и формировании поведенческих реакций.

Предполагается, что первая, более эволюционно молодая система («новый» спиноталамический путь) проведения болевой чувствительности рисует более определенную и локализованную боль, вторая же, эволюционно более древняя («старый» спиноталамический путь) служит для проведения импульсов, дающих ощущение тягучей, плохо локализованной боли. Дополнительно к этому, указанная «старая» спиноталамическая система обеспечивает эмоциональное окрашивание болевого ощущения, а также участвует в формировании поведенческих и мотивационных составляющих эмоциональных переживаний, связанных с болью.

Перед достижением чувствительных участков коры головного мозга, болевая импульсация проходит, так называемую, предварительную обработку в определенных отделах центральной нервной системы. Это уже упомянутый таламус (зрительный бугор), гипоталамус, сетчатая (ретикулярная) формация, участки среднего и продолговатого мозга. Первый, и, пожалуй, один из самых важных фильтров на пути болевой чувствительности – это таламус. Все ощущения из внешней среды, от рецепторов внутренних органов – всё проходит через таламус. Невообразимое количество чувствительной и болевой импульсации проходит ежесекундно, днем и ночью через данный участок мозга. Мы не ощущаем, как происходит трение клапанов сердца, движение органов брюшной полости, всевозможных суставных поверхностей друг о друга – и всё это благодаря таламусу.

При нарушении работы, так называемой, антиболевой системы (например, в случае отсутствия выработки внутренних, собственных морфиноподобных веществ, возникшей по причине употребления наркотических средств) вышеупомянутый шквал всевозможной болевой и прочей чувствительности просто захлестывает головной мозг, приводя к ужасающим по длительности, силе и выраженности эмоционально-болевым ощущениям. Такова причина, в несколько упрощенном виде, так называемой «ломки» при дефиците поступления извне морфиноподобных веществ на фоне длительного приема наркотических средств.

Как болевой импульс обрабатывается головным мозгом?


Задние ядра таламуса дают информацию о локализации источника боли, а срединные его ядра – о продолжительности воздействия раздражающего агента. Гипоталамус, как важнейший регуляторный центр вегетативной нервной системы, участвует в образовании вегетативного компонента болевой реакции опосредованно, через задействование центров регулирующих обмен веществ, работу дыхательной, сердечно-сосудистой и других систем организма. Ретикулярная формация координирует уже частично обработанную информацию. Особенно подчеркивается роль ретикулярной формации в формировании ощущения боли как некоего особого интегрированного состояния организма, с включением всевозможных биохимических, вегетативных, соматических составляющих. Лимбическая система мозга обеспечивает негативную эмоциональную окраску.Сам процесс осознания боли как таковой, определение локализации болевого источника (имеется ввиду конкретная область собственного тела) в совокупности со сложнейшими и разнообразнейшими реакциями на болевую импульсацию происходит непременно при участии мозговой коры.

Сенсорные участки коры головного мозга являются высшими модуляторами болевой чувствительности и играют роль, так называемого, коркового анализатора информации о факте, длительности и локализации болевого импульса. Именно на уровне коры происходит интеграция информации от различных видов проводников болевой чувствительности, что означает полновесное оформление боли как многогранного и многообразного ощущения.В конце прошлого века было выявлено, что каждый уровень построения болевой системы от рецепторного аппарата до центральных анализирующих систем мозга может обладать свойством усиления болевой импульсации. Как бы своего рода трансформаторные подстанции на линиях электропередач.

Приходится говорить даже о, так называемых, генераторах патологически усиленного возбуждения. Так, с современных позиций данные генераторы рассматриваются как патофизиологические основы болевых синдромов. Упомянутая теория системных генераторных механизмов позволяет объяснить, почему при незначительном раздражении болевой ответ бывает довольно значителен по ощущениям, почему после прекращения действия раздражителя ощущение боли продолжает сохраняться, а также помогает объяснить появление боли в ответ на стимуляцию зон кожной проекции (рефлексогенных зон) при патологии различных внутренних органов.

Хронические боли любого происхождения приводят к повышенной раздражительности, снижению работоспособности, потере интереса к жизни, нарушению сна, изменениям эмоционально-волевой сферы, часто доводят до развития ипохондрии и депрессии. Все указанные последствия уже сами по себе усиливают патологическую болевую реакцию. Возникновение подобной ситуации трактуется как образование замкнутых порочных кругов: болевой раздражитель – психо-эмоциональные нарушения – поведенческие и мотивационное нарушения, проявляющиеся в виде социальной, семейной и личностной дезадаптации – боль.

Антиболевая система (антиноцицептивная) – роль в организме человека. Порог болевой чувствительности

Наряду с существованием в организме человека болевой системы (ноцицептивной ), существует еще и антиболевая система (антиноцицептивная ). Что осуществляет антиболевая система? Прежде всего, для каждого организма существует свой, генетически запрограммированный порог восприятия болевой чувствительности. Данный порог позволяет объяснить, почему на раздражители одинаковой силы, продолжительности и характера разные люди реагируют по-разному. Понятие порога чувствительности – это универсальное свойство всех рецепторных систем организма, в том числе и болевых. Так же как и система болевой чувствительности, антиболевая система имеет сложное многоуровневое строение, начиная с уровня спинного мозга и заканчивая мозговой корой.

Как регулируется деятельность антиболевой системы?

Сложная деятельность антиболевой системы обеспечивается цепочкой сложных нейрохимических и нейрофизиологических механизмов. Основная роль в этой системе принадлежит нескольким классам химических веществ – мозговым нейропептидам, В их число входят и морфиеподобные соединения – эндогенные опиаты (бета-эндорфин, динорфин, различные энкефалины). Названные вещества могут считаться так называемыми эндогенными анальгетиками. Указанные химические вещества обладают угнетающим воздействием на нейроны болевой системы, активируют антиболевые нейроны, модулируют активность высших нервных центров болевой чувствительности. Содержание данных антиболевых веществ в центральной нервной системе при развитии болевых синдромов уменьшается. По всей видимости, этим и объясняется снижение порога болевой чувствительности вплоть до появления самостоятельных болевых ощущений на фоне отсутствия болевого раздражителя.

Следует также отметить, что в антиболевой системе наряду с морфиеподобными опиатными эндогенными анальгетиками большую роль играют и широко известные мозговые медиаторы, такие как: серотонин, норадреналин, дофамин, гамма-аминомасляная кислота (ГАМК), а также гормоны и гормоноподобные вещества – вазопрессин (антидиуретический гормон), нейротензин. Интересно, что действие мозговых медиаторов возможно как на уровне спинного, так и головного мозга. Резюмируя вышесказанное, можно заключить, что включение антиболевой системы позволяет ослабить поток болевой импульсации и снизить болевые ощущения. При возникновении каких-либо неточностей в работе данной системы любая боль может быть воспринята как интенсивная.

Таким образом, все болевые ощущения регулируются совместным взаимодействием ноцицептивной и антиноцицептивной систем. Только их согласованная работа и тонкое взаимодействие позволяет адекватно воспринимать боль и её интенсивность, в зависимости от силы и продолжительности воздействия раздражающего фактора.

До настоящего времени единой теории боли, объясняющей различные ее проявления, не существует. Наиболее важное значение для понимания механизмов формирования болевых ощущений имеют следующие современные теории боли.

Теория интенсивности была предложена английским врачом Э.

Дарвином (1794), согласно которой боль не является специфическим чувством и не имеет своих специальных рецепторов, а возникает при действии сверхсильных раздражителей на рецепторы пяти известных органов чувств. В формировании боли учавствуют конвергенция и суммация импульсов в спинном и головном мозге.

Теория специфичности была сформулирована немецким физиком М.

Фреем (1894). В соответствии с этой теорией боль является специфическим чувством (шестое чувство), имеющим собственный рецепторный аппарат, афферентные пути и структуры головного мозга, перерабатывающего болевую информацию. Теория М. Фрея в дальнейшем получила более полное экспериментальное и клиническое потверждение.

Такой контроль осуществляется тормозными нейронами желатинозной субстанции, которые активируются импульсацией с периферии по толстым волокнам, а также нисходящими влияниями со стороны супраспинальных отделов, в том числе коры головного мозга.

Этот контроль представляет собой, образно говоря, «ворота», которые регулируют поток ноцицептивной импульсации.

В настоящее время гипотеза о системе «воротного контроля» пополнилась многими деталями, при этом важная для клинициста сущность заложенной в этой гипотезе идеи сохраняется и имеет широкое признание.

Однако теория «воротного контроля», по признанию самих авторов, не может объяснить патогенез боли центрального происхождения.

Теория генераторных и системных механизмов Г.Н.

Крыжановского. Наиболее приемлемой для понимания механизмов центральной боли является теория генераторных и системных механизмов боли, развитая Г.Н. Крыжановским (1976), который считает, что сильная ноцицептивная стимуляция, поступающая с периферии, вызывает в клетках задних рогов спинного мозга каскад процессов, которые запускаются возбуждающими аминокислотами (в частности, глутамином) и пептидами (в частности, субстанцией Р).

Кроме того, болевые синдромы могут возникать вследствие деятельности в системе болевой чувствительности новых патологических интеграции - агрегата гиперактивных нейронов, который является генератором патологически усиленного возбуждения и патологической алгической системы, представляющей собой новую структурно-функциональную организацию, состоящую из первично и вторично измененных ноцицептивных нейронов, и являющуюся патогенетической основой болевого синдрома.

Каждый центральный болевой синдром имеет свою алгическую систему, в структуру которой обычно включается поражение трех уровней ЦНС: нижний ствол, промежуточный мозг (таламус, сочетанное поражение таламуса, базальных ганглиев и внутренней капсулы), кора и прилежащее белое вещество мозга. Характер болевого синдрома, его клинические особенности определяются структурно-функциональной организацией патологической алгической системы, а течение болевого синдрома и характер приступов боли зависят от особенностей ее активации и деятельности.

В последнем случае через некоторое время активность патологической алгической системы восстанавливается и возникает рецидив болевого синдрома.

Страницы: 1 2

Статьи и публикации:

В настоящее время нет общепринятого определения боли. В узком смысле боль (от лат. dolor) – это неприятное ощущение, возникающее при действии сверхсильных раздражителей, вызывающих структурно-функциональные изменения в организме.

В этом смысле боль является конечным продуктом деятельности болевой сенсорной системы (анализатора, по И.П. Павлову). Известно много попыток точно и кратко охарактеризовать боль. Вот формулировка, опубликованная одним международным комитетом экспертов в журнале «Pain» 6 (1976 г.): «Боль – неприятное сенсорное и эмоциональное переживание, связанное с истинным или потенциальным повреждением ткани или описываемое в терминах такого повреждения». По этому определению боль, как правило, нечто большее, чем чистое ощущение, поскольку обычно сопровождается неприятным аффективным переживанием.

В определении также четко отражено, что боль ощущается тогда, когда сила стимуляции ткани тела создает опасность её разрушения. Далее, как указано в последней части определения, хотя всякая боль связана с разрушением ткани или с риском такового, для болевого ощущения совершенно неважно, происходит ли повреждение в действительности.

Имеются и другие определения боли: «психофизиологическое состояние», «своеобразное психическое состояние», «неприятное сенсорное или эмоциональное состояние», «мотивационно-функциональное состояние» и т.д.

Различие понятий о боли, вероятно, связаны с тем, что она запускает в ЦНС несколько программ ответа организма на боль и, следовательно, имеет несколько компонентов.

Теории боли

До настоящего времени единой теории боли, объясняющей различные ее проявления, не существует. Наиболее важное значение для понимания механизмов формирования болевых ощущений имеют следующие современные теории боли. Теория интенсивности была предложена английским врачом Э.

Дарвином (1794), согласно которой боль не является специфическим чувством и не имеет своих специальных рецепторов, а возникает при действии сверхсильных раздражителей на рецепторы пяти известных органов чувств.

В формировании боли учавствуют конвергенция и суммация импульсов в спинном и головном мозге.

Теория специфичности была сформулирована немецким физиком М. Фреем (1894). В соответствии с этой теорией боль является специфическим чувством (шестое чувство), имеющим собственный рецепторный аппарат, афферентные пути и структуры головного мозга, перерабатывающего болевую информацию.

Теория М. Фрея в дальнейшем получила более полное экспериментальное и клиническое потверждение.

Теория «воротного контроля» Мелзака и Уолла. Популярной теорией боли является теория «воротного контроля», разработанная в 1965 году Мелзаком и Уоллом. Согласно ей, в системе афферентного входа в спинном мозге действует механизм контроля за прохождением ноцицептивной импульсации с периферии.

Такой контроль осуществляется тормозными нейронами желатинозной субстанции, которые активируются импульсацией с периферии по толстым волокнам, а также нисходящими влияниями со стороны супраспинальных отделов, в том числе коры головного мозга. Этот контроль представляет собой, образно говоря, «ворота», которые регулируют поток ноцицептивной импульсации.

Патологическая боль, с позиций данной теории, возникает при недостаточности тормозных механизмов Т-нейронов, которые растормаживаясь и активируясь различными стимулами с периферии и из других источников, посылают интенсивную восходящую импульсацию.

В настоящее время гипотеза о системе «воротного контроля» пополнилась многими деталями, при этом важная для клинициста сущность заложенной в этой гипотезе идеи сохраняется и имеет широкое признание. Однако теория «воротного контроля», по признанию самих авторов, не может объяснить патогенез боли центрального происхождения.

Теория генераторных и системных механизмов Г.Н. Крыжановского. Наиболее приемлемой для понимания механизмов центральной боли является теория генераторных и системных механизмов боли, развитая Г.Н.

Крыжановским (1976), который считает, что сильная ноцицептивная стимуляция, поступающая с периферии, вызывает в клетках задних рогов спинного мозга каскад процессов, которые запускаются возбуждающими аминокислотами (в частности, глутамином) и пептидами (в частности, субстанцией Р). Кроме того, болевые синдромы могут возникать вследствие деятельности в системе болевой чувствительности новых патологических интеграции - агрегата гиперактивных нейронов, который является генератором патологически усиленного возбуждения и патологической алгической системы, представляющей собой новую структурно-функциональную организацию, состоящую из первично и вторично измененных ноцицептивных нейронов, и являющуюся патогенетической основой болевого синдрома.

Теории, рассматривающие нейрональные и нейрохимические аспекты формирования боли.

Каждый центральный болевой синдром имеет свою алгическую систему, в структуру которой обычно включается поражение трех уровней ЦНС: нижний ствол, промежуточный мозг (таламус, сочетанное поражение таламуса, базальных ганглиев и внутренней капсулы), кора и прилежащее белое вещество мозга.

Характер болевого синдрома, его клинические особенности определяются структурно-функциональной организацией патологической алгической системы, а течение болевого синдрома и характер приступов боли зависят от особенностей ее активации и деятельности.

Сформированная под влиянием болевой импульсации эта система сама, без дополнительной специальной стимуляции способна развивать и усиливать свою активность, приобретая устойчивость к влияниям со стороны антиноцицептивной системы и к восприятию общего интегративного контроля ЦНС.

Развитие и стабилизация патологической алгической системы, а также формирование генераторов объясняют тот факт, что хирургическая ликвидация первичного источника боли далеко не всегда эффективна, а иногда приводит лишь к кратковременному уменьшению выраженности боли.

В последнем случае через некоторое время активность патологической алгической системы восстанавливается и возникает рецидив болевого синдрома. Существующие патофизиологические и биохимические теории дополняют друг друга и создают цельное представление о центральных патогенетических механизмах боли.

Типы боли

Соматическая боль.

Если она возникает в коже, её называют поверхностной; если в мышцах, костях, суставах или соединительной ткани – глубокой. Таким образом, поверхностная и глубокая боль – это два (под)типа соматической боли.

Поверхностная боль, вызываемая уколом кожи булавкой, представляет собой «яркое» по характеру, легко локализуемое ощущение, которое с прекращением стимуляции быстро угасает. За этой ранней болью часто следует поздняя с латентным периодом 0,5-1,0 с.

Поздняя боль по характеру тупая (ноющая), её труднее локализовать, и она медленнее угасает.

Глубокая боль. Боль в скелетных мышцах, костях, суставах и соединительной ткани называют глубокой.

Её примеры – острые, подострые и хронические боли в суставах, одни из самых обычных у человека. Глубокая боль тупая, как правило трудно локализуемая, и имеет тенденцию к иррадиации в окружающие ткани.

Висцеральная боль.

Теории происхождения боли

Висцеральную боль можно вызвать, например, быстрым сильным растяжением полых органов брюшной полости (скажем, мочевого пузыря или почечной лоханки). Спазмы или сильные сокращения внутренних органов тоже болезненны, особенно когда связаны с неправильным кровообращением (ишемией).

Острая и хроническая боль.

Кроме места возникновения важный момент описания боли – её продолжительность. Острая боль (например, от ожога кожи) обычно ограничена поврежденной областью; мы точно знаем, где она возникла, и её сила прямо зависит от интенсивности стимуляции.

Такая боль указывает на грозящее или уже происшедшее повреждение ткани и поэтому обладает четкой сигнальной и предупреждающей функцией. После устранения повреждения она быстро исчезает. Острая боль определяется как краткая по времени проявления боль с легко идентифицируемой причиной.

Острая боль - это предупреждение организму о существующей в данный момент опасности органического повреждения или заболевания. Часто стойкая и острая боль сопровождается также ноющей болью. Острая боль обычно концентрируется в определённом участке перед тем, как она каким-то образом распространится шире. Этот тип боли обычно хорошо поддаётся излечению.

С другой стороны, многие виды боли долго сохраняются (например, в спине или при опухолях) либо более или менее регулярно повторяются (например, головные боли, называемые мигренью, боли с сердце при стенокардии).

Её устойчивые и рецидивирующие формы вместе называют хронической болью. Обычно такой термин применяют, если боль длится более полугода, однако это всего лишь условность.

Часто она более трудная для излечения, чем острая боль.

Зуд. Зуд – это еще недостаточно изученный тип кожного ощущения. Он по меньшей мере связан с болью и может быть особой её формой, возникающей в определенных условиях стимуляции. Действительно, ряд вызывающих зуд стимулов высокой интенсивности приводит к болевым ощущениям.

Однако, исходя из других соображений, зуд – это ощущение, независимое от боли, возможно, со своими собственными рецепторами. Например, его удается вызвать только в самых верхних слоях эпидермиса, тогда как боль возникает и в глубине кожи.

Некоторые авторы считают, что зуд - это боль в миниатюре. В настоящее время установлено, что зуд и боль тесно связаны друг с другом. При кожной боли первое движение связано с попыткой удалить, сбросить, стряхнуть боль, при зуде - потереть, почесать зудящую поверхность. «Имеется много данных, - говорит выдающийся английский физиолог Эдриан, - указывающих на общность их механизмов. Зуд, конечно, не так мучителен, как боль. Однако во многих случаях, особенно при длительном и упорном чесательном рефлексе, человек испытывает тягостное ощущение, очень похожее на болевое.

Компоненты боли

Сенсорный компонент боли характеризует её как неприятное, тягостное ощущение. Он состоит в том, что организм может установить локализацию боли, время начала и окончания боли, интенсивность болевого ощущения.

Аффективный (эмоциональный) компонент.

Любое сенсорное ощущение (тепло, вид неба и т.п.) может быть эмоционально нейтральным или вызывать удовольствие или неудовольствия. Болевое ощущение всегда сопровождается возникновением эмоций и всегда неприятных.

Вызываемые болью аффекты, или эмоции, почти исключительно неприятные; она портит наше самочувствие, мешает жить.

Мотивационный компонент боли характеризует её как отрицательную биологическую потребность и запускает поведение организма, направленное на выздоровление.

Моторный компонент боли представлен различными двигательными реакциями: от безусловных сгибательных рефлексов до двигательных программ антиболевого поведения.

Он проявляется в том, что организм стремится устранить действие болевого раздражителя (рефлекс избегания, рефлекс защиты). Двигательная реакция развивается еще до того, как произойдет осознание боли.

Вегетативный компонент характеризует нарушение функций внутренних органов и обмена веществ при хронических болях (боль – болезнь).

Проявляется в том, что сильное болевое ощущение вызывает ряд вегетативных реакций (тошнота, сужение/расширение сосудов и т.п.) по механизму вегетативного рефлекса.

Когнитивный компонент связан с самооценкой боли, боль при этом выступает как страдание.

Обычно все компоненты боли возникают вместе, хотя и в разной степени.

Однако их центральные проводящие пути местами совершенно раздельны, и связаны они с различными частями нервной системы. Но, в принципе, компоненты боли могут возникать изолированно друг от друга.

Болевые рецепторы

Рецепторы боли — ноцицепторы.

По механизму возбуждения ноцицепторы можно выделить два типа. Первый — это механорецепторы , их деполяризация происходит в результате механического смещения мембраны. К ним относятся следующие:

1.Ноцицепторы кожи с афферентами А-волокон.

2. Ноцицепторы эпидермиса с афферентами С- волокон.

3. Ноцицепторы мышц с афферентами А-волокон.

4. Ноцицепторы суставов с афферентами А-волокон.

5. Тепловые ноцицепторы с афферентами А-волокон, которые возбуждаются на механические раздражения и нагревание 36 — 43 С и не реагируют на охлаждение.

Второй тип ноцицепторов — это хеморецепторы .

Деполяризация их мембраны возникает при воздействии химических веществ, которые в подавляющем большинстве нарушают окислительные процессы в тканях. К хемоноцицепторам относятся следующие:

1. Подкожные ноцицепторы с афферентами С- волокон.

2. Ноцицепторы кожи с афферентами С- волокон, активирующиеся механическими стимулами и сильным нагреванием от 41 до 53 С

3. Ноцицепторы кожи с афферентами С- волокон, активирующиеся механическими стимулами и охлаждением до 15 С

4. Ноцицепторы мышц с афферентами С- волокон.

5. Ноцицепторы внутренних паренхиматозных органов, локализующиеся, вероятно, главным образом в стенках артериол.

Большинство механоноцицепторов имеют афференты А-волокон, и они расположены так, что обеспечивают контроль целостности кожных покровов организма, суставных сумок, поверхности мышц.

Хемоноцицепторы расположены в более глубоких слоях кожи и передают импульсацию преимущественно через афференты С-волокон. Афферентные волокна передающие ноцицептивную информацию.

Передача ноцицептивной информации от ноцицепторов в ЦНС осуществляется через систему первичных афферентов по А- и С-волокнам, согласно классификации Гассера: А-волокна — толстые миелинизированные волокна со скоростью проведения импульсации 4 — 30 м/с; С волокна — немиелинизированные тонкие волокна со скоростью проведения импульсации 0,4 — 2 м/с.

С волокон в ноцицептивной системе гораздо больше чем А-волокон.

Болевая импульсация идущая по А- и С-волокнам через задние корешки вступают в спинной мозг и образуют два пучка: медиальный, входящий в состав задних восходящих столбов спинного мозга, и латеральный, переключающийся на нейронах расположенных задних рогах спинного мозга. В передаче болевой импульсации на нейроны спинного мозга принимают участие рецепторы NMDA, активация которых потенцирует передачу болевой импульсации в спинной мозг, а также рецепторы mGluR1/5, т.к.

их активация играет роль в развитии гиперальгезии.

Проводящие пути болевой чувствительности

От болевых рецепторов туловища, шеи и конечностей Аδ- и С-волокна первых чувствительных нейронов (их тела находятся в спинальных ганглиях) идут в составе спинномозговых нервов и входят через задние корешки в спинной мозг, где разветвляются в задних столбах и образуют синаптические связи прямо или через интернейроны со вторыми чувствительными нейронами, длинные аксоны которых входят в состав спиноталамических путей.

При этом они возбуждают два вида нейронов: одни нейроны активируются только болевыми стимулами, другие – конвергентные нейроны – возбуждаются также и неболевыми стимулами. Вторые нейроны болевой чувствительности преимущественно входят в состав боковых спиноталамических путей, которые и проводят большую часть болевых импульсов. На уровне спинного мозга аксоны этих нейронов переходят на сторону, противоположную раздражению, в стволе головного мозга они доходят до таламуса и образуют синапсы на нейронах его ядер.

Часть болевой импульсации первых афферентных нейронов переключаются через интернейроны на мотонейроны мышц-сгибателей и участвуют в формировании защитных болевых рефлексов.

Основная часть болевой импульсации (после переключения в задних столбах) поступает в восходящие пути, среди которых главными являются боковой спиноталамический и спиноретикулярный.

Боковой спиноталамический путь образуется проекционными нейронами I, V, VII, VIII пластин, аксоны которых переходят на противоположную сторону спинного мозга и направляются в таламус.

Часть волокон спиноталамического пути, которую называют неоспиноталамическим путём (его нет у низших животных), заканчивается преимущественно в специфических сенсорных (вентральных задних) ядрах таламуса. Функция этого пути состоит в локализации и характеристике болевых стимулов.

Другая часть волокон спиноталамического пути, которую называют палеоспиноталамическим путем (имеется также у низших животных), оканчивается в неспецифичных (интраламинарных и ретикулярных) ядрах таламуса, в ретикулярной формации ствола, гипоталамусе, центральном сером веществе.

Через этот путь проводится «поздняя боль», аффективно-мотивационные аспекты болевой чувствительности.

Спиноретикулярный путь образуют нейроны, расположенные в I, IV-VIII пластинах задних столбов. Их аксоны оканчиваются в ретикулярной формации ствола мозга. Восходящие пути ретикулярной формации следуют к неспецефическим ядрам таламуса (далее в новую кору), лимбическую кору и гипоталамус.

Этот путь учавствует в формировании аффективно-мотивационных, вегетативных и эндокринных реакциях на боль.

Поверхностная и глубокая болевая чувствительность лица и полости рта (зона тройничного нерва) передается по Аδ- и С-волокнам первых нейронов ганглия V нерва, которые переключаются на вторые нейроны, расположенные преимущественно в спинальном ядре (от рецепторов кожи) и мостовом ядре (от рецепторов мышц, суставов) V нерва. От этих ядер болевая импульсация (аналогично спиноталамическим путям) проводится по бульботаламическим путям.

По этим путям и часть болевой чувствительности от внутренних органов по сенсорным волокнам блуждающего и языкоглоточного нервов в ядро одиночного пути.

Главная•Неврология•Головная боль•Формирование чувства боли, почему человек ощущает боль

Формирование чувства боли, почему человек ощущает боль

Чувство боли человек ощущает благодаря деятельности нервной системы, которая активизирует головной мозг и спинной мозг (составляющие центральную нервную систему), нервные стволы и их концевые рецепторы, нервные ганглии и другие образования, объединяемые под названием периферической нервной системы.

Формирование чувства боли в головном мозге

В головном мозге выделяют большие полушария и ствол мозга.

Полушария представлены белым веществом (нервными проводниками) и серым веществом (нервными клетками). Серое вещество головного мозга расположено в основном на поверхности полушарий, образуя кору. Оно находится также в глубине полушарий в виде отдельных клеточных скоплений — подкорковых узлов. Среди последних в формировании болевых ощущений большое значение имеют зрительные бугры, так как в них сконцентрированы клетки всех видов чувствительности организма.

В стволе мозга скопления клеток серого вещества образуют ядра черепных нервов, от которых начинаются нервы, обеспечивающие различные виды чувствительности и двигательную реакцию органов.

Болевые рецепторы

В процессе длительного приспособления живых существ к условиям окружающей среды в организме сформировались особые чувствительные нервные окончания, которые превращают энергию разных видов, поступающую от внешних и внутренних раздражителей, в нервные импульсы.

Они получили название рецепторов.

Физиология боли и болевая чувствительность

Рецепторы имеются практически во всех тканях и органах. Строение и функции рецепторов различны.

Самое простое строение имеют болевые рецепторы. Болевые ощущения воспринимаются свободными окончаниями чувствительных нервных волокон. Болевые рецепторы располагаются в различных тканях и органах неравномерно. Больше всего их в кончиках пальцев, на лице, слизистых оболочках. Богато снабжены болевыми рецепторами стенки сосудов, сухожилия, мозговые оболочки, надкостница (поверхностная оболочка кости).

Так как оболочки мозга снабжены болевыми рецепторами в достаточной степени, их сдавливание или растяжение вызывает болевые ощущения значительной силы. Мало болевых рецепторов в подкожной жировой клетчатке. Не имеет болевых рецепторов вещество мозга.

Болевые импульсы, принятые рецепторами, направляются затем сложными путями по специальным чувствительным волокнам в различные отделы головного мозга и в конечном счете достигают клеток коры полушарий мозга.

Центры болевой чувствительности головы расположены в различных отделах центральной нервной системы.

Деятельность же коры головного мозга во многом зависит от особого образования нервной системы — сетчатой формации ствола мозга, которая может как активировать, так и тормозить деятельность коры больших полушарий.

H.C.Kypбaтoвa

«Формирование чувства боли, почему человек ощущает боль» и другие статьи из раздела Головная боль

Читайте также:

Болевая чувствительность полости рта

1. НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ВОСПРИЯТИЯ БОЛИ

Боль и обезболивание всегда остаются важнейшими проблемами медицины, а облегчение страданий больного человека, снятие боли или уменьшение ее интенсивности — одна из самых важных задач врача…

1.1.

Физиология боли и болевая чувствительность

Методы исследования физиологии человека

2.1 Физиология целостного организма

Развитие науки обусловлено успехами применяемых методов. Павловский метод хронического эксперимента создавал принципиально новую науку — физиологию целостного организма, синтетическую физиологию…

Основы микробиологии, физиологии питания и санитарии

ТЕМА 2. ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ

Физиология микроорганизмов — наука об их питании, дыхании, росте, развитии, размножении, взаимодействии с окружающей средой и реакциях на внешние раздражители.

Знание физиологии микроорганизмов дает возможность понять…

Промысловые птицы Крыма

1.1 Строение и физиология

Птицы — это покрытые перьями гомойотермные амниоты, передние конечности которых превратились в крылья.

По многим морфологическим признакам они сходны с пресмыкающимися…

Слуховой анализатор

3.1 Физиология слухового анализатора

Периферический отдел слухового анализатора (слуховой анализатор с органом равновесия — ухо (auris)) является весьма сложным органом чувств. Окончания его нерва заложены в глубине уха…

Сон и его значение

2. Физиология сна

Сон — особое состояние сознания человека, включающее в себя ряд стадий, закономерно повторяющихся в течение ночи.

Появление этих стадий обусловлено активностью различных структур мозга. Разделяют две фазы сна: медленную и быструю…

Состояние позвоночника и здоровье человека

Анатомия и физиология позвоночника

Позвоночный столб (columna vertebrales) — далее позвоночник, являясь подвижной системой, созданной мудрой природой, требует для сохранения своих качеств не менее мудрого к себе отношения. Отношение человека к своему позвоночнику базируется…

Физиологические основы боли

Психология боли

Очевидная биологическая ценность боли как сигнала о повреждении ткани приводит к тому, что большинство из нас считают…

Физиологические основы боли

Свойства фантомной боли

Фантомная боль характеризуется четырьмя основными свойствами: Боль продолжается долгое время после того, как поврежденные ткани заживут.

Приблизительно у 70% больных она продолжается больше года с момента появления и может длиться годы…

Физиологические основы боли

Механизмы фантомной боли

Периферические механизмы. Раз фантомная боль уже проявилась, почти любой соматический вход может ее усиливать. Надавливание на чувствительные невромы или триггерные точки культи может вызвать сильную, длительную боль…

Физиологическое обоснование занятий йогой с женщинами в период беременности

1.1 Физиология беременности

Оплодотворение.

Происходит через 12-24 часа после овуляции. Сперма изливается в задний свод влагалища (до 5ml) и содержит 250-300 млн. сперматозоидов. В оплодотворении участвуют 80 млн.

Они выделяют фермент геалуронедазу…

Физиология высшей нервной деятельности и сенсорных систем

2. Физиология кожной чувствительности

Рецепторная поверхность кожи равна 1,5-2 м2.

Существует довольно много теорий кожной чувствительности. Наиболее распространенная говорит о наличии специфических рецепторов для трех основных видов кожной чувствительности: тактильной…

Физиология промежуточного мозга.

Психофизиология речи и мыслительной деятельности

1. Физиология промежуточного мозга

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область). Таламус — чувствительное ядро подкорки. Его называют «коллектором чувствительности»…

Функциональная организация желудочно-кишечного тракта

2.

Физиология пищеварения

Поиск Лекций

Болевая чувствительность

Боль – неприятное сенсорное и эмоциональное переживание, связанное с истинным или потенциальным повреждениям тканей или описываемое в терминах такого повреждения. Биологическое значение боли состоит в том, чтобы защитить организм от действия повреждающих факторов.

Типы боли

Поверхностная боль возникает при раздражении рецепторов кожи.

Например, путем укола и ли щипка. В первую секунду после действия болевого стимула ощущается острое жгучее ощущение (ранняя боль). Затем она сменяется поздней болью, которая имеющей ноющей характер и может продолжаться в течение минут и часов. Соматическая боль легко локализуется.

Глубокая боль ощущается в скелетных мышцах, костях, суставах, соединительной ткани.

Висцеральная боль возникает при растяжении, сдавлении или недостаточном кровоснабжении внутренних органов.

3.Компоненты боли

В отличие от других видов ощущения, боль – это нечто большее, чем простое ощущение, она имеет многокомпонентный характер.

В разных ситуациях компоненты боли могут иметь неодинаковую выраженность.

Сенсорный компонент боли состоит в том, что организм может установить локализацию боли время начала и окончания боли, интенсивность болевого ощущения.

Аффективный компонент. Любое сенсорное ощущение (тепло, вид неба и т.п.) может быть эмоционально нейтральным или вызывать удовольствие или неудовольствия.

Болевое ощущение всегда сопровождается возникновением эмоций и всегда неприятных.

Вегетативный компонент боли проявляется в том, что сильное болевое ощущение вызывает ряд вегетативных реакций (тошнота, сужение/расширение сосудов и т.п.) по механизму вегетативного рефлекса.

Двигательный компонент проявляется в том, что организм стремится устранить действие болевого раздражителя (рефлекс избегания, рефлекс защиты). Двигательная реакция развивается еще до того, как произойдет осознание боли.

Теории боли

Теория интенсивности основана на том, что болевое ощущение могут вызывать самые разнообразные раздражители, если они достаточно сильны.

Согласно этой теории, боль возникает тогда, когда степень возбуждения обычного сенсорного рецептора (фото-, термо-, механорецептора) достигает определенного критического уровня. При этом рецептор генерирует последовательность (паттерн) нервных импульсов, которая отличается от таковой при действии слабых раздражителей.

Это специфическая последовательность нервных импульсов распознается ЦНС и возникает ощущение боли. Соответственно, восприятие боли является функцией всех типов рецепторов.

Теория специфичности основана на наблюдении, что болевая чувствительность не распределена по коже равномерно — боль может возникнуть при стимуляции определенных дискретных точек.

Согласно этой теории, существуют специализированные высокопороговые рецепторы (ноцицепторы), которые возбуждаются только интенсивными стимулами, повреждающими или грозящими повредить ткань.

5. Физиологические свойства болевых рецепторов (ноцицепторов):

ноцицепторы относятся к первичным рецепторам и представляют собой свободные нервные окончания, локазлизованны в коже, стенках сосудов, в скелетной мускулатуре, суставах, соединительной ткани.

Болевые рецепторы имеют самое плотное (по сравнению с тактильными и терморецепторами) расположение в коже Однако распределены они не равномерно, образуя скопления - «болевые точки». Ноцицепторы являются свободными окончаниями.

Они чувствительны к механическим, термическим и химическим стимулам, т.е. являются полимодальными. Все кожные рецепторы являются окончаниями псевдоуниполярных чувствительных нейронов, расположенных в спинномозговых ганглиях. По афферентным волокнам (дендритам) этих нейронов информация поступает сначала к телу нейрона, а затем по его аксону в задние рога соответствующего сегмента спинного мозга.

  • мультимодальность – ноцицепторы реагируют на многие виды раздражителей,
  • высокий порог возбуждения – ноцицепторы активируются только сильными и сверхсильными раздражителями,

Проводящие пути. Информация от болевых рецепторов проводится в кору больших полушарий по переднебоковой системе.

Обработка информации в ЦНС .

Сенсорный компонент боли формируется благодаря обработке информации от ноцицепторов в вентробазальном ядре таламуса и сенсомоторной коре больших полушарий. Аффективный компонент образуется при участи ретикулярной формации. Двигательный и вегетативный компонент боли частично формируются уже на уровне спинного мозга – возбуждение ноцицепторов активирует спинальные рефлекторные дуги вегетативных и соматических рефлексов.

6. Антиноцицептивная система контролирует проведение информации от ноцицепторов в кору больших полушарий.

В результате работы этой системы может происходить торможение спинальных, стволовых, таламических нейронов, передающих импульсы от болевых рецепторов.

Тормозными медиаторами антиноцицептивной системы служат опиатные нейропептиды – эндорфины, энкефалины, динорфин. Этими объясняется снижение болевой чувствительности при действии синтетических и природных аналогов этих пептидов – морфия, опия и др.

Первичная обработка сигнала производится нейронами задних рогов сегмента спинного мозга (или соответствующими ядрами черепно-мозговых нервов).

От этих нейронов информация может поступать к мотонейронам и вегетативным (симпатическим) нейронам своего сегмента; далее короткими путями к соседним сегментам и, наконец, в протяженные восходящие пути спинного мозга (Голля и Бурдаха для тактильных и температурных воздействий и спиноталамические для болевых воздействий).

По трактам Голля и Бурдаха сигналы достигают одноименных ядер продолговатого мозга, затем переключаются в таламусе (вентробазальное ядро) и соматотопически проецируются в контрлатеральную постцентральную извилину.

Спиноталамические пути, к которым присоединяются болевые афференты тройничного и лицевого нервов, переключаются в таламусе и проецируются также в постцентральную кору.

Болевое восприятие

Огромное значение для восприятия неоперационной боли имеет психическое состояние испытуемого.

Ожидания и опасения усиливают болевое ощущение; усталость в бессонница повышают чувствительность человека к боли. Однако каждый знает по личному опыту, что при глубоком утомлении боль притупляется. Холод усиливает, тепло ослабляет болевое ощущение.

Порог болевой реакции резко повышается при анестезии, при употреблении алкоголя, особенно при опьянении. Обезболивающее действие морфина хорошо известно, но далеко не все знают, что морфин снимает сильные боли и почти не действует на слабые.

Установлено, что тяжелые раны, вызывающие мучительные болевые реакции, становятся безболезненными при введении малых доз морфина.

И в то же время боль, не имеющая сколько-нибудь серьезной основы, почти не поддается действию этого препарата.

Большое значение для восприятия боли имеет наше отношение к ней. Было время, когда люди считали боль неизбежным злом и мирились с нею. Религиозные верования всех народов учат, что боль «ниспослана богом в наказание за наши грехи». Современный человек не может мириться с болью, он знает, что боль вовсе не неизбежна.

Ее можно снять, ее можно предотвратить. Вот почему мы так обостренно воспринимаем боль, требуем помощи, принимаем энергичные меры для ликвидации болевого ощущения.

Большое влияние оказывает на характер боли время дня и ночи.

Боли, связанные с судорожными сокращениями гладкой мускулатуры (желудка, кишок, желчного пузыря, почечных лоханок), обычно обостряются ночью.

В ночное время усиливаются также боли при гнойных воспалительных очагах в области кистей рук и пальцев, при заболеваниях сосудов конечностей, связанных со спазмом сосудов.

Неврастенические головные боли, боли при хронических поражениях суставов сильнее всего по утрам, к полудню они ослабевают. Боли, связанные с лихорадкой, усиливаются к вечеру по мере повышения температуры.

В ночные часы человек особенно остро чувствует боль. Это объясняется и отсутствием отвлекающих впечатлений, и приливом крови, вызванным расширением сосудов, и усилением протопатической чувствительности, наступающей при сонном торможении коры головного мозга.

Некоторые виды боли обостряются в определенное время года.

Так, например, боли при язве желудка или 12-перстной кишки усиливаются осенью или весной.

Тяжелые психические переживания, горе, радость, гнев нередко подавляют чувство боли.

Состояние нервно-эмоционального стресса может оказать решающее влияние и на экспериментальную, и на патологическую боль.

Известно немало случаев, когда профессор, читая лекции, хирург, оперируя, адвокат, выступая в суде, забывали о мучительной боли, которая их терзала дома, во время отдыха, в постели. Эмоции не влияют на болевой аппарат, но могут изменить реакцию на болевое раздражение.

И благодаря этому они снимают или облегчают чувство боли.

Хорошо известно, что в лабораторных условиях порог болевой чувствительности резко повышается (т.е.

восприятие боли уменьшается), если испытуемый чем-либо отвлечен или заинтересован. Боль ослабевает при возбуждении рецепторов осязания, слуха и зрения.

Было предпринято немало попыток воздействовать на болевые ощущения при помощи гипнотического внушения.

Особенно часто применялся гипноз при обезболивании родов. Описаны случаи полной потери болевой чувствительности при хирургических операциях под гипнозом.

Примером гипнотического обезболивания может служить опыт, поставленный на молодом враче-хирурге.

ФИЗИОЛОГИЯ БОЛИ 1 ТЕОРИИ БОЛИ ТЕОРИЯ

Прежде всего, было установлено, что после кратковременного сжимания хирургическим зажимом кожи на передней поверхности предплечья вокруг травмированного участка образуется зона повышенной чувствительности.

После этого испытуемый был погружен в гипнотический сон и на его левой руке был зажат небольшой кусочек кожи.

При этом молодому хирургу было внушено, что он не чувствует боли. Одновременно к симметричному участку правой руки был приложен тупой конец карандаша и было внушено, что произведен ожог раскаленным железом. Испытуемый вздрагивал и корчился от боли. Затем вокруг точки, к которой прикладывался карандаш, с особой осторожностью обводилась пальцем широкая зона и испытуемому делалось внушение, что она целиком болезненна. Обе руки забинтовывались. После пробуждения испытуемый утверждал, что во всей обведенной зоне правой руки он испытывает боль, в то время как кожа левой руки совершенно безболезненна.

Интересно было наблюдать его поведение после того, как была снята повязка. Испытуемый видел, что кожа левой руки травмирована, но боли он не чувствовал. В то же время кожа правой руки была резко болезненна, хотя никаких признаков повреждения на ней нельзя было обнаружить.

В следующий раз под гипнозом был введен под кожу новокаин и было внушено, что вся обезболенная область отличается крайней болезненностью. И действительно после пробуждения испытуемый начал жаловаться на сильнейшие боли в области, фактически лишенной чувствительности.

В первом случае созданный внушением доминантный очаг возбуждения в коре головного мозга подавлял все болевые импульсы, поступавшие по нервным путям в соответствующие чувствительные зоны.

Во втором случае очаг возбуждения создавался в определенной чувствительной области коры мозга, и испытуемый проецировал боль в неповрежденную и даже обезболенную область.

Длительность этих «ложных» ощущений зависела от стойкости созданного словесным внушением очага возбуждения в головном мозгу. На одном из заседаний Конгресса анестезиологов в Праге шведский ученый Финер выступил с большим докладом, в котором сообщил о полном обезболивании методом гипнотического внушения при операциях, родах и стойких хронических болях, вызванных самыми различными причинами.

Надо полагать, что восприятие и преодоление боли в немалой степени зависит от типа высшей нервной деятельности.

Когда Лериш говорит: «Мы неравны перед лицом боли», это в переводе на язык физиологии значит, что разные люди различно реагируют на одно и то же болевое раздражение.

Сила раздражения и порог его могут быть одинаковы, но внешние проявления, видимая реакция сугубо индивидуальны.

Тип высшей нервной деятельности в значительной степени обусловливает поведение человека в ответ на болевое раздражение.

У людей слабого типа, которых И. П. Павлов относил к меланхоликам Гиппократа, при этом быстро наступает общее истощение нервной системы, а иногда, если вовремя не наступило охранительное торможение,- полное нарушение высших отделов нервной системы.

У людей возбудимых, безудержных внешняя реакция на боль может принять чрезвычайно бурный, аффективный характер.

Слабость тормозного процесса приводит к тому, что предел работоспособности клеток больших полушарий оказывается перейденным и развивается крайне болезненное наркотическое или психопатическое состояние.

В то же время люди сильного, уравновешенного типа, по-видимому, легче подавляют реакции и умеют выйти победителями в борьбе с тяжелейшими болевыми раздражениями.

Врачу иногда очень трудно определить, действительно ли больной испытывает боль, какова ее интенсивность, не имеем ли мы дело с симуляцией, преувеличением или, наоборот, желанием скрыть по тем или другим причинам болевое восприятие.

Боль - субъективна, она отличается от всех других чувств, Любое ощущение отражает какие-либо свойства явлений, происходящих во внешнем мире (мы видим предметы, слышим звуки, обоняем запахи).

Боль же ощущаем в самих себе. О наличии болей у другого человека можно судить лишь по косвенным признакам. Наиболее показательно обычно расширение зрачков. Этот признак говорит о напряжении симпатической нервной системы и значительном выбросе адреналина надпочечниками в кровь. Другие методы исследования (кожно-гальванический рефлекс, реакция сосудов, определение кожной температуры, запись электроэнцефалограммы и т.д.) не всегда доказательны.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам.

  • Вопрос 42. Дофамин-, серотонин-, гистамин-, пурин-, ГАМКергические нейроны нервной системы. Пресинаптические рецепторы.
  • Выраженные болевые синдромы в области позвоночника сначала рассматривали как четыре самостоятельных заболевания.
  • Поверхностные ткани снабжены нервными окончаниями различных афферентных волокон (Дж.Эрлангер , Г.С.Гассер , 1924). Наиболее толстые, миелинизированные Аb-волокна обладают тактильной чувствительностью. Они возбуждаются при неболезненных прикосновениях и при перемещении. Эти окончания могут служить как полимодальные неспецифические болевые рецепторы только при патологических условиях, например, вследствие возрастания их чувствительности (сенсибилизации) медиаторами воспаления. Слабое раздражение полимодальных неспецифических тактильных рецепторов приводит к чувству зуда . Порог их возбудимости понижают гистамин и серотонин (Г.Штюттген , 1981).

    Специфическими первичными болевыми рецепторами (ноцирецепторами) служат два других типа нервных окончаний - тонкие миелинизированные Аd-терминали и тонкие немиелинизированные С-волокна, филогенетически более примитивные. Оба эти типа терминалей представлены и в поверхностных тканях, и во внутренних органах. Некоторые участки тела, например, роговица, иннервируются только Аd и С-афферентами. Ноцирецепторы дают чувство боли в ответ на самые разные интенсивные стимулы - механическое воздействие, термический сигнал (обычно, с температурой более 45-47 0 С), раздражающие химикаты, например, кислоты. Ишемия всегда вызывает боль, поскольку провоцирует ацидоз. Мышечный спазм может вызывать раздражение болевых окончаний из-за относительной гипоксии и ишемии, которые он вызывает, а также вследствие прямого механического смещения ноцирецепторов.

    По С-волокнам проводится со скоростью 0,5-2 м/сек медленная, протопатическая, а по миелинизированным, быстропроводящим Аd-волокнам, обеспечивающим скорость проведения от 6 до 30 м/сек, - эпикритическая боль. Кроме кожи, где, по данным А.Г.Бухтиярова (1966), насчитывается не менее 100-200 болевых рецепторов на 1 см 2 , слизистых и роговицы, болевыми рецепторами обоих типов обильно снабжены надкостница (в чём убеждается каждый футболист, получающий при подкате удар по передне-внутренней поверхности голени), а также сосудистые стенки, суставы, мозговые синусы и париетальные листки серозных оболочек.

    В висцеральных листках этих оболочек и внутренних органах болевых рецепторов гораздо меньше. К тому же, в паренхиме внутренних органов имеются, исключительно, С-волокна протопатической чувствительности, достигающие спинного мозга в составе вегетативных нервов. Поэтому висцеральную боль труднее локализовать, чем поверхностную. Кроме того, локализация висцеральной боли зависит от феномена “отраженных болей”, механизмы которого рассматриваются ниже. Париетальные брюшина, плевра, перикард, капсулы ретроперитонеальных органов и часть брыжейки имеют не только медленные протопатические С-волокна, но и быстрые эпикритические Аd, связанные со спинным мозгом спинальными нервами. Поэтому боль от их раздражения и повреждения намного острее и чётче локализована. Хирурги еще в доанестезиологическую эпоху заметили, что разрезы кишки менее болезненны, чем рассечение пристеночного листка брюшины. Боли при нейрохирургических операциях максимальны в момент рассечения мозговых оболочек, в то же время кора больших полушарий обладает очень незначительной и строго локальной болевой чувствительностью. Вообще, такой распространённый симптом, как головная боль , практически всегда связан с раздражением болевых рецепторов вне самой ткани мозга. Экстракраниальной причиной головной боли могут быть процессы, локализованные в синусах костей головы, спазм цилиарной и других глазных мышц, тоническое напряжение мышц шеи и скальпа. Интракраниальные причины головной боли - это, в первую очередь, раздражение ноцирецепторов мозговых оболочек. При менингите сильнейшие головные боли охватывают всю голову. Весьма серьёзную головную боль вызывает раздражение ноцирецепторов в мозговых синусах и артериях, особенно в бассейне средне-мозговой артерии. Даже незначительные потери цереброспинальной жидкости (около 20 мл) могут спровоцировать головную боль, особенно, в вертикальном положении тела, поскольку плавчесть мозга меняется, и при уменьшении гидравлической подушки раздражаются болевые рецепторы его оболочек. С другой стороны, избыток цереброспинальной жидкости и нарушение ее оттока при гидроцефалии, отек головного мозга, его набухание при внутриклеточной гипергидратации, полнокровие сосудов мозговых оболочек, вызванное цитокинами при инфекциях, локальные объемные процессы - также провоцируют “самую частую жалобу” - головную боль, так как при этом увеличивается механическое воздействие на болевые рецепторы окружающих собственно мозг структур. Обший принцип локализации головных болей таков, что затылочные боли часто отражают раздражение ноцирецепторов сосудов и мозговых оболочек под tentorium, а надпалаточные раздражители и стимуляция верхней поверхности самой палатки проявляются лобно-теменными болями. Знакомая очень значительной части человечества “головная боль с похмелья” имеет комплексный патогенез, включая индуцированное алкоголем полнокровие мозговых оболочек и внутриклеточную гипергидратацию. Патофизиология некоторых форм головной боли, тесно связанных с гуморальными медиаторами болевой и антиболевой систем и с проводниковыми механизмами этих систем, в частности, мигрени, отдельно рассматривается ниже.

    Паренхима селезёнки, почки, печени и легкого совершенно лишена ноцирецепторов. Зато ими богато снабжены бронхи, желчевыводящие пути, капсулы и сосуды этих органов. Даже значительные по размеру абсцессы печени или лёгкого могут быть почти безболезненными. Однако, плеврит или холангит порой дают серьёзный болевой синдром, сами по себе не будучи тяжёлыми. Висцеральные болевые рецепторы отличаются ещё и тем, что развивают сравнительно слабый ответ на строго локальное повреждение органа, например, хирургический разрез. Однако, при диффузном вовлечении ткани в альтерацию (на фоне ишемии, при действии литических ферментов и раздражающих химикатов, при спазмах и перерастяжении полых органов), их чувствительность под воздействием медиаторов воспаления стремительно растёт, и от них исходит сильная импульсация.

    Болевые рецепторы претендуют на уникальное положение в человеческом теле. Это единственный тип чувствительных рецепторов, который не подлежит какой бы то ни было адаптации или десенсибилизации под воздействием длящегося или повторяющегося сигнала. Ноцирецепторы не повышают при этом порог своей возбудимости, как это делают другие, например, холодовые сенсоры. Следовательно, рецептор не “привыкает” к боли. Более того, в ноцирецептивных нервных окончаниях имеет место прямо противоположное явление - сенсибилизация болевых рецепторов сигналом. При воспалении, повреждениях тканей (особенно, внутренних органов) и при повторных и длительных болевых раздражителях порог возбудимости ноцирецепторов снижается. Даже легчайшие прикосновения к ожоговой поверхности крайне болезненны. Это явление называется первичной гиперальгезией . Пальпация внутренних органов, даже если она интенсивна, не причиняет боли, если нет их воспаления. Однако при воспалении чувствительность молчащих внутренних ноцирецепторов настолько увеличивается, что врач регистрирует болевые симптомы. Поколачивание по области почек, безболезненное в отсутствие их повреждений, ведет к болевому ощущению в случае, если почечные ноцирецепторы сенсибилизированы медиаторами воспаления (положительный симптом Пастернацкого). Легко отметить, что если бы происходила адаптация болевых рецепторов, все хронические деструктивные процессы были бы безболезненны и боль утратила бы свою функцию сигнала, который, по выражению И.П.Павлова , “побуждает отбросить то, что угрожает жизненному процессу”.

    Называя болевые сенсоры рецепторами, мы должны подчеркнуть, что применение к ним этого термина носит условный характер - ведь это свободные нервные окончания, лишённые каких бы то ни было специальных рецепторных приспособлений.

    Нейрохимические механизмы раздражения ноцирецепторов хорошо изучены. Их основным стимулятором является брадикинин. В ответ на повреждение клеток близ ноцирецептора освобождаются этот медиатор, а также простагландины, лейкотриены и ионы калия и водорода. Простагландины и лейкотриены сенсибилизируют ноцирецепторы к кининам, а калий и водород облегчают их деполяризацию и возникновение в них электрического афферентного болевого сигнала. Возбуждение распространяется не только афферентно, но и антидромно, в соседние ветви терминали. Там оно приводит к секреции вещества Р. Этот нейропептид, о котором уже упоминалось, вызывает вокруг терминали паракринным путём гиперемию, отек, дегрануляцию тучных клеток и тромбоцитов. Освобождаемые при этом гистамин, серотонин, простагландины сенсибилизируют ноцирецепторы, а химаза и триптаза мастоцитов усиливают продукцию их прямого агониста - брадикинина. Следовательно, при повреждении ноцирецепторы действуют и как сенсоры, и как паракринные провокаторы воспаления. Вблизи ноцирецепторов, как правило, располагаются симпатические норадренергические постганглионарные нервные окончания, которые способны модулировать чувствительность ноцирецепторов. При травмах периферических нервов нередко развивается так называемая каузалгия - патологически повышенная чувствительность ноцирецепторов в области, иннервируемой повреждённым нервом, сопровождаемая жгучими болями и даже признаками воспаления без видимых местных повреждений. Механизм каузалгии связан с гипералгизующим действием симпатических нервов, в частности, выделяемого ими норадреналина, на состояние болевых рецепторов. Возможно, при этом происходит секреция вещества Р и других нейропептидов симпатическими нервами, что и обусловливает воспалительные симптомы. Явление каузалгии представляет собой, в полном смысле, нейрогенное воспаление, хотя оно вызывается не нервным, а паракринным способом (см. также выше, о роли нервной регуляции в воспалении).

    Как впервые предположили У.Кэннон и А.Розенблют (1951) паракринная безымпульсная нейропептидэргическая деятельность нервных окончаний в тканях и составляет реальную основу явления, которое в течение более чем 100 лет, от Ф. Мажанди (1824) до Л.А. Орбели (1935) и А.Д. Сперанского , (1937), именовали нервной трофикой .

    Дата добавления: 2015-05-19 | Просмотры: 985 | Нарушение авторских прав


    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

    Болевые рецепторы (ноцирецепторы)

    Ноцицепторы - специфические рецепторы, при возбуждении которых возникают болевые ощущения. Это свободные нервные окончания, которые могут быть расположены в любых органах и тканях и связаны с проводниками болевой чувствительности. Эти нервные окончания + проводники болевой чувствительности = сенсорная болевая единица. Большинство ноцицепторов имеет двойной механизм возбуждения, т. е. могут возбуждаться под действием повреждающих и неповреждающих агентов.

    Периферический отдел анализатора представлен рецепторами боли, которые по предложению Ч. Шеррингтона называют ноцицепторами (от лат. разрушать). Это высокопороговые рецепторы, реагирующие на разрушающие воздействия.

    Болевые рецепторы являются свободными окончаниями чувствительных миелиновых и безмиелиновых нервных волокон, расположенных в коже, слизистых оболочках, надкостнице, зубах, мышцах, органах грудной и брюшной полости и других органах и тканях. Число ноцирецепторов в коже человека примерно 100-200 на 1 кв. см. кожной поверхности. Общее число таких рецепторов достигает 2-4 млн.

    По механизму возбуждения ноцицепторы делят на следующие основные виды болевых рецепторов:

    • 1. Механоноцицепторы: реагируют на сильные механические раздражители, проводят быструю боль и быстро адаптируются. Механоноцицепторы расположены преимущественно в коже, фасциях, сухожилиях, суставных сумках и слизистых оболочках пищеварительного тракта. Это свободные нервные окончания миелинизированных волокон типа А-дельта со скоростью проведения возбуждения 4 - 30 м/с. Они реагируют на действие агента, вызывающего деформацию и повреждение мембраны рецептора при сжатии или растяжении тканей. Для большинства этих рецепторов характерна быстрая адаптация.
    • 2. Хемоноцицепторы расположены также на коже и в слизистых оболочках, но превалируют во внутренних органах, где локализуются в стенках мелких артерий. Они представлены свободными нервными окончаниями немиелинизированных волокон типа С со скоростью проведения возбуждения 0,4 - 2 м/с. Специфическими раздражителями для этих рецепторов являются химические вещества (алгогены), но только те, которые отнимают кислород у тканей, нарушают процессы окисления.

    Выделяют три типа алгогенов, каждый из которых имеет собственный механизм активации хемоноцицепторов.

    Тканевые алгогены (серотонин, гистамин, ацетилхолин и др.) образуются при разрушении тучных клеток соединительной ткани и, попадая в интерстициальную жидкость, непосредственно активируют свободные нервные окончания.

    Плазменные алгогены (брадикинин, каллидин и простагландины), выполняя роль модуляторов, повышают чувствительность хемоноцицепторов к ноцигенным факторам.

    Тахикинины выделяются при повреждающих воздействиях из окончаний нервов (к ним относится вещество П - полипептид), они воздействуют местно на мембранные рецепторы того же нервного окончания.

    3. Термоноцицепторы: реагируют на сильные механические и тепловые (более 40 градусов) раздражители, проводят быструю механическую и термическую боль, быстро адаптируются.

    Болевые рецепторы (ноцицепторы) реагируют на стимулы, угрожающие организму повреждением. Существуют два основных типа ноцицепторов: Aдельта-механоноцицепторы и полимодальные С-ноцицепторы (есть и еще несколько типов). Как следует из их названия, механоноцицепторы иннервируются тонкими миелинизированными, а полимодальные С-ноцицепторы - немиелинизированными С-волокнами. Aдельта-механоноцицепторы отвечают на сильное механическое раздражение кожи, например, укол иглой или щипок пинцетом. Обычно они не реагируют на термические и химические болевые стимулы, если только не были предварительно сенситизированы . В отличие от них полимодальные С-ноцицепторы реагируют на болевые стимулы разного вида: механические, температурные ( рис. 34.4) и химические.

    Многие годы было непонятно, возникает ли боль в результате активации специфических волокон или в результате сверхактивности сенсорных волокон, в норме имеющих другие модальности. Последняя возможность, как кажется, в большей степени соответствует нашему обыденному опыту. За возможным исключением обоняния, любые избыточные по интенсивности сенсорные стимулы - слепящий свет, рвущий ухо звук, тяжелый удар, тепло или холод за пределами нормального диапазона - приводят к возникновению боли. Такой взгляд здравого смысла был заявлен Эразмом Дарвином (Erasmus Darwin) в конце 18-го и Уильямом Джеймсом (William James) в конце 19-го века. Здравый смысл, однако, здесь (как и везде) оставляет желать чего-то еще. В настоящее время мало кто сомневается, что в большинстве случаев ощущение боли возникает в результате возбуждения специализированных ноцицептивных волокон. Ноцицептивные волокна не имеют специализированных окончаний. Они присутствуют в виде свободных нервных окончаний в дермисе кожи и в иных местах организма. Гистологически они неотличимы от C-механорецепторов ( МЕХАНОЧУВСТВИТЕЛЬНОСТЬ) и - и A-дельта терморецепторов ( глава ТЕРМОЧУВСТВИТЕЛЬНОСТЬ). Они отличаются от упомянутых рецепторов тем, что порог для их адекватных стимулов выше нормального диапазона. Они могут подразделяться на несколько разных типов по критерию того, какая сенсорной модальность представляет для них адекватный стимул. Болезненные термические и механические стимулы детектируются миелинизированными волокнами малого диаметра, таблица 2.2 показывает, что они относятся к категории A дельта-волокон. Полимодальные волокна, которые отвечают на широкое разнообразие интенсивностей стимулов разной модальности, также имеет малый диаметр, но не миелинизированы. Таблица 2.2 показывает, что эти волокна относятся к классу С . A дельта-волокна проводят импульсы с частотой 5- 30 м/с и ответственны за "быструю" боль, острое колющее ощущение; С-волокна проводят медленнее - 0,5 - 2 м/с и сигнализируют о "медленной" боли, часто продолжительной и часто переходящей в глухую боль. АМТ (Механо-термо-ноцицепторы с А дельта-волокнами) делятся на два типа. АМТ типа 1 в основном обнаруживаются в неоволосенной коже. АМТ типа 2 находятся в основном в оволосенной коже Наконец, ноцицепторы с С-волокнами ( СМT волокна) имеют порог в диапазоне 38оС - 50оС и отвечают постоянной активностью, которая зависит от интенсивности стимула ( рис. 21.1а). АМТ и СМТ рецепторы , как показывают их названия, реагируют и на термические, и на механические стимулы. Физиологическая ситуация, тем не менее, далека от простоты. Механизм передачи этих двух модальностей различен. Аппликация капсайцина не влияет на чувствительность к механическим стимулам, но ингибирует ответ на тепловые. При этом, тогда как капсайцин имеет анальгетический эффект в отношении тепловой и химической чувствительности полимодальных С-волокон в роговице, на механочувствительности он не сказывается. Наконец, было показано, что механические стимулы, которые генерируют такой же уровень активности в СМТ-волокнах, что и термические, вызывают, тем не менее, меньшую боль. Возможно, неизбежно более широкая поверхность, задействованная тепловым стимулом, вовлекает активность большего количества СМТ-волокон, чем в случае механического стимула.

    Сенситизация ноцицепторов (повышение чувствительности афферентных волокон рецепторов) происходит после их ответа на вредящий стимул. Сенситизированные ноцицепторы интенсивнее реагируют на повторный стимул, поскольку их порог снижен ( рис. 34.4). При этом наблюдается гипералгезия - более сильная боль в ответ на стимул прежней интенсивности, а также снижение болевого порога. Иногда ноцицепторы генерируют фоновый разряд, вызывающий спонтанную боль.

    Сенситизация происходит, когда вблизи от ноцицептивных нервных окончаний высвобождаются в результате повреждения или воспаления ткани такие химические факторы, как ионы К+, брадикинин , серотонин , гистамин , эйкозаноиды ( простагландины и лейкотриены). Допустим, вредящий стимул, попав на кожу, разрушил клетки участка ткани около ноцицептора ( рис. 34.5 , а). Из погибающих клеток выходят ионы К+, которые деполяризуют ноцицептор. Кроме того, высвобождаются протеолитические ферменты; при их взаимодействии с глобулинами плазмы крови образуется брадикинин. Он связывается с рецепторными молекулами мембраны ноцицептора и активирует систему вторичного посредника, сенситизирующую нервное окончание. Другие высвобождаемые химические вещества, такие как серотонин тромбоцитов, гистамин тучных клеток , эйкозаноиды различных клеточных элементов, вносят в сенситизацию свой вклад, открывая ионные каналы либо активируя системы вторичных посредников. Многие из них воздействуют также на кровеносные сосуды, клетки иммунной системы, тромбоциты и другие эффекторы, участвующие в воспалении.

    Кроме того, активация окончания ноцицептора может высвобождать такие регуляторные пептиды, как вещество Р (SP) и пептид, кодируемый геном кальцитонина ( CGRP), из других окончаний того же ноцицептора посредством аксон-рефлекса ( рис. 34.5 , б). Нервный импульс, возникший в одной из ветвей ноцицептора, направляется по материнскому аксону к центру. Одновременно он распространяется антидромно по периферическим ветвям аксона того же ноцицептора, в результате чего в коже высвобождаются вещество P и CGRP ( рис. 34.5 , б). Эти пептиды вызывают

    © 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины