MedAboutMe - Кровь человека: состав, обследования, патологии. Основные элементы состава крови Химический и клеточный состав крови

MedAboutMe - Кровь человека: состав, обследования, патологии. Основные элементы состава крови Химический и клеточный состав крови

02.07.2020

Кровь ‒ это биологическая жидкость, которая обеспечивает органы и ткани питательными веществами и оксигеном. Вместе с лимфой она образует систему циркулирующих в организме жидкостей. Выполняет ряд жизненно важных функций: питательную, выделительную, защитную, дыхательную, механическую, регуляторную, терморегулирующую.

Состав крови человека с возрастом существенно изменяется. Следует сказать, что у детей очень интенсивный обмен веществ, поэтому в их организме ее значительно больше приходится на 1 кг массы тела по сравнению с взрослыми. В среднем у взрослого человека около пяти-шести литров данной биологической жидкости.

В состав крови входит плазма (жидкая часть) и лейкоциты, тромбоциты). От концентрации красных кровяных телец зависит ее цвет. Плазма, лишенная белка (фибриногена), называется сывороткой крови. Эта биологическая жидкость имеет слабощелочную реакцию.

Биохимический состав крови - буферные системы. Основными кровяными буферами являются гидрокарбонатная (7% общей массы), фосфатная (1%), белковая (10%), гемоглобиновая и оксигемоглобиновая (до 81%), а также кислотная (около 1%) системы. В плазме преобладают гидрокарбонатная, фосфатная, белковая и кислотная, в эритроцитах ‒ гидрокарбонатная, фосфатная, в гемоглобиновых - оксигемоглобиновая и кислотная. Состав кислотной буферной системы представлен органическими кислотами (ацетатная, лактатная, пировиноградная и т.д.) и их солями с сильными основаниями. Наибольшее значение имеют гидрокарбонатная и гемоглобиновая буферные системы.

Химический состав характеризуется постоянством химического состава. Плазма составляет 55-60% общего объема крови и на 90 % состоит из воды. составляют органические (9%) и минеральные (1%) вещества. Основными органическими веществами являются белки, большинство которых синтезируются в печени.

Белковый состав крови. Общее содержание белков в крови млекопитающих колеблется в пределах от 6 до 8 %. Известно около ста белковых компонентов плазмы. Условно их можно разделить на три фракции: альбумины, глобулины и фибриноген. Белки плазмы, которые остались после удаления фибринагена, называют сывороточными белками крови.

Альбумины принимают участие в транспортировке многих питательных и (углеводов, жирных кислот, витаминов, неорганических ионов, билирубина). Участвуют в регуляции Сывороточные глобулины разделяют на три фракции альфа-, бета- и гамма-глобулины. Глобулины транспортируют жирные кислоты, стероидные гормоны, являются иммунными телами.

Углеводный состав крови. В плазме содержатся монозы (глюкоза, фруктоза), гликоген, глюкозамин, фосфаты моноз и другие продукты промежуточного обмена углеводов. Основная часть углеводов представлена глюкозой. Глюкоза и другие монозы в плазме крови находятся в свободном и связанном с белками состояниях. Содержание связанной глюкозы достигает 40-50% общего содержания углеводов. Среди продуктов промежуточного обмена углеводов выделяют лактатную кислоту, содержание которой резко возрастает после тяжелых физических нагрузок.

Концентрация глюкозы может изменяться при многих патологических состояниях. Явление гипергликемии характерно для сахарного диабета, гипертиреоза, шока, наркоза, лихорадки.

Липидный состав крови. В плазме содержится до 0,7 % и больше липидов. Липиды находятся в свободном и связанном с белками состояниях. Концентрация липидов в плазме изменяется при патологии. Так, при туберкулезе она может достигать 3-10%.

Газовый состав крови. Данная биожидкость содержит оксиген (кислород), диоксид карбона и нитроген в свободном и связанных состояниях. Так, например, около 99,5-99,7% оксигена связано с гемоглобином, а 03-0,5 % находится в свободном состоянии.

Энциклопедичный YouTube

    1 / 3

    ✪ Из чего состоит кровь

    ✪ Внутренняя среда организма. Состав и функции крови. Видеоурок по биологии 8 класс

    ✪ BTS "Blood Sweat & Tears" mirrored Dance Practice

    Субтитры

    Я не люблю это делать, но время от времени мне нужно сдавать кровь. Все дело в том, что я боюсь это делать, совсем как маленький ребенок. Я очень не люблю уколы. Но, естественно, я заставляю себя. Сдаю кровь и стараюсь отвлечь себя, пока кровь наполняет иглу. Обычно я отворачиваюсь, и все проходит быстро и практически незаметно. И я выхожу из клиники абсолютно счастливый, так как все закончилось и мне больше не надо об этом думать. Сейчас я хочу проследить путь, который проделывает кровь после того, как ее забрали. На первом этапе кровь попадает в пробирку. Это происходит непосредственно в день забора крови. Обычно такая пробирка стоит наготове и ждет, когда в нее нальют кровь. Это крышка моей пробирки. Внутри пробирки нарисуем кровь. Полная пробирка. Это не простая пробирка, ее стенки покрыты химическим веществом, которое предотвращает свертывание крови. Нельзя допустить свертывания крови, так как это чрезвычайно затруднит дальнейшее ее исследование. Именно поэтому и используется специальная пробирка. Кровь в ней не свернется. Чтобы убедиться в том, что с ней все в порядке, пробирку слегка встряхивают, проверяя густоту образца.. Теперь кровь попадает в лабораторию. В лаборатории есть особый аппарат, в который попадает моя кровь и кровь других людей, посетивших клинику в этот день. Вся наша кровь помечена и поставлена в аппарат. И что же делает аппарат? Он быстро вращается. Крутится по-настоящему быстро. Все пробирки закреплены, они не улетят, и они, соответственно, крутятся в этом аппарате. Вращая пробирки, аппарат создает силу под названием "центробежная сила". А весь процесс называется "центрифугирование". Давайте запишу. Центрифугирование. А сам аппарат называется центрифугой. Пробирки с кровью вращаются в какую-либо сторону. И как результат кровь начинает разделяться. Тяжелые частицы отходят к донышку пробирки, а менее плотная часть крови поднимается к крышке. После того как, кровь в пробирке подверглась центрифугированию, она будет выглядеть следующим образом. Сейчас я попытаюсь это изобразить. Пусть, это будет пробирка до вращения. До вращения. А это пробирка после вращения. Это ее вид после. Итак, на что же похожа пробирка после центрифугирования? Ключевым отличием будет то, что вместо однородной жидкости, которая у нас была, мы получаем внешне совершенно другую жидкость. Различимы три разных слоя, которые я сейчас для вас нарисую. Итак, это первый слой, самый внушительный, составляющий большую часть нашей крови. Он находится здесь, наверху. У него самая маленькая плотность, именно поэтому он остается возле крышки. Фактически он составляет почти 55% всего объема крови. Мы называем его плазмой. Если вы когда-нибудь слышали слово плазма, теперь вы знаете, что оно означает. Возьмем каплю плазмы и попробуем узнать ее состав. 90% плазмы - просто вода. Интересно, не так ли. Просто вода. Основная часть крови - плазма, и большая часть - вода. Основная часть крови - плазма, большая часть плазмы - вода. Вот почему людям говорят: "Пейте больше воды, чтобы не было обезвоживания" так как большая часть крови - это вода. Это верно и для всего остального организма, но в данном случае я делаю акцент на крови. Итак что же остается? Мы уже знаем, что 90% плазмы - вода, но это еще не все 100%. 8% плазмы состоит из белка. Давайте я покажу вам несколько примеров такого белка. Это альбумин. Альбумин, если вы с ним незнакомы, - это важный белок в плазме крови, который делает невозможным вытекание крови из кровеносных сосудов. Еще один важный белок - антитело. Я уверен, что вы о нем слышали, антитела связаны с нашей иммунной системой. Они следят за тем, чтобы вы были красивыми и здоровыми, не страдали от инфекций. И еще один вид белка, о котором нужно помнить, - фибриноген. Фибриноген. Он принимает очень активное участие в свертывании крови. Конечно, помимо его существуют и другие факторы свертывания. Но о них - чуть позже. Мы перечислили белки: альбумин, антитело, фибриноген. Но у нас все еще остается 2%, их составляют такие вещества, как гормоны, инсулин, например. Также там присутствуют электролиты. Например, натрий. Также в эти 2% входят питательные вещества. Такие, например, как глюкоза. Все эти вещества составляют нашу плазму. Множество веществ, о которых мы говорим, когда обсуждаем кровь, содержатся в плазме, включая витамины и другие подобные вещества. Теперь рассмотрим следующий слой, который находится прямо под плазмой и выделен белым. Этот слой составляет очень небольшую часть крови. Меньше 1%. И образуют его белые клетки крови, а также тромбоциты. Тромбоциты. Это клеточные части нашей крови. Их очень мало, но они очень важны. Под этим слоем находится самый плотный слой - красные клетки крови. Это последний слой, и его доля будет составлять примерно 45%. Вот они. Красные клетки крови, 45%. Это красные клетки крови, внутри которых содержится гемоглобин. Здесь нужно отметить, что не только плазма содержит белки (о чем мы упоминали в начале видео), белые и красные клетки крови также содержат в себе очень большое количество белков, о чем не следует забывать. Как раз примером такого белка является гемоглобин. Теперь сыворотка - слово, которое вы наверняка слышали. Что же это такое? Сыворотка - это практически то же самое, что и плазма. Сейчас я обведу все, что входит в состав сыворотки. Все, что обведено голубой линией - это сыворотка. Я не включил в состав сыворотки фибриноген и факторы свертываемости крови. Итак, плазма и сыворотка очень похожи за исключением того, что в сыворотке нет фибриногена и факторов свертываемости крови. Давайте рассмотрим теперь красные клетки крови, что мы можем узнать? Возможно, вы слышали такое слово, как гематокрит. Так вот гематокрит составляет 45% объема крови на данном рисунке. Это означает, что гематокрит равен объему, который занимают красные клетки крови, деленному на общий объем. В данном примере общий объем составляет 100%, объем красных кровяных клеток равен 45%, поэтому я знаю, что объем гематокрита составил бы 45%. Это просто процент, который составляют красные клетки крови. И его очень важно знать, так как красные клетки крови переносят кислород. Для того чтобы подчеркнуть значение гематокрита, а также представить несколько новых слов, нарисую три маленьких пробирки крови. Скажем, у меня есть три пробирки: одна, две, три. В них находится кровь разных людей. Но эти люди одного пола и возраста, так как количество гематокрита зависит от возраста, пола и даже от того, на какой высоте над уровнем моря вы живете. Если вы живете на вершине горы, ваш уровень гематокрита будет разниться с уровнем гематокрита жителей равнин. На гематокрит влияет множество факторов. У нас есть три человека, которые очень похожи по таким факторам. Плазма крови первого человека, нарисую ее здесь, занимает такую часть от общего объема крови. Плазма второго занимает вот такую часть от общего объема крови. А плазма третьего занимает наибольшую часть общего объема крови, скажем, весь объем до низа. Итак, вы прокрутили все три пробирки, и вот что получили. Конечно, во всех трех есть белые клетки крови, нарисую их. И у всех есть тромбоциты, мы говорили, что это тонкий слой меньше 1%. И остаток составляют красные клетки крови. Это слой красных клеток крови. Их очень много у второго человека. А у третьего - меньше всего. Красные клетки крови занимают вовсе не большую часть от общего объема. Итак, если бы мне было нужно оценивать состояние этих трех людей, я бы сказал, что у первого человека все в порядке. У второго - много красных клеток крови. Они численно преобладают. Мы наблюдаем действительно большой процент красных кровяных клеток. Действительно большой. Значит, я могу сделать вывод, что у этого человека полицитемия. Полицитемия - это медицинский термин, означающий, что количество красных клеток крови очень велико. Другими словами, у него повышенный гематокрит. А у этого третьего человека очень низкое количество красных клеток крови по отношению к общему объему. Вывод - у него анемия. Если теперь вы услышите термин "анемия", или же "полицитемия",вы будете знать, что речь о том, какой объем от общего объема крови занимают красные кровяные клетки. Увидимся с вами в следующем видео. Subtitles by the Amara.org community

Свойства крови

  • Суспензионные свойства зависят от белкового состава плазмы крови, и от соотношения белковых фракций (в норме альбуминов больше, чем глобулинов).
  • Коллоидные свойства связаны с наличием белков в плазме. За счёт этого обеспечивается постоянство жидкого состава крови, так как молекулы белка обладают способностью удерживать воду.
  • Электролитные свойства зависят от содержания в плазме крови анионов и катионов . Электролитные свойства крови определяются осмотическим давлением крови.

Состав крови

Весь объём крови живого организма условно делится на периферический (находящийся и циркулирующий в русле сосудов) и кровь, находящуюся в кроветворных органах и периферических тканях. Кровь состоит из двух основных компонентов : плазмы и взвешенных в ней форменных элементов . Отстоявшаяся кровь состоит из трёх слоёв: верхний слой образован желтоватой плазмой крови, средний, сравнительно тонкий серый слой составляют лейкоциты , нижний красный слой образуют эритроциты . У взрослого здорового человека объём плазмы достигает 50-60 % цельной крови, а форменных элементов крови составляют около 40-50 %. Отношение форменных элементов крови к её общему объёму, выраженное в процентах или представленное в виде десятичной дроби с точностью до сотых, называется гематокритным числом (от др.-греч. αἷμα - кровь, κριτός - показатель) или гематокритом (Ht). Таким образом, гематокрит - часть объёма крови, приходящаяся на эритроциты (иногда определяется как отношение всех форменных элементов (эритроциты , лейкоциты, тромбоциты) к общему объёму крови ). Определение гематокрита проводится с помощью специальной стеклянной градуированной трубочки - гематокрита , которую заполняют кровью и центрифугируют . После этого отмечают, какую её часть занимают форменные элементы крови (лейкоциты , тромбоциты и эритроциты). В медицинской практике для определения показателя гематокрита (Ht или PCV) всё шире распространяется использование автоматических гематологических анализаторов .

Плазма

Форменные элементы

У взрослого человека форменные элементы крови составляют около 40-50 %, а плазма - 50-60 %. Форменные элементы крови представлены эритроцитами , тромбоцитами и лейкоцитами :

  • Эритроциты (красные кровяные тельца ) - самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке . В эритроцитах содержится железосодержащий белок - гемоглобин . Он обеспечивает главную функцию эритроцитов - транспорт газов, в первую очередь - кислорода . Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин , который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие углекислый газ .

Кровь требуется пострадавшим от ожогов и травм , в результате массивных кровотечений : при проведении сложных операций , в процессе тяжёлых и осложнённых родах , а больным гемофилией и анемией - для поддержания жизни. Кровь также жизненно необходима онкологическим больным при химиотерапии. Каждый третий житель Земли хоть раз в жизни нуждается в донорской крови.

Кровь, взятая от донора (донорская кровь), используется в научно-исследовательских и образовательных целях; в производстве компонентов крови, лекарственных средств и медицинских изделий. Клиническое использование донорской крови и (или) её компонентов связано с трансфузией (переливанием) реципиенту в лечебных целях и созданием запасов донорской крови и (или) её компонентов .

Заболевания крови

  • Анемия (греч. αναιμία малокровие ) - группа клинико-гематологических синдромов , общим моментом для которых является снижение концентрации гемоглобина в циркулирующей крови, чаще при одновременном уменьшении числа эритроцитов (или общего объёма эритроцитов). Термин «анемия» без детализации не определяет конкретного заболевания, то есть анемию следует считать одним из симптомов различных патологических состояний;
  • Гемолитическая анемия - усиленное разрушение эритроцитов;
  • Гемолитическая болезнь новорожденных (ГБН) - патологическое состояние новорождённого, сопровождающееся массивным распадом эритроцитов, в процессе гемолиза , вызванного иммунологическим конфликтом матери и плода в результате несовместимости крови матери и плода по группе крови или резус-фактору . Таким образом, форменные элементы крови плода становятся для матери чужеродными агентами (антигенами), в ответ на которые вырабатываются антитела , проникающие через гематоплацентарный барьер и атакующие эритроциты крови плода, в результате чего уже в первые часы после рождения у ребёнка начинается массированный внутрисосудистый гемолиз эритроцитов. Является одной из основных причин развития желтухи у новорождённых;
  • Геморрагическая болезнь новорождённых - коагулопатия , развивающаяся у ребёнка между 24 и 72 часами жизни и часто связана с нехваткой витамина K , вследствие дефицита которого возникает недостаток биосинтеза в печени факторов свертывания крови II, VII, IX, X, C, S. Лечение и профилактика заключается в добавлении в рацион новорождённым вскоре после рождения витамина K ;
  • Гемофилия - низкая свёртываемость крови;
  • Диссеминированное внутрисосудистое свёртывание крови - образование микротромбов ;
  • Геморрагический васкулит (аллерги́ческая пу́рпура ) - наиболее распространённое заболевание из группы системных васкулитов , в основе которого лежит асептическое воспаление стенок микрососудов, множественное микротромбообразование, поражающее сосуды кожи и внутренних органов (чаще всего почек и кишечника). Основная причиной, вызывающая клинические проявления данного заболевания - циркуляция в крови иммунных комплексов и активированных компонентов системы комплемента ;
  • Идиопатическая тромбоцитопеническая пурпура (Болезнь Верльгофа ) - хроническое волнообразно протекающее заболевание, представляющее собой первичный геморрагический диатез , обусловленный количественной и качественной недостаточностью тромбоцитарного звена гемостаза ;
  • Гемобластозы - группа неопластических заболеваний крови, условно разделена на лейкемические и нелейкемические:
    • Лейкоз (лейкемия) - клональное злокачественное (неопластическое) заболевание кроветворной системы;
  • Анаплазмоз - форма заболевания крови у домашних и диких животных, переносчиками которой являются клещи рода Анаплазма (лат. Anaplasma ) семейства лат. Ehrlichiaceae .

Патологические состояния

  • Гиповолемия - патологическое уменьшение объёма циркулирующей крови;
  • Гиперволемия - патологическое увеличение объёма циркулирующей крови;

Периферическая кровь состоит из жидкой части - плазмы и взвешенных в ней форменных элементов, или кровяных клеток (эритроциты, лейкоциты, тромбоциты) (рис. 2).

Если дать крови отстояться или провести ее центрифугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний - прозрачный, бесцветный или слегка желтоватый - плазма крови, нижний - красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью специального прибора гематокрита - капилляра с делениями, а также используя радиоактивные изотопы - 32 Р, 51 Cr, 59 Fe. В периферической (циркулирующей) и депонированной крови эти соотношения неодинаковы. В периферической крови плазма составляет приблизительно 52-58% объема крови, а форменные элементы - 42-48%. В депонированной крови наблюдается обратное соотношение.

Плазма крови, ее состав . Плазма крови является довольно сложной биологической средой. Она находится в тесной связи с тканевыми жидкостями организма. Относительная плотность плазмы равна 1,029-1,034.

В состав плазмы крови входят вода (90-92%) и сухой остаток (8-10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся:

1) белки плазмы - альбумины (около 4,5%), глобулины (2-3,5%), фибриноген (0,2-0,4%). Общее количество белка в плазме составляет 7-8%;

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11-15 ммоль/л (30-40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

3) безазотистые органические вещества: глюкоза - 4,45-6,65 ммоль/л (80-120 мг%), нейтральные жиры, липиды;

4) ферменты; некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1% от ее состава. В их состав входят преимущественно катионы - Na + , Ca ++ , K + , Mg ++ и анионы - O - , HPO 4 - , HCO 3 - .

Из тканей организма в процессе его жизнедеятельности в кровь поступает большое количество продуктов обмена, биологически активных веществ (серотонин, гистамин), гормонов, из кишечника всасываются питательные вещества, витамины и т. д. Однако состав плазмы существенно не изменяется. Постоянство состава плазмы обеспечивается регуляторными механизмами, оказывающими влияние на деятельность отдельных органов и систем организма, восстанавливающих состав и свойства его внутренней среды.

Осмотическое и онкотическое давление крови . Осмотическим давлением называется давление, которое обусловлено электролитами и некоторыми неэлектролитами. с низкой молекулярной массой (глюкоза и др.). Чем выше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от концентрации в ней минеральных солей и составляет в среднем 768, 2 кПа (7,6 атм). Около 60% всего осмотического давления обусловлено солями натрия. Онкотическое давление плазмы обусловлено белками которые способны удерживать воду. Величина онкотического давления колеблется в пределах от 3,325 до 3,99 кПа (25-30 мм рт. ст.). Значение онкотического давления чрезвычайно велико, так как за счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении онкотического давления принимают альбумины, так как вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Функции клеток организма могут осуществляться лишь при относительной стабильности осмотического и онкотического давления (коллоидно-осмотического давления). Постоянство осмотического и онкотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. При помещении эритроцитов в раствор с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается.

Солевой раствор, имеющий осмотическое давление, одинаковое с давлением крови, называют изоосмотическим, или изотоническим (0,85-0,9% раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови, получил название гипертонического , а имеющий более низкое давление - гипотонического .

Гемолиз и его виды . Гемолизом называют выход гемоглобина из эритроцитов через измененную оболочку и появление его в плазме. Гемолиз может наблюдаться как в сосудистом русле, так и вне организма.

Вне организма гемолиз может быть вызван гипотоническими растворами. Этот вид гемолиза называют осмотическим . Резкое встряхивание крови или ее перемешивание приводит к разрушению оболочки эритроцитов. В этом случае происходит механический гемолиз. Некоторые химические вещества (кислоты, щелочи; эфир, хлороформ, спирт) вызывают свертывание (денатурацию) белков и нарушение целостной оболочки эритроцитов, что сопровождается выходом из них гемоглобина - химический гемолиз. Изменение оболочки эритроцитов с последующим выходом из них гемоглобина происходит также под влиянием физических факторов. В частности, при действии высоких температур наблюдается денатурация белков оболочки эритроцитов. Замораживание крови сопровождается разрушением эритроцитов.

В организме постоянно в небольших количествах осуществляется гемолиз при отмирании старых эритроцитов. В норме он происходит лишь в печени, селезенке, красном костном мозге. При этом гемоглобин "поглощается" клетками указанных органов и в плазме циркулирующей крови отсутствует. При некоторых состояниях организма гемолиз в сосудистой системе переходит границы нормы, гемоглобин появляется в плазме циркулирующей крови (гемоглобинемия) и начинает выделяться с мочой (гемоглобинурия). Это наблюдается, например, при укусе ядовитых змей, скорпионов, множественных укусах пчел, при малярии, переливании несовместимой в групповом отношении крови.

Реакция крови . Реакция среды определяется концентрацией водородных ионов. Для определения степени смещения реакции среды пользуются водородным показателем, обозначаемым рН. Активная реакция крови высших животных и человека - величина отличающаяся высоким постоянством. Как правило, она не выходит за пределы 7,36-7,42 (слабощелочная).

Сдвиг реакции в кислую сторону называется ацидозом , который обусловливается увеличением в крови ионов Н + . При этом наблюдается угнетение функции центральной нервной системы и при значительном ацидотическом состоянии организма может наступить потеря сознания, а в дальнейшем смерть.

Сдвиг реакции крови в щелочную сторону называется алкалозом . Возникновение алкалоза связано с увеличением концентрации гидроксильных ионов ОН - . При этом происходит перевозбуждение нервной системы, отмечается появление судорог, а в дальнейшем гибель организма.

Следовательно, клетки организма весьма чувствительны к сдвигам рН. Изменение концентрации водородных (Н +) и гидроксильных (ОН -) ионов в ту или другую сторону нарушает жизнедеятельность клеток, что может привести к тяжелым последствиям.

В организме всегда имеются условия для сдвига реакции в сторону ацидоза или алкалоза. В клетках и тканях постоянно образуются кислые продукты: молочная, фосфорная и серная кислоты (при окислении фосфора и серы белковой пищи). При усиленном потреблении растительной пищи в кровоток постоянно поступают основания натрия, калия, кальция. Напротив, при преимущественном питании мясной пищей в крови создаются условия для накопления кислых соединений. Однако величина реакции крови постоянна. Поддержание постоянства реакции крови обеспечивать так называемыми буферными системами , я также деятельностью главным образом легких, почек и потовых желез.

К буферным системам крови относятся: 1) карбонатная буферная система (угольная кислота - Н 2 СО 3 , бикарбонат натрия - NaHCО 3); 2) фосфатная буферная система (одноосновный - NaH 2 PО 4 и двухосновный - Na 2 HPО 4 фосфат натрия); 3) буферная система гемоглобина (гемоглобин-калийная соль гемоглобина); 4) буферная система белков плазмы.

Указанные буферные системы нейтрализуют значительную часть поступающих в кровь кислот и щелочей и препятствуют тем самым сдвигу активной реакции крови. Главными буферами тканей являются белки и фосфаты.

Сохранению постоянства рН способствует и деятельность некоторых органов. Так, через легкие уделяется избыток углекислоты. Почки при ацидозе выделяют больше кислого одноосновного фосфата натрия, при алкалозе - больше щелочных солей (двухосновного фосфата натрия и бикарбоната натрия). Потовые железы могут выделять в небольших количествах молочную кислоту.

В процессе обмена веществ образуется больше кислых продуктов, чем щелочных, поэтому опасность сдвига реакции в сторону ацидоза является большей, чем опасность сдвига в сторону алкалоза. В соответствии с этим буферные системы крови и тканей обеспечивают более значительную устойчивость по отношению к кислотам, чем к щелочам. Так, для сдвига реакции плазмы крови в щелочную сторону приходится прибавлять к ней в 40-70 раз больше едкого натра, чем к чистой воде. Для того же, чтобы вызвать сдвиг реакции крови в кислую сторону, к ней необходимо добавить в 327 раз больше хлористоводородной (соляной) кислоты, чем к воде. Щелочные соли слабых кислот, содержащиеся в крови, образуют так называемый щелочной резерв крови . Однако, несмотря на наличие буферных систем и хорошую защищенность организма от возможных изменений рН крови, сдвиги в сторону ацидоза или алкалоза все же иногда встречаются как в физиологических, так и, в особенности, в патологических условиях.

Форменные элементы крови

К форменным элементам крови относятся эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца), тромбоциты (кровяные пластинки).

Эритроциты

Эритроциты - высокоспециализированные клетки крови. У человека и млекопитающих эритроциты лишены ядра и имеют однородную протоплазму. Эритроциты имеют форму двояковогнутого диска. Диаметр их равен 7-8 мкм, толщина по периферии 2-2,5 мкм, в центре - 1-2 мкм.

В 1 л крови мужчин содержится 4,5·10 12 /л-5,5·10 12 /л 4,5-5,5 млн. в 1 мм 3 эритроцитов), женщин - 3,7·10 12 /л-4,7·10 12 /л (3,7-4,7 млн. в 1 мм 3), новорожденных - до 6,0·10 12 /л (до 6 млн. в 1 мм 3), пожилых людей - 4,0·10 12 /л (меньше 4 млн. в 1 мм 3).

Количество эритроцитов изменяется под воздействием факторов внешней и внутренней среды (суточные и сезонные колебания, мышечная работа, эмоции, пребывание на больших высотах, потеря жидкости и т. д.). Повышение количества эритроцитов в крови получило название эритроцитоз , понижение - эритропения .

Функции эритроцитов . Дыхательная функция выполняется эритроцитами за счет пигмента гемоглобина, который обладает способностью присоединять к себе и отдавать кислород и углекислый газ.

Питательная функция эритроцитов состоит в адсорбировании на их поверхности аминокислот, которые они транспортируют к клеткам организма от органов пищеварения.

Защитная функция эритроцитов определяется их способностью связывать токсины (вредные, ядовитые для организма вещества) за счет наличия на поверхности эритроцитов специальных веществ белковой природы - антител. Кроме того, эритроциты принимают активное участие в одной из важнейших защитных реакций организма - свертывании крови.

Ферментативная функция эритроцитов связана с тем, что они являются носителями разнообразных ферментов. В эритроцитах обнаружены: истинная холинэстераза - фермент, разрушающий ацетилхолин, угольная ангидраза - фермент, который в зависимости от условий способствует образованию или расщеплению угольной кислоты в крови капилляров тканей метгемоглобин-редуктаза - фермент поддерживающий гемоглобин в восстановленном состоянии.

Регуляция рН крови осуществляется эритроцитами посредством гемоглобина. Гемоглобиновый буфер - один из мощнейших буферов, он обеспечивает 70-75% всей буферной емкости крови. Буферные свойства гемоглобина обусловлены тем, что он и его соединения обладают свойствами слабых кислот.

Гемоглобин

Гемоглобин - дыхательный пигмент крови человека и позвоночных животных, выполняет в организме важную роль переносчика кислорода и принимает участие в транспорте углекислоты.

В крови содержится значительное количество гемоглобина: в 1·10 -1 кг (100 г) крови обнаруживается до 1,67·10 -2 -1,74·10 -2 кг (16,67-17,4 г) гемоглобина. У мужчин в крови содержится в среднем - 140-160 г/л (14-16 г%) гемоглобина, у женщин - 120-140 г/л (12-14 г%). Общее количество гемоглобина крови равно примерно 7·10 -1 кг (700 г); 1·10 -3 кг (1 г) гемоглобина связывает 1,345·10 -6 м 3 (1,345 мл) кислорода.

Гемоглобин представляет собой сложное химическое соединение, состоящее из 600 аминокислот, его молекулярная масса равна 66000±2000.

Гемоглобин состоит из белка глобина и четырех молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не меняется, т. е. железо остается двухвалентным (F ++). Гем является активной, или так называемой простетической, группой, а глобин - белковым носителем гема.

В последнее время установлено, что гемоглобин крови неоднороден. В крови человека обнаружено три типа гемоглобина, обозначаемые как НbР (примитивный, или первичный; обнаружен в крови 7-12-недельных зародышей человека), HbF (фетальный, от лат. fetus - плод; появляется в крови плода на 9-й неделе внутриутробного развития), НbА (от лат. adultus- взрослый; обнаруживается в крови плода одновременно с фетальным гемоглобином). К концу 1-го года жизни фетальный гемоглобин полностью замещается гемоглобином взрослого.

Различные виды гемоглобина различаются между собой по аминокислотному составу, устойчивости к щелочам и сродству к кислороду (способность связывать кислород). Так, HbF более устойчив к щелочам, чем НbА. Он может насыщаться кислородом на 60%, хотя в тех же условиях гемоглобин матери насыщается всего на 30%.

Миоглобин . В скелетной и сердечной мышцах находится мышечный гемоглобин, или миоглобин . Его простетическая группа - гем - идентична гему молекулы гемоглобина крови, а белковая часть - глобин - обладает меньшей молекулярной массой, чем белок гемоглобина. Миоглобин человека связывает до 14% общего количества кислорода в организме. Он играет важную роль в снабжении кислородом работающих мышц.

Гемоглобин синтезируется в клетках красного костного мозга. Для нормального синтеза гемоглобина необходимо достаточное поступление железа. Разрушение молекулы гемоглобина осуществляется преимущественно в клетках мононуклеарной фагоцитарной системы (ретикулоэндотелиальная система), к которой относятся печень, селезенка, костный мозг, моноциты. При некоторых заболеваниях крови обнаружены гемоглобины, отличающиеся по химической структуре и свойствам от гемоглобина здоровых людей. Эти виды гемоглобина получили название аномальных гемоглобинов.

Функции гемоглобина . Гемоглобин выполняет свои функции лишь при условии нахождения его в эритроцитах. Коли по каким-то причинам гемоглобин появляется в плазме (гемоглобинемия), то он неспособен выполнять свои функции, так как быстро захватывается клетками мононуклеарной фагоцитарной системы и разрушается, а часть его выводится через почечный фильтр (гемоглобинурия). Появление в плазме большого количества гемоглобина увеличивает вязкость крови, повышает величину онкотического давления, что приводит к нарушению движения крови и образования тканевой жидкости.

Гемоглобин выполняет следующие основные функции. Дыхательная функция гемоглобина осуществляется за счет переноса кислорода от легких к тканям и углекислого газа от клеток к органам дыхания. Регуляция активной реакции крови или кислотно-щелочного состояния связана с тем, что гемоглобин обладает буферными свойствами.

Соединения гемоглобина . Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин (НbО 2). Кислород с гемом гемоглобина образует непрочное соединение, в котором железо остается двухвалентным (ковалентная связь). Гемоглобин, отдавший кислород, называется восстановленным, или редуцированным , гемоглобином (Нb). Гемоглобин, соединенный с молекулой углекислого газа, называется карбогемоглобин (НbСO 2). Углекислый газ с белковым компонентом гемоглобина также образует легко распадающееся соединение.

Гемоглобин может входить в соединение не только с кислородом и углекислым газом, но и с другими газами, например с угарным газом (СО). Гемоглобин, соединенный с угарным газом, называется карбоксигемоглобин (НbСО). Угарный газ, так же как и кислород, соединяется с гемом гемоглобина. Карбоксигемоглобин является прочным соединением, он очень медленно отдает угарный газ. Вследствие этого отравление угарным газом очень опасно для жизни.

При некоторых патологических состояниях, например при отравлении фенацетином, амил- и пропилнитритами и т. д., в крови появляется прочное соединение гемоглобина с кислородом - метгемоглобин , в котором молекула кислорода присоединяется к железу тема, окисляет его и железо становится трехвалентным (MetHb). В случаях накопления в крови больших количеств метгемоглобина транспорт кислорода к тканям становится невозможным и человек погибает.

Лейкоциты

Лейкоциты, или белые кровяные тельца, - бесцветные клетки, содержащие ядро и протоплазму. Размер их 8-20 мкм.

В крови здоровых людей в состоянии покоя количество лейкоцитов колеблется в пределах от 6,0·10 9 /л - 8,0·10 9 /л (6000-8000 в 1 мм 3). Многочисленные исследования, проведенные в последнее время, указывают на несколько больший диапазон этих колебаний 4·10 9 /л - 10·10 9 /л (4000-10000 в 1 мм 3).

Увеличение количества лейкоцитов в крови называется лейкоцитозом , уменьшение - лейкопенией .

Лейкоциты делят на две группы: зернистые лейкоциты, или гранулоциты, и незернистые, или агранулоциты.

Зернистые лейкоциты отличаются от незернистых тем, что их протоплазма имеет включения в виде зерен, которые способны окрашиваться различными красителями. К гранулоцитам относятся нейтрофилы, эозинофилы и базофилы. Нейтрофилы по степени зрелости делятся на миелоциты, метамиелоциты (юные нейтрофилы), палочкоядерные и сегментоядерные. Основную массу в циркулирующей крови составляют сегментоядерные нейтрофилы (51-67%). Палочкоядерных может содержаться не более 3-6%. Миелоциты и метамиелоциты (юные) в крови здоровых людей не встречаются.

Агранулоциты не имеют в своей протоплазме специфической зернистости. К ним относятся лимфоциты и моноциты, В настоящее время установлено, что лимфоциты морфологически и функционально неоднородны. Различают Т-лимфоциты (тимусзависимые), созревающие в вилочковой железе, и В-лимфоциты, образующиеся, по-видимому, в пейеровых бляшках (скоплениях лимфоидной ткани в кишечнике). Моноциты образуются, вероятно, в костном мозге и лимфатических узлах. Между отдельными видами лейкоцитов существуют определенные соотношения. Процентное соотношение между отдельными видами лейкоцитов получило название лейкоцитарной формулы (табл. 1).

При ряде заболеваний характер лейкоцитарной формулы меняется. Так, например, при острых воспалительных процессах (острый бронхит, воспаление легких) увеличивается количество нейтрофильных лейкоцитов (нейтрофилия). При аллергических состояниях (бронхиальная астма, сенная лихорадка) преимущественно возрастает содержание эозинофилов (эозинофилия). Эозинофилия наблюдается также при глистных инвазиях. Для вяло текущих хронических заболеваний (ревматизм, туберкулез) характерно увеличение количества лимфоцитов (лимфоцитоз). Таким образом, подсчет лейкоцитарной формулы имеет важное диагностическое значение.

Свойства лейкоцитов . Лейкоциты обладают рядом важных физиологических свойств: амебовидной подвижностью, диапедезом, фагоцитозом. Амебовидная подвижность - это способность лейкоцитов к активному передвижению за счет образования протоплазматических выростов - ложноножек (псевдоподий). Под диапедезом следует понимать свойство лейкоцитов проникать через стенку капилляра. Кроме того, лейкоциты могут поглощать и переваривать инородные тела и микроорганизмы. Это явление, изученное и описанное И. И. Мечниковым, получило название фагоцитоза .

Фагоцитоз протекает в четыре фазы: приближение, прилипание (аттракция), погружение и внутриклеточное переваривание (собственно фагоцитоз) (рис. 3).

Лейкоциты, поглощающие и переваривающие микроорганизмы, называют фагоцитами (от греч. phagein -пожирать). Лейкоциты поглощают не только попавшие в организм бактерии, но и отмирающие клетки самого организма. Передвижение (миграция) лейкоцитов к очагу воспаления обусловлено рядом факторов: повышением температуры в очаге воспаления, сдвигом рН в кислую сторону, существованием хемотаксиса (движение лейкоцитов по направлению к химическому раздражителю - положительный хемотаксис, а от него - отрицательный хемотаксис). Хемотаксис обеспечивается продуктами жизнедеятельности микроорганизмов и веществами, образующимися в результате распада тканей.

Нейтрофильные лейкоциты, моноциты и эозинофилы - это клетки-фагоциты, лимфоциты тоже обладают фагоцитарной способностью.

Функции лейкоцитов . Одной из важнейших функций, выполняемых лейкоцитами, является защитная . Лейкоциты способны вырабатывать специальные вещества - лейкины , которые вызывают гибель микроорганизмов, попавших в организм человека. Некоторые лейкоциты (базофилы, эозинофилы) образуют антитоксины - вещества, обезвреживающие продукты жизнедеятельности бактерий, и обладают, таким образом, дезинтоксикационным свойством. Лейкоциты способны к выработке антител - веществ, нейтрализующих действие ядовитых продуктов обмена микроорганизмов, попавших в организм человека. При этом продукция антител осуществляется преимущественно В-лимфоцитами после взаимодействия их с Т-лимфоцитами. Т-лимфоциты участвуют в клеточном иммунитете, обеспечивая реакцию отторжения трансплантата (пересаженного органа или ткани). Антитела могут длительное время сохраняться в организме как составная часть крови, поэтому повторное заболевание человека становится невозможным. Такое состояние невосприимчивости к заболеваниям получило название иммунитета. Следовательно, играя существенную роль в выработке иммунитета, лейкоциты (лимфоциты) тем самым выполняют защитную функцию. Наконец, лейкоциты (базофилы, эозинофилы) участвуют в свертывании крови и фибринолизе.

Лейкоциты стимулируют регенеративные (восстановительные) процессы в организме, ускоряют заживление ран. Это связано со способностью лейкоцитов участвовать в образовании трефонов .

Лейкоциты (моноциты) принимают активное участие в процессах разрушения отмирающих клеток и тканей организма за счет фагоцитоза.

Лейкоциты выполняют и ферментативную функцию. Они содержат различные ферменты (протеолитические - расщепляющие белки, липолитические - жиры, амилолитические - углеводы), необходимые для осуществления процесса внутриклеточного пищеварения.

Иммунитет . Иммунитет - способ защиты организма от живых тел и веществ, имеющих генетически чужеродные признаки. Сложные реакции иммунитета осуществляются за счет деятельности специальной иммунной системы организма - специализированных клеток, тканей и органов. Под иммунной системой следует понимать совокупность всех лимфоидных органов (вилочковая железа, селезенка, лимфатические узлы) и скоплений лимфоидных клеток. Основным элементом лимфоидной системы является лимфоцит.

Различают два вида иммунитета: гуморальный и клеточный . Гуморальный иммунитет осуществляется преимущественно за счет В-лимфоцитов. В-лимфоциты в результате сложных взаимодействий с Т-лимфоцитами и моноцитами превращаются в плазмоциты - клетки, продуцирующие антитела. Задача гуморального иммунитета заключается в освобождении организма от чужеродных белков (бактерии, вирусы и др.), которые попадают в него из окружающей среды. Клеточный иммунитет (реакция отторжения пересаженной ткани, уничтожение генетически переродившихся клеток собственного организма) обеспечивается главным образом Т-лимфоцитами. В реакциях клеточного иммунитета участвуют также и макрофаги (моноциты).

Функциональное состояние иммунной системы организма регулируется сложными нервными и гуморальными механизмами.

Тромбоциты

Тромбоциты, или кровяные пластинки, представляют собой образования овальной или округлой формы диаметром 2-5 мкм. Тромбоциты человека и млекопитающих не имеют ядер. Содержание в крови тромбоцитов колеблется от 180·10 9 /л до 320·10 9 /л (от 180000 до 320000 1 мм 3). Увеличение содержания тромбоцитов в крови называют тромбоцитозом, уменьшение - тромбоцитопенией.

Свойства тромбоцитов . Тромбоциты, как и лейкоциты, способны к фагоцитозу и передвижению за счет образования псевдоподий (ложноножек). К физиологическим свойствам тромбоцитов также относятся адгезивность, агрегация и агглютинация. Под адгезивностью понимают способность тромбоцитов прилипать к чужеродной поверхности. Агрегация - свойство тромбоцитов прилипать друг к другу под влиянием разнообразных причин, в том числе и факторов, которые способствуют свертыванию крови. Агглютинация тромбоцитов (склеивание их друг с другом) осуществляется за счет антитромбоцитарных антител. Вязкий метаморфоз тромбоцитов - комплекс физиологических и морфологических изменении вплоть до распада клеток наряду с адгезией, агрегацией и агглютинацией играет важную роль в гемостатической функции организма (т. е. в остановке кровотечения). Говоря о свойствах тромбоцитов, следует подчеркнуть их "готовность" к разрушению, а также способность поглощать и выделять некоторые вещества, в частности серотонин. Все рассмотренные особенности кровяных пластинок обусловливают их участие в остановке кровотечения.

Функции тромбоцитов . 1) Принимают активное участие в процессе свертывания крови и фибринолиза (растворение кровяного сгустка). В пластинках обнаружено большое количество факторов (14), обусловливающих их участие в остановке кровотечения (гемостазе).

2) Выполняют защитную функцию за счет склеивания (агглютинации) бактерий и фагоцитоза.

3) Способны вырабатывать некоторые ферменты (амилолитические, протеолитические и др.), необходимые не только для нормальной жизнедеятельности пластинок, но и для остановки кровотечения.

4) Оказывают влияние на состояние гистогематических барьеров, изменяя проницаемость стенки капилляров за счет выделения в кровоток серотонина и особого белка - протеина S.

Кровь относится к опорно-трофическим тканям. Она состоит из клеток - форменных элементов и межклеточного вещества - плазмы. К форменным элементам крови принадлежат эритроци­ты, лейкоциты и тромбоциты. Плазма крови представляет собой жидкость. Кровь - единственная ткань организма, где межкле­точное вещество является жидкостью.

Чтобы отделить форменные элементы от плазмы, кровь надо предохранить от свертывания и отцентрифугировать. Формен­ные элементы как более тяжелые осядут, а над ними будет слой прозрачной, слегка опалесцирующей жидкости желтого цвета - плазма крови.

Если объем крови принять за 100 %, то форменные элементы составляют около 40...45%, а плазма - 55...60 %. Объем формен­ных элементов в крови, главным образом эритроцитов, называет­ся гематокритной величиной или гематокритом. Гематокрит может быть выражен в процентах (40...45 %) или в литрах эритроцитов, находящихся в 1 л крови (0,40...0,45 л/л).

Когда животное давно не поили или оно потеряло много жид­кости (сильное потение, понос, обильная рвота), то гематокрит-ная величина увеличивается. В этом случае говорят о «сгущении» крови. Такое состояние неблагоприятно для организма, так как существенно увеличивается сопротивление крови при ее движе­нии, что заставляет сердце сильнее сокращаться. В порядке ком­пенсации происходит переход воды из тканевой жидкости в кровь, уменьшается ее выведение почками и, как следствие, воз­никает жажда. Уменьшение гематокрита чаще имеет место при за­болеваниях - при понижении образования эритроцитов, усилен­ном их разрушении или после кровопотери.

Химический состав крови. Плазма крови содержит 90...92 % воды и 8... 10 % сухого остатка. Сухой остаток составляют белки, липиды, углеводы, промежуточные и конечные продукты их об­мена, минеральные вещества, гормоны, витамины, ферменты и другие биологически активные вещества. Важно отметить, что, несмотря на постоянный обмен веществ между кровью и тканя­ми, состав плазмы крови существенно не меняется. Очень узкие границы колебаний содержания общего белка, глюкозы, мине­ральных веществ - электролитов. Поэтому самые незначитель­ные отклонения в их уровне, выходящие за пределы физиологи­ческих границ, приводят к тяжелым нарушениям в работе орга­низма. Другие составные компоненты крови - липиды, амино­кислоты, ферменты, гормоны и пр. - могут иметь более широкий спектр колебаний. В состав крови также входят кислород и ди­оксид углерода.

Рассмотрим физиологическое значение отдельных веществ, со­держащихся в крови.


Белки. Белки крови состоят из нескольких фракций, кото­рые можно разделить различными способами, например методом электрофореза. В каждую фракцию входит большое количество белков, обладающих специфическими функциями.



Альбумины. Образуются в печени, имеют сравнительно с дру­гими белками небольшую молекулярную массу. В организме вы­полняют трофическую, или питательную, функцию, являясь ис­точником аминокислот, и транспортную, участвуя в переносе и связывании в крови жирных кислот, пигментов желчи, некото­рых катионов.

Глобулины. Синтезируются в печени, а также различными клетками - лейкоцитами, плазмоцитами. Молекулярная масса глобулинов больше, чем альбуминов. Глобулиновую фракцию белков дополнительно можно разделить на три группы - альфа-, бета- и гамма-глобулины. Альфа- и бета-глобулины участвуют в транспорте холестерина, фосфолипидов, стероидных гормонов, катионов. Гамма-глобулиновая фракция включает в себя различ­ные антитела.

Отношение количества альбуминов к глобулинам называется белковым коэффициентом. У лошадей и крупного рогатого скота глобулинов больше, чем альбуминов, а у свиней, овец, коз, собак, кроликов и у человека преобладают альбумины. Такая особенность влияет на некоторые физико-химические свойства крови.

Белки играют большую роль в свертывании крови. Так, фиб­риноген, относящийся к глобулиновой фракции, во время свер­тывания переходит в нерастворимую форму - фибрин и стано­вится основой кровяного сгустка (тромба). Белки могут образо­вывать комплексы с углеводами (гликопротеины) и с липидами (л ипопротеины).

Независимо от функции каждого белка, а их в плазме крови насчитывают до 100, они в совокупности определяют вязкость крови, создают в ней определенное коллоидное давление, участву­ют в поддержании постоянного рН крови.

Физиологические колебания количества общего белка крови связаны с возрастом, полом, продуктивностью животных, а также с условиями их кормления и содержания. Так, у новорожденных животных в крови отсутствуют гамма-глобулины (естественные антитела), они поступают в организм с первыми порциями моло­зива. С возрастом в крови увеличивается содержание глобулинов и одновременно снижается уровень альбуминов. При высокой мо­лочной продуктивности коров содержание белков в крови повы­шается. После вакцинации животных увеличение содержания бел­ков в крови происходит за счет иммуноглобулинов. У здоровых животных общее количество белка в крови составляет 60...80 г/л, или 6...8 г/100 мл.

Как известно, характерной особенностью химического состава белков является наличие азота, поэтому многие методы определе-


ния количества белков в крови и тканях основаны на определении концентрации белкового азота. Однако азот присутствует и во многих других органических веществах, являющихся продуктами распада белков, - это аминокислоты, мочевая кислота, мочевина, креатин, индикан и многие другие. Совокупный азот всех этих ве­ществ (за исключением белкового азота) называется остаточным, или небелковым, азотом. Его количество в плазме составляет 0,2...0,4 г /л. Остаточный азот в крови определяют с целью оценки состояния белкового обмена: при усиленном распаде белка в орга­низме содержание остаточного азота возрастает.

Л и п и д ы. Липиды крови подразделяют на нейтральные липи-ды, состоящие из глицерина и жирных кислот (моно-, ди- и тригли-цериды), и сложные - холестерин, его производные и фосфолипи-ды. В крови присутствуют также свободные жирные кислоты. Со­держание общих липидов в крови может изменяться в больших пределах (например, у коров в норме колебание липидов в пределах 1...10 г/л). При увеличении содержания в крови липидов (например, после приема жирной пищи) плазма начинает заметно опалесциро-вать, мутнеет, приобретает молочный оттенок, а у кур при отстаива­нии плазмы жир может всплывать в виде толстой капли.

Углеводы. Углеводы крови представлены главным образом глюкозой. Но содержание глюкозы определяют не в плазме, а в цельной крови, так как глюкоза частично адсорбируется на эри­троцитах. Концентрация глюкозы в крови у млекопитающих удер­живается в очень узких границах: у животных с однокамерным же­лудком 0,8..Л,2 г/л, а с многокамерным желудком 0,04...0,06 г/л. У птиц содержание глюкозы в крови выше, что объясняется осо­бенностями гормональной регуляции углеводного обмена.

Кроме глюкозы в плазме крови содержатся и некоторые другие углеводы - гликоген, фруктоза, а также продукты промежуточно­го обмена углеводов и липидов - молочная, пировиноградная, ук­сусная и другие кислоты, кетоновые тела. В крови жвачных жи­вотных присутствует больше летучих жирных кислот (ЛЖК), чем у животных других видов, это обусловлено особенностями рубцово-го пищеварения. В форменных элементах крови имеется неболь­шое количество гликогена.

Как уже было сказано, в крови содержатся различные биологи­чески активные вещества - ферменты, гормоны, медиаторы и др.

Минеральный состав крови. Неорганические ве­щества в крови могут находиться как в свободном состоянии, т. е. в виде анионов и катионов, так и в связанном, входя в струк­туру органических веществ. Больше всего в крови катионов на­трия, калия, кальция, магния, анионов хлора, бикарбонатов, фос­фатов, гидроксильной группы ОН". В крови также содержатся йод, железо, медь, кобальт, марганец и другие макро- и микроэле­менты. Общее содержание минеральных веществ в крови постоян­ная величина (до 10 г/л) для каждого вида животного.


Следует иметь в виду, что концентрация отдельных ионов в плазме крови и в форменных элементах неодинакова. Так, преиму­щественно в плазме находятся натрий, кальций, хлор, бикарбона­ты, в эритроцитах же более высокая концентрация калия, магния и железа. Однако и в эритроцитах, и в лейкоцитах, и в плазме кро­ви уровень концентрации отдельных ионов (ионограмма) посто­янный, что поддерживается непрерывным активным и пассивным транспортом ионов через полупроницаемые мембраны клеток.

Физиологические колебания содержания минеральных веществ в крови обусловлены питанием, возрастом, продуктивностью животных и их физиологическим состоянием. От их содержа­ния зависят такие свойства крови, как плотность, рН, осмоти­ческое давление.

Химический состав крови у здорового человека неизменен. Даже если происходят какие-то сдвиги, баланс химических составляющих быстро выравнивается с помощью механизмов регуляции. Это важно для поддержания нормальной работы всех органов и тканей организма. Если химический состав крови заметно меняется, это говорит о какой-либо серьезной патологии, поэтому наиболее распространенным методом диагностики при любом заболевании является .

В цельной крови и плазме человека находится большое количество органических соединений: белков, ферментов, кислот, липидов, липопротеинов и т.д. Все органические вещества в крови человека подразделяются на азотистые и безазотистые. Азот содержат некоторые белки и аминокислоты, а не содержат – , жирные кислоты.

Химический состав крови человека определяется органическими соединениями примерно на 9%. Неорганические соединения составляют не более 3% и около 90% — вода.

Органические соединения крови:

  • . Это белок крови, который отвечает за образование тромбов. Именно он позволяет образовывать тромбы, сгустки, которые останавливают кровотечение в случае необходимости. Если происходит повреждение тканей, сосудов, уровень фибриногена повышается и увеличивается. Этот белок входит в состав . Его уровень значительно повышается перед родами, что позволяет предотвратить кровотечение.
  • . Это простой белок, входящий в состав крови человека. При анализе крови обычно говорят о сывороточном альбумине. За его выработку отвечает печень. Этот вид альбумина содержится в сыворотке крови. Он составляет более половины всех белков, содержащихся в плазме. Основная функция этого белка — транспортировка веществ, которые плохо растворяются в крови.
  • . Когда под влиянием различных ферментов белковые соединения в крови разрушаются, начинает выделяться мочевая кислота. Она выводится из организма через кишечник и почки. Именно мочевая кислота, накапливаясь в организме, способна вызывать болезнь под название подагра (воспаление суставов).
  • . Это органическое соединение в крови, которое входит в состав мембран клеток тканей. Холестерин выполняет важную роль строительного клеточного материала, и его уровень должен поддерживаться. Однако при повышенном его содержании могут образовываться холестериновые бляшки, вызывающие закупорку сосудов и артерий.
  • Липиды. Липиды, то есть жиры, и их соединения выполняют энергетическую функцию. Они обеспечивают организм энергией, участвуют в различных реакциях, обмене веществ. Чаще всего, говоря о липидах, подразумевают холестерин, но есть и другие разновидности (липиды высокой и низкой плотности).
  • Креатинин. Креатинин – это вещество, которое образуется в результате химических реакций в крови. Он образуется в мышцах и участвует в энергетическом обмене.

Электролитный состав плазмы крови человека

Электролиты — это минеральные соединения, которые выполняют очень важные функции

Человека содержит около 90% воды, в которой в растворенном виде содержатся органические и неорганические составляющие. Электролитный состав крови представляет собой соотношение катионов и анионов, которые в сумме нейтральны.

Важные компоненты:

  • Натрий. Ионы натрия содержатся в и плазме крови. Большое количество натрия в крови приводит к отекам и накоплению жидкости в тканях, а его недостаток – к обезвоживанию. Также натрий играет важную роль в мышечной и нервной возбудимости. Самый простой и доступный источник натрия – это обычная поваренная соль. Необходимое количество натрия всасывается в кишечнике, а излишек выводится почками.
  • Калий. Калий в большом количестве содержится в клетках, чем в межклеточном пространстве. В плазме крови его немного. Он выводится почками и контролируется гормонами надпочечников. Повышенный уровень калия очень опасен для организма. Это состояние может привести к остановке дыхания и шоку. Калий отвечает за проводимость нервного импульса в мышце. При его недостатке может развиваться сердечная недостаточность, так как сердечная мышца утрачивает способность сокращаться.
  • Кальций. В плазме крови содержится ионизированный и неионизированный кальций. Кальций выполняет множество важных функций: отвечает за нервную возбудимость, способность крови к свертыванию, входит в состав костной ткани. Кальций также выводится из организма почками. И повышенное, и пониженное содержание кальция в крови тяжело переносится организмом.
  • Магний. Большая часть магния в организме человека концентрируется внутри клеток. Гораздо больше этого вещества содержится в мышечной ткани, но присутствует он и в плазме крови. Даже если уровень магния в крови понижается, организм восполняет его из мышечной ткани.
  • Фосфор. Фосфор присутствует в крови в различных видах, но чаще всего рассматривают неорганический фосфат. Снижение уровня фосфора в крови нередко приводит к рахиту. Фосфор играет важную роль в энергетическом обмене, сохранении нервной возбудимости. Недостаток фосфора может не проявляться. В редких случаях сильный дефицит вызывает слабость мышц и нарушения сознания.
  • . В крови железо в основном содержится в эритроцитах, в плазме крови его небольшое количество. При синтезе гемоглобина железо активно расходуется, а при его распаде высвобождается.


Выявление химического состава крови называется . На данный момент этот анализ является самым универсальным и информативным. С него начинается любое обследование.

Биохимический анализ крови позволяет оценить работу всех органов и систем организма. В показатели биохимического анализа крови входят белки, липиды, ферменты, кровяные тельца, электролитный состав плазмы крови.

Диагностическую процедуру можно разделить на 2 этапа: подготовка к анализу и сам забор крови. Подготовительные процедуры очень важны, так как они помогают снизить вероятность ошибки в результатах анализа. Несмотря на то, что состав крови достаточно постоянен, показатели крови реагируют на любое воздействие на организм. Так, например, показатели крови могут меняться при стрессах, перегревании, активных физических нагрузках, неправильном питании и при воздействии некоторых препаратов.

Если правила подготовки к биохимическому анализу крови были нарушены, возможны ошибки в результате анализов.

Обилие жиров в крови приводит к тому, что сыворотка крови сворачивается слишком быстро и становится непригодной для анализа. Кровь сдается натощак и желательно с утра. За 8-10 часов до сдачи анализа не рекомендуется ничего есть или пить, кроме чистой негазированной воды.

Полезное видео — Биохимический анализ крови:

При отклонении некоторых показателей анализ крови желательно повторить, чтобы исключить возможность ошибки. Забор крови проводится в лаборатории медперсоналом. Кровь берется из вены. Пациент может при этом сидеть или лежать, если плохо переносит процедуру. Предплечье пациента перетягивают жгутом, а из вены на сгибе локтя с помощью шприца или специального катетера берется кровь. Кровь собирается в пробирку и передается для микроскопического исследования в лабораторию.

Вся процедура забора крови занимает не более 5 минут. Она довольно безболезненна, если проводится опытным специалистом. Результаты выдаются пациенту на следующий день. Расшифровкой должен заниматься врач. Все показатели крови оцениваются вместе. Отклонение в единичном показателе может быть результатом ошибки.

Норма и отклонение от нормы

Каждый показатель имеет свою норму. Отклонение от нормы может быть следствием физиологических причин, а также патологических состояний. Чем сильнее показатель отклоняется от нормы, тем выше вероятность патологического процесса в организме.

Расшифровка БАК:

  • . Гемоглобин у взрослого человека в норме должен быть более 120 г/л. Этот белок отвечает за транспортировку кислорода к органам и тканям. Снижение уровня гемоглобина говорит о кислородном голодании и , патологическое превышение (более 200 г/л) – о недостатке некоторых витаминов и в организме.
  • Альбумин. Этот белок должен присутствовать в крови в количестве 35-52 г/л. Если уровень альбумина растет, значит организм по каким-то причинам страдает от обезвоживания, если уровень понижается, значит возможны проблемы с почками и кишечником.
  • Креатинин. Поскольку, это вещество образуется в мышцах, у мужчин норма несколько выше, чем у женщин (от 63 ммоль/л, тогда как у женщин – от 53). Повышенный уровень креатинина говорит о чрезмерном употреблении белковой пищи, большой мышечной нагрузке или разрушении мышц. Уровень креатинина понижен при дистрофии мышечной массы.
  • Липиды. Как правило, важнейшим показателем является уровень . Общий холестерин в крови здорового человека присутствует в количестве 3-6 ммоль/л. Повышенный уровень холестерина относится к факторам риска сердечно-сосудистых заболеваний, инфарктов.
  • Магний. Норма магния в крови составляет 0,6 – 1,5 ммоль/л. Дефицит магния возникает в результате неправильного питания или нарушения работы кишечника и приводит к судорожному синдрому, нарушению работы мышц, хронической усталости.
  • Калий. Калий присутствует в крови здорового человека в количестве 3,5-5,5 ммоль/л. К гиперкалиемии могут привести различные травмы, операции, опухоли, гормональные сбои. При повышенном содержании калия в крови возникает мышечная слабость, нарушение работы сердца, в тяжелых случаях гипергликемия приводит к параличу дыхательных мышц.

Анализ крови позволяет выявить нарушения в работе тех или иных органов, но диагноз ставится, как правило, после дальнейшего обследования. По этой причине не следует ставить себе диагноз самостоятельно, расшифровку результатов анализа лучше доверить врачу.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины