Физические, химические свойства целлюлозы. Что такое целлюлоза? Растительная клетчатка-полисахарид

Физические, химические свойства целлюлозы. Что такое целлюлоза? Растительная клетчатка-полисахарид

Прежде всего, необходимо пояснить, что же именно представляет собой целлюлоза и каковы в общих чертах ее свойства.

Целлюлоза (от лат. cellula - букв, комнатка, здесь — клетка) - клетчатка, вещество клеточных стенок растений, представляет собой полимер класса углеводов - полисахарид, молекулы которого построены из остатков молекул моносахарида глюкозы (см. схему 1).


СХЕМА 1 Строение молекулы целлюлозы

Каждый остаток молекулы глюкозы - или, для краткости, глгокозный остаток - повернут относительно соседнего на 180° и связан с ним кислородным мостиком -О-, или, как принято говорить в данном случае, глюкозидной связью через атом кислорода. Вся молекула целлюлозы представляет, таким образом, как бы гигантскую цепочку. Отдельные звенья этой цепочки имеют форму шестиугольников, или - в терминах химии -6-членных циклов. В молекуле глюкозы (и ее остатке) этот 6-членный цикл построен из пяти атомов углерода С и одного атома кислорода О. Такие циклы называются пирановыми. Из шести атомов 6-членного пиранового цикла на изображенной выше схеме 1, в вершине одного из углов показан только атом кислорода О - гетероатом (от греч. етeроs; - другой, отличающийся от остальных). В вершинах остальных пяти углов располагается по атому углерода С (эти «обычные» для органики атомы углерода, в отличие от гетероатома, в формулах циклических соединений изображать не принято).

Каждый 6-членный цикл имеет форму не плоского шестиугольника, а изогнутого в пространстве, наподобие кресла (см. схему 2), - отсюда и название этой формы, или пространственной конформации, наиболее устойчивой для молекулы целлюлозы.


СХЕМА 2 Форма кресла

На схемах 1 и 2 стороны шестиугольников, расположенные к нам ближе, выделены жирной чертой. На схеме 1 видно также, что каждый глюкозный остаток содержит 3 гидроксильные группы -ОН (их называют гидроксигруппами или просто гидроксилами). Для наглядности эти группы -ОН заключены в пунктирную рамку.

Гидроксильные группы способны образовывать прочные межмолекулярные водородные связи с атомом водорода Н в качестве мостика, поэтому энергия связей между молекулами целлюлозы высока и целлюлоза как материал обладает значительной прочностью и жесткостью. Кроме того, группы -ОН способствуют поглощению водяных паров и придают целлюлозе свойства многоатомных спиртов (так называют спирты, содержащие несколько групп -ОН). При набухании целлюлозы водородные связи между ее молекулами разрушаются, цепочки молекул раздвигаются молекулами воды (или молекулами поглощенного реагента), и образуются новые связи - между молекулами целлюлозы и воды (или реагента).

В обычных условиях целлюлоза - твердое вещество плотностью 1,54-1,56 г/см3 , нерастворимое в обычных растворителях - воде, спирте, диэтиловом эфире, бензоле, хлороформе и др. В натуральных волокнах целлюлоза имеет аморфно-кристаллическое строение со степенью кристалличности около 70%.

В химических реакциях с целлюлозой участвуют обычно три группы -ОН. Остальные элементы, из которых построена молекула целлюлозы, вступают в реакцию при более сильных воздействиях - при повышенной температуре, при действии концентрированных кислот, щелочей, окислителей.

Так, например, при нагревании до температуры 130°С свойства целлюлозы изменяются лишь незначительно. Но при 150-160°С начинается процесс медленного разрушения - деструкции целлюлозы, а при температуре выше 160°С этот процесс происходит уже быстро и сопровождается разрывом глюкозидных связей (по атому кислорода), более глубоким разложением молекул и обугливанием целлюлозы.

По-разному действуют на целлюлозу кислоты. При обработке хлопковой целлюлозы смесью концентрированных азотной и серной кислот в реакцию вступают гидроксильные группы -ОН, и в результате получаются азотнокислые эфиры целлюлозы - так называемая нитроцеллюлоза, которая, в зависимости от содержания нитрогрупп в молекуле, обладает различными свойствами. Наиболее известны из нитроцеллюлоз пироксилин, применяемый для производства пороха, и целлулоид - пластмассы на основе нитроцеллюлозы с некоторыми добавками.

Другой тип химического взаимодействия имеет место при обработке целлюлозы соляной или серной кислотой. Под действием этих минеральных кислот происходит постепенная деструкция молекул целлюлозы с разрывом глюкозидных связей, сопровождающаяся гидролизом, т.е. обменной реакцией с участием молекул воды (см. схему 3).



СХЕМА 3 Гидролиз целлюлозы
На этой схеме изображены те же три звена полимерной цепочки целлюлозы, т.е. те же три остатка молекул целлюлозы, что и на схеме 1, только 6-членные пирановые циклы представлены не в форме "кресел", а в форме плоских шестиугольников. Такое условное обозначение циклических структур также общепринято в химии.

Полный гидролиз, проводимый при кипячении с минеральными кислотами, приводит к получению глюкозы. Продуктом частичного гидролиза целлюлозы является так называемая гидроцеллюлоза, она обладает меньшей механической прочностью по сравнению с обычной целлюлозой, так как показатели механической прочности падают с уменьшением длины цепочки полимерной молекулы.

Совершенно другой эффект наблюдается в том случае, если целлюлозу обработать непродолжительное время концентрированной серной или соляной кислотой. Происходит пергаментация: поверхность бумаги или хлопчатобумажной ткани набухает, и этот поверхностный слой, представляющий собой частично разрушенную и подвергнувшуюся гидролизу целлюлозу, придает бумаге или ткани после высушивания особый лоск и повышенную прочность. Это явление впервые было замечено в 1846 г. французскими исследователями Ж.Пумару и Л.Фипойе.

Слабые (0,5%-ные) растворы минеральных и органических кислот при температуре примерно до 70°С, если после их нанесения следует промывка, не оказывают разрушающего действия на целлюлозу.

К щелочам (разбавленным растворам) целлюлоза устойчива. Растворы едкого натра в концентрации 2-3,5% применяют при щелочной варке тряпья, идущего на изготовление бумаги. При этом из целлюлозы удаляются не только загрязнения, но и продукты деструкции полимерных молекул целлюлозы, имеющие более короткие цепи. В отличие от целлюлозы, эти продукты деструкции растворимы в щелочных растворах.

Своеобразно действуют на целлюлозу концентрированные растворы щелочей на холоде - при комнатной и более низких температурах. Этот процесс, открытый в 1844 г. английским исследователем Дж. Мерсером и получивший название мерсеризации, широко применяется для облагораживания хлопчатобумажных тканей. Волокна обрабатывают в натянутом состоянии при температуре 20°С 17,5%-ным раствором едкого натра. Молекулы целлюлозы присоединяют щелочь, образуется так называемая щелочная целлюлоза, и этот процесс сопровождается сильным набуханием целлюлозы. После промывки щелочь удаляется, а волокна приобретают мягкость, шелковистый блеск, становятся более прочными и восприимчивыми к красителям и влаге.

При высоких температурах в присутствии кислорода воздуха концентрированные растворы щелочей вызывают деструкцию целлюлозы с разрывом глюкозидных связей.

Окислители, применяемые для отбелки целлюлозных волокон в текстильном производстве, а также для получения бумаг с высокой степенью белизны, действуют на целлюлозу разрушающе, окисляя гидроксильные группы и разрывая глюкозидные связи. Поэтому в производственных условиях все параметры процесса отбеливания строго контролируются.

Когда мы говорили о строении молекулы целлюлозы, мы имели в виду ее идеальную модель, состоящую только из многочисленных остатков молекулы глюкозы. Мы не уточняли, сколько этих глюкозных остатков содержится в цепочке молекулы (или, как принято называть гигантские молекулы, - в макромолекуле) целлюлозы. Но в действительности, т.е. в любом природном растительном сырье, существуют большие или меньшие отклонения от описанной идеальной модели. Макромолекула целлюлозы может содержать некоторое количество остатков молекул других моносахаридов - гексоз (т.е. содержащих 6 атомов углерода, как и глюкоза, которая также относится к гексозам) и пентоз (моносахаридов с 5-ю атомами углерода в молекуле). Макромолекула природной целлюлозы может содержать также и остатки уроновых кислот - так называют карбоновые кислоты класса моносахаридов, остаток глюкуроновой кислоты, например, отличается от остатка глюкозы тем, что содержит вместо группы -СН 2 ОН карбоксильную группу -СООН, характерную для карбоновых кислот.

Количество глюкозных остатков, содержащихся в макромолекуле целлюлозы, или так называемая степень полимеризации, обозначаемая индексом n, также различна для разных видов целлюлозного сырья и колеблется в широких пределах. Так, в хлопке n составляет в среднем 5 000 - 12 000, а в льне, пеньке и рами 20 000 - 30 000. Таким образом, молекулярная масса целлюлозы может достигать 5 млн. кислородных единиц. Чем выше n, тем прочнее целлюлоза. Для целлюлозы, получаемой из древесины, n значительно ниже - в пределах 2500 - 3000, что обусловливает и меньшую прочность волокон древесной целлюлозы.

Однако если рассматривать целлюлозу как материал, полученный из какого-либо одного вида растительного сырья - хлопка, льна, конопли или древесины и т.д., то и в этом случае молекулы целлюлозы будут иметь неодинаковую длину, неодинаковую степень полимеризации, т.е. в этой целлюлозе будут присутствовать более длинные и более короткие молекулы. Высокомолекулярную часть любой технической целлюлозы принято называть а-целлюлозой - так условно обозначают ту часть целлюлозы, которая состоит из молекул, содержащих 200 и более глюкозных остатков. Особенностью этой части целлюлозы является нерастворимость в 17,5%-ном растворе едкого натра при 20°С (таковы, как уже упоминалось, параметры процесса мерсеризации - первого этапа производства вискозного волокна).

Растворимая в этих условиях часть технической целлюлозы называется гемицеллюлозой. Она в свою очередь состоит из фракции b-целлюлозы, содержащей от 200 до 50 глюкозных остатков, и у-целлюлозы - наиболее низкомолекулярной фракции, с n менее 50. Название «гемицеллюлоза», так же как и «а-целлюлоза», условно: в состав гемицеллюлоз входит не только целлюлоза сравнительно низкой молекулярной массы, но и другие полисахариды, молекулы которых построены из остатков других гексоз и пентоз, т.е. другие гексозаны и пентозаны (см., например, содержание пентозанов в табл. 1). Общее их свойство - невысокая степень полимеризации n, менее 200, и как следствие - растворимость в 17,5%-ном растворе едкого натра.

Качество целлюлозы определяется не только содержанием a-целлюлозы, но и содержанием гемицеллюлоз. Известно, что при повышенном содержании a-целлюлозы волокнистый материал отличается обычно более высокой механической прочностью, химической и термической стойкостью, стабильностью белизны и долговечностью. Но для получения прочного полотна бумаги необходимо, чтобы в технической целлюлозе присутствовали и гемицеллюлозные спутники, так как чистая а-целлюлоза не склонна к фибриллированию (расщеплению волокон в продольном направлении с образованием тончайших волоконец - фибрилл) и в процессе размола волокон легко рубится. Гемицеллюлоза облегчает фибриллирование, что в свою очередь улучшает сцепление волокон в бумажном листе без чрезмерного уменьшения их длины при размоле.

Когда мы говорили о том, что понятие «а-целлюлоза» тоже условно, мы имели в виду, что и а-целлюлоза не является индивидуальным химическим соединением. Этот термин обозначает суммарное количество веществ, находящихся в технической целлюлозе и нерастворимых в щелочи при мерсеризации. Действительное же содержание высокомолекулярной целлюлозы в a-целлюлозе всегда меньше, так как примеси (лигнин, зола, жиры, воски, а также пентозаны и пектиновые вещества, химически связанные с целлюлозой) не полностью растворяются при мерсеризации. Поэтому без параллельного определения количества этих примесей содержание а-целлюлозы не может характеризовать чистоту целлюлозы, о ней можно судить лишь при наличии этих необходимых дополнительных данных.

Продолжая изложение первоначальных сведений о строении и свойствах спутников целлюлозы, вернемся к табл. 1.

В табл. 1 были приведены вещества, встречающиеся наряду с целлюлозой в растительных волокнах. Первыми после целлюлозы указаны пектиновые вещества и пентозаны. Пектиновые вещества - это полимеры класса углеводов, которые, так же как целлюлоза, имеют цепочечное строение, но построены из остатков уроновой кислоты, точнее - галактуроновой кислоты. Полигалактуроновая кислота называется пектовой кислотой, а ее метиловые эфиры - пектинами (см. схему 4).



СХЕМА 4 Участок цепи макромолекулы пектина

Это, разумеется, только схема, так как пектины разных растений различаются по молекулярной массе, содержанию групп -ОСН3 (так называемых метокси-, или метоксильных, групп, или просто - метоксилов) и их распределению по цепи макромолекулы. Пектины, содержащиеся в клеточном соке растений, растворимы в воде и способны образовывать в присутствии сахара и органических кислот плотные гели. Однако пектиновые вещества существуют в растениях главным образом в виде нерастворимого протопектина - полимера разветвленного строения, в котором линейные участки макромолекулы пектина связаны поперечными мостиками. Протопектин содержится в стенках растительной клетки и межклеточном цементирующем материале, выполняя роль опорных элементов. Вообще пектиновые вещества являются резервным материалом, из которого путем ряда превращений образуется целлюлоза и формируется клеточная стенка. Так, например, в начальной стадии роста хлопкового волокна содержание пектиновых веществ в нем достигает 6%, а ко времени вскрытия коробочки постепенно убывает примерно до 0,8%. Параллельно увеличивается содержание целлюлозы в волокне, повышается его прочность, повышается степень полимеризации целлюлозы.

Пектиновые вещества довольно стойки к кислотам, но под действием щелочей при нагревании разрушаются, и это обстоятельство используется для очистки целлюлозы от пектиновых веществ (путем варки, например, хлопкового пуха с раствором едкого натра). Легко разрушаются пектиновые вещества и под действием окислителей.

Пентозаны - это полисахариды, построенные из остатков пентоз - обычно арабинозы и ксилозы. Соответственно эти пентозаны называются арабанами и ксиланами. Они имеют линейное (цепочечное) или слабо разветвленное строение и в растениях обычно сопутствуют пектиновым веществам (арабаны) или входят в состав гемицеллюлоз (ксиланы). Пентозаны бесцветны, аморфны. Арабаны хорошо растворимы в воде, ксиланы в воде не растворяются.

Следующим важнейшим спутником целлюлозы является лигнин - полимер разветвленного строения, вызывающий одревеснение растений. Как видно из табл. 1, лигнин отсутствует в хлопковом волокне, но в остальных волокнах - льняном, пеньковом, рами и особенно джутовом - он содержится в меньших или больших количествах. Он заполняет главным образом пространства между клетками растения, но проникает и в поверхностные слои волокон, играя роль инкрустирующего вещества, скрепляющего целлюлозные волокна. Особенно много лигнина содержится в древесине - до 30%. По своей природе лигнин уже не относится к классу полисахаридов (как целлюлоза, пектиновые вещества и пентозаны), а представляет собой полимер на основе производных многоатомных фенолов, т.е. относится к так называемым жирноароматическим соединениям. Существенное его отличие от целлюлозы заключается и в том, что макромолекула лигнина имеет нерегулярное строение, т.е. полимерную молекулу составляют не одинаковые остатки мономерных молекул, а разнообразные структурные элементы. Однако последние имеют между собой то общее, что состоят из ароматического ядра (которое образовано в свою очередь 6-ю атомами углерода С) и боковой пропановой цепочки (из 3-х атомов углерода С), этот общий для всех лигнинов структурный элемент называют фенилпропановым звеном (см. схему 5).


СХЕМА 5 Фенилпропановое звено

Таким образом, лигнин принадлежит к группе природных соединений, имеющих общую формулу (С 6 С 3)х. Лигнин не является индивидуальным химическим соединением со строго определенным составом и свойствами. Лигнины различного происхождения заметно отличаются друг от друга, и даже лигнины, полученные из одного вида растительного сырья, но разными способами, иногда очень сильно различаются по элементарному составу, содержанию тех или иных заместителей (так называют группы, соединенные с бензольным ядром или боковой пропановой цепочкой), растворимости и другим свойствам.

Высокая реакционная способность лигнина и неодинаковость его строения затрудняют исследование его структуры и свойств, но тем не менее установлено, что в состав всех лигнинов входят фенилпропановые звенья, представляющие собой производные гваякола (т.е. монометилового эфира пирокатехина, см. схему 6).



СХЕМА 6 Производное гваякола

Выявлены и некоторые отличия в строении и свойствах лигнинов однолетних растений и злаков, с одной стороны, и древесины - с другой. Например, лигнины трав и злаков (к ним относятся лен и пенька, на которых мы останавливаемся более подробно) сравнительно хорошо растворяются в щелочах, тогда как лигнины древесины -трудно. Это обусловливает более жесткие параметры процесса удаления лигнина (делигнификации) из древесины методом натронной варки древесины (как-то: более высокие температуры и давления) по сравнению с процессом удаления лигнина из молодых побегов и трав методом варки в щелоке - методом, который был известен в Китае еще в начале первого тысячелетия нашей эры и который широко использовался под названием мацерации или бучения в Европе при переработке тряпья и разного рода отходов (льняных, пеньковых) в бумагу.

Мы уже говорили о высокой реакционной способности лигнина, т.е. о его способности вступать в многочисленные химические реакции, что объясняется присутствием в макромолекуле лигнина большого количества реакционноспособных функциональных групп, т.е. способных вступать в те или иные химические превращения, присущие определенному классу химических соединений. Особенно это относится к спиртовым гидроксилам -ОН, находящимся у атомов углерода в боковой пропановой цепочке, по этим группам -ОН происходит, например, сульфирование лигнина при сульфитной варке древесины - еще одном способе ее делигнификации.

Вследствие большой реакционной способности лигнина легко происходит и его окисление, в особенности в щелочной среде, с образованием карбоксильных групп -СООН. А при действии хлорирующих и белящих агентов лигнин легко хлорируется, причем атом хлора Сl вступает как в ароматическое ядро, так и в боковую пропановую цепочку, в присутствии влаги одновременно с хлорированием происходит и окисление макромолекулы лигнина, и получаемый хлорлигнин содержит также карбоксильные группы. Хлорированный и окисленный лигнин легче вымывается из целлюлозы. Все эти реакции широко используются в целлюлозно-бумажной промышленности для очистки целлюлозных материалов от примеси лигнина, который является очень неблагоприятным компонентом технической целлюлозы.

Почему присутствие лигнина нежелательно? Прежде всего потому, что лигнин имеет разветвленную, часто трехмерную, пространственную структуру и поэтому не обладает волокнообразующими свойствами, т. е. из него не могут быть получены нити. Он придает целлюлозным волокнам жесткость, ломкость, снижает способность целлюлозы набухать, окрашиваться и взаимодействовать с реагентами, применяемыми при различных процессах обработки волокон. При приготовлении бумажной массы лигнин затрудняет размол и фибриллирование волокон, ухудшает их взаимное сцепление. Кроме того, сам по себе он окрашен в желто-коричневый цвет, а при старении бумаги к тому же еще и усиливает ее пожелтение.

Наши рассуждения о строении и свойствах спутников целлюлозы могут показаться, на первый взгляд, излишними. Действительно, уместны ли здесь даже краткие описания строения и свойств лигнина, если реставратор-график имеет дело не с природными волокнами, а с бумагой, т.е. материалом, изготовленным из очищенных от лигнина волокон? Это, разумеется, так, но только в том случае, если речь идет о тряпичной бумаге, изготовленной из хлопчатобумажного сырья. В хлопке лигнина нет. Практически нет его и в тряпичной бумаге из льна или пеньки - он был почти полностью удален в процессе бучения тряпья.

Однако в бумаге, полученной из древесины, и в особенности в сортах газетной бумаги, в которых наполнителем служит древесная масса, лигнин содержится в достаточно больших количествах, и это обстоятельство следует иметь в виду реставратору, работающему с самыми разными, в том числе и низкосортными бумагами.

Целлюлоза (франц. cellulose, от лат. cellula, буквально - комнатка, клетушка, здесь - клетка)

клетчатка, один из самых распространённых природных полимеров (полисахарид (См. Полисахариды)); главная составная часть клеточных стенок растений, обусловливающая механическую прочность и эластичность растительных тканей. Так, содержание Ц. в волосках семян хлопчатника 97-98%, в стеблях лубяных растений (лён, рами, джут) 75-90%, в древесине 40-50%, камыше, злаках, подсолнечнике 30-40%. Обнаружена также в организме некоторых низших беспозвоночных.

В организме Ц. служит главным образом строительным материалом и в обмене веществ почти не участвует. Ц. не расщепляется обычными ферментами желудочно-кишечного тракта млекопитающих (амилазой, мальтазой); при действии фермента целлюлазы, выделяемого микрофлорой кишечника травоядных животных, Ц. распадается до D-глюкозы. Биосинтез Ц. протекает с участием активированной формы D-глюкозы.

Структура и свойства целлюлозы. Ц. - волокнистый материал белого цвета, плотность 1,52-1,54 г/см 3 (20 °С). Ц. растворима в т. н. медно-аммиачном растворе [раствор амминкупрум (II)-гидроксида в 25%-ном водном растворе аммиака], водных растворах четвертичных аммониевых оснований, водных растворах комплексных соединений гидроокисей поливалентных металлов (Ni, Со) с аммиаком или этилендиамином, щелочном растворе комплекса железа (III) с виннокислым натрием, растворах двуокиси азота в диметилформамиде, концентрированной фосфорной и серной кислотах (растворение в кислотах сопровождается деструкцией Ц.).

Макромолекулы Ц. построены из элементарных звеньев D-глюкозы (См. Глюкоза), соединённых 1,4-β-гликозидными связями в линейные неразветвлённые цепи:

Ц. обычно относят к кристаллическим полимерам. Для неё характерно явление полиморфизма, т. е. наличие ряда структурных (кристаллических) модификаций, различающихся параметрами кристаллической решётки и некоторыми физическими и химическими свойствами; основными модификациями являются Ц. I (природная Ц.) и Ц. II (Гидратцеллюлоза).

Ц. имеет сложную надмолекулярную структуру. Первичный элемент её - микрофибрилла, состоящая из нескольких сотен макромолекул и имеющая форму спирали (толщина 35-100 Å, длина 500-600 Å и выше). Микрофибриллы объединяются в более крупные образования (300-1500 Å), по-разному ориентированные в различных слоях клеточной стенки. Фибриллы «цементируются» т. н. матриксом, состоящим из др. полимерных материалов углеводной природы (гемицеллюлозы, пектина) и белка (экстенсина).

Гликозидные связи между элементарными звеньями макромолекулы Ц. легко гидролизуются под действием кислот, что является причиной деструкции Ц. в водной среде в присутствии кислых катализаторов. Продукт полного гидролиза Ц. - глюкоза; эта реакция лежит в основе промышленного способа получения этилового спирта из целлюлозосодержащего сырья (см. Гидролиз растительных материалов). Частичный гидролиз Ц. протекает, например, при выделении её из растительных материалов и при химической переработке. Неполным гидролизом Ц., осуществляемым таким образом, чтобы деструкция происходила только в малоупорядоченных участках структуры, получают т. н. микрокристаллическую «порошковую» Ц. - белоснежный легкосыпучий порошок.

В отсутствие кислорода Ц. устойчива до 120-150 °С; при дальнейшем повышении температуры природные целлюлозные волокна подвергаются деструкции, гидратцеллюлозные - дегидратации. Выше 300 °С происходит графитизация (карбонизация) волокна - процесс, используемый при получении углеродных волокон (См. Углеродные волокна).

Вследствие наличия в элементарных звеньях макромолекулы гидроксильных групп Ц. легко этерифицируется и алкилируется; эти реакции широко используются в промышленности для получения простых и сложных эфиров Ц. (см. Целлюлозы эфиры). Ц. реагирует с основаниями; взаимодействие с концентрированными растворами едкого натра, приводящее к образованию щелочной Ц. (Мерсеризация Ц.), - промежуточная стадия при получении эфиров Ц. Большинство окислителей вызывает неизбирательное окисление гидроксильных групп Ц. до альдегидных, кето- или карбоксильных групп, и только некоторые из окислителей (например, йодная кислота и её соли) - избирательное (т. е. окисляют ОН-группы у определённых атомов углерода). Окислительной деструкции Ц. подвергают при получении вискозы (См. Вискоза) (стадия предсозревания щелочной Ц.); окисление происходит также при отбелке Ц.

Применение целлюлозы. Из Ц. производят бумагу (См. Бумага), картон, разнообразные искусственные волокна - гидратцеллюлозные (Вискозные волокна , медноаммиачное волокно (См. Медноаммиачные волокна)) и эфироцеллюлозные (ацетатное и триацетатное - см. Ацетатные волокна), плёнки (целлофан), пластмассы и лаки (см. Этролы , Гидратцеллюлозные плёнки , Эфироцеллюлозные лаки). Природные волокна из Ц. (хлопковое, лубяные), а также искусственные широко используются в текстильной промышленности. Производные Ц. (главным образом эфиры) применяют как загустители печатных красок, шлихтующие и аппретирующие препараты, стабилизаторы суспензий при изготовлении бездымного пороха и др. Микрокристаллическую Ц. используют в качестве наполнителя при изготовлении лекарственных препаратов, как сорбент в аналитической и препаративной хроматографии.

Лит.: Никитин Н. И., Химия древесины и целлюлозы, М. - Л., 1962; Краткая химическая энциклопедия, т. 5, М., 1967, с. 788-95; Роговин З. А., Химия целлюлозы, М., 1972; Целлюлоза и ее производные, пер. с англ., т. 1-2, М., 1974; Кретович В. Л., Основы биохимии растений, 5 изд., М., 1971.

Л. С. Гальбрайх, Н. Д. Габриэлян.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Целлюлоза" в других словарях:

    Целлюлоза … Википедия

    1) иначе клетчатка; 2) сорт пергаменной бумаги из смеси древесины, глины и хлопка. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. ЦЕЛЛЮЛОЗА 1) клетчатка; 2) бумага, приготовляемая из древесины с примесью … Словарь иностранных слов русского языка

    Госсипин, целлулоза, клетчатка Словарь русских синонимов. целлюлоза сущ., кол во синонимов: 12 алкалицеллюлоза (1) … Словарь синонимов

    - (С6Н10О5), углевод из группы ПОЛИСАХАРИДОВ, являющийся струк турным компонентом клеточных стенок растений и водорослей. Он состоит из параллельных неразветвленных цепей глюкозы, соединенных крест накрест между собой в устойчивую структуру.… … Научно-технический энциклопедический словарь

    Клетчатка, основной опорный полисахарид клеточных стенок растений и нек рых беспозвоночных (асцидии); один из самых распространённых природных полимеров. Из 30 млрд. т углерода, к рые высшие растения ежегодно превращают в органич. соединения, ок … Биологический энциклопедический словарь

    целлюлоза - ы, ж. cellulose f., нем. Zellulose <лат. cellula клетка.1. То же, что клетчатка. БАС 1. 2. Вещество, получаемое из химически обработанной древесины и стеблей некоторых растений; служит для производства бумаги, искусственного шелка, а также… … Исторический словарь галлицизмов русского языка

    - (франц. cellulose от лат. cellula, букв. комнатка, здесь клетка) (клетчатка), полисахарид, образованный остатками глюкозы; главная составная часть клеточных стенок растений, обусловливающая механическую прочность и эластичность растительных… … Большой Энциклопедический словарь

    - (или целлулоза), целлюлозы, мн. нет, жен. (от лат. cellula клетка). 1. То же, что клетчатка в 1 знач. (бот.). 2. Вещество, получаемое из химически обработанной древесины и стеблей некоторых растений и идущее на изготовление бумаги, искусственного … Толковый словарь Ушакова

    ЦЕЛЛЮЛОЗА, ы, жен. То же, что клетчатка (в 1 знач.). | прил. целлюлозный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Целлюлоза. См. клетчатка. (

Целлюлоза — это производные двух природных веществ: дерева и хлопка. В растениях она осуществляет важную функцию, придает им гибкость и прочность.

Где встречается вещество?

Целлюлоза — это вещество натуральное. Растения способны вырабатывать её самостоятельно. В составе присутствуют: водород, кислород, углерод.

Растения вырабатывают сахар под действием солнечных лучей, он перерабатывается клетками и даёт возможность волокнам выдерживать высокие нагрузки от ветра. Целлюлоза — это вещество-участник процесса фотосинтеза. Если сахарную воду брызнуть на срез свежего дерева, то жидкость быстро впитается.

Начинается выработка целлюлозы. Этот естественный способ её получения взят за основу для производства хлопчатобумажной ткани в промышленных масштабах. Существует несколько методов, благодаря которым получают целлюлозу различного качества.

Метод изготовления №1

Получение целлюлозы происходит естественным методом — из семян хлопчатника. Волоски собираются автоматизированными механизмами, но требуется длительный период выращивания растения. Ткань, произведённая таким образом, считается наиболее чистой.

Более быстро целлюлозу можно получить из волокон дерева. Однако при этом методе качество намного хуже. Этот материал пригоден только для изготовления неволокнистого пластика, целлофана. Также из такого материала могут производить искусственные волокна.

Естественное получение

Производить целлюлозу из семян хлопка начинают с отделения длинных волокон. Этот материал идёт на изготовление хлопчатобумажной ткани. Мелкие части, менее 1,5 см, называют

Они пригодны для получения целлюлозы. Собранные части подвергают нагреву под высоким давлением. Длительность процесса может достигать 6 часов. Перед тем как начать греть материал, к нему добавляют гидроксид натрия.

Полученное вещество требуется промыть. Для этого применяется хлор, который к тому же и отбеливает. Состав целлюлозы при таком методе наиболее чистый (99%).

Метод изготовления №2 из древесины

Для получения 80-97% целлюлозы используют щепу хвойных деревьев, химические вещества. Всю массу смешивают и подвергают обработке температурой. В результате варки выделяется требуемое вещество.

Смешивается бисульфит кальция, диоксид серы и древесная масса. Целлюлозы в полученной смеси не более 50%. В результате реакции в жидкости растворяются углеводороды, лигнины. Твёрдый материал проходит стадию очистки.

Получают массу, напоминающую некачественную бумагу. Этот материал служит основой изготовления веществ:

  • Эфиров.
  • Целлофана.
  • Вискозного волокна.

Что производят из ценного материала?

Волокнистое, что позволяет из неё изготавливать одежду. Хлопковый материл — это на 99,8% натуральный продукт, полученный естественным методом, приведенным выше. Из него же можно изготовить взрывчатку в результате химической реакции. Целлюлоза активна при нанесении на неё кислот.

Свойства целлюлозы применимы для производства тканей. Так, из неё изготавливают искусственные волокна, напоминающие внешне и на ощупь натуральные ткани:

  • вискозное и ;
  • искусственный мех;
  • медно-аммиачный шёлк.

Преимущественно из древесной целлюлозы изготавливают:

  • лаки;
  • фотопленку;
  • бумажные изделия;
  • пластмассы;
  • губки для мытья посуды;
  • бездымный порох.

В результате химической реакции из целлюлозы получают:

  • тринитроцеллюлозу;
  • динитроклетчатку;
  • глюкозу;
  • жидкое топливо.

В пищу целлюлоза также может применяться. В составе некоторых растений (сельдерея, салата, отрубей) присутствуют её волокна. Также она служит материалом для производства крахмала. Уже научились делать из неё тонкие нити — искусственная паутина очень прочная и не растягивается.

Химическая формула целлюлозы — C6H10O5. Является полисахаридом. Из неё изготавливают:

  • медицинскую вату;
  • бинты;
  • тампоны;
  • картон, ДСП;
  • пищевую добавку Е460.

Достоинства вещества

Целлюлоза способна выдерживать высокие температуры до 200 градусов. Молекулы не разрушаются, это позволяет изготавливать из неё пластиковую посуду многоразового использования. При этом сохраняется важное качество — эластичность.

Целлюлоза выдерживает длительное воздействие кислот. Абсолютно не растворяется в воде. Не переваривается человеческим организмом, используется в качестве сорбента.

Микрокристаллическая целлюлоза используется в нетрадиционной медицине в качестве препарата для очистки пищеварительной системы. Порошкообразное вещество выступает в роли пищевой добавки для снижения калорийности употребляемых блюд. Это способствует выводу токсинов, снижению сахара и холестерина в крови.

Метод изготовления №3 — промышленный

На производственных площадках целлюлозу готовят путём варки в различных средах. От вида реагента зависит используемый материал — тип дерева:

  • Смолистые породы.
  • Лиственные деревья.
  • Растения.

Различают несколько видов реагентов для варки:

  • Иначе метод именуется как сульфитный. В качестве раствора применяют соль сернистой кислоты либо её жидкую смесь. При этом варианте производства целлюлозу выделяют из пород хвойных. Хорошо перерабатывают пихты, ели.
  • Щелочная среда или натронный метод основан на использовании гидроксида натрия. Раствор хорошо отделяет целлюлозу из волокон растений (кукурузных стеблей) и деревьев (преимущественно лиственных).
  • Одновременное использование гидроксида и сульфида натрия применяется в сульфатном методе. Он широко внедрен в производства по выработке сульфида белого щелока. Технология является достаточно негативной для окружающей природы из-за образующихся сторонних химических реакций.

Последний метод наиболее распространен из-за его универсальности: практически из любого дерева можно получить целлюлозу. Однако чистота материала не совсем высокая после одной варки. От примесей избавляются дополнительными реакциями:

  • гемицеллюлозы удаляют щелочными растворами;
  • макромолекулы лигнина и продукты их разрушения убираются хлором с последующей обработкой щелочью.

Пищевая ценность

Крахмал и целлюлоза имеют схожую структуру. В результате экспериментов удалось получить из несъедобных волокон продукт. Он требуется человеку постоянно. Употребляемая пища состоит более чем из 20% крахмала.

Учёным удалось получить из целлюлозы вещество амилозу, положительно влияющую на состояние организма человека. Одновременно с этим в процессе реакции выделяется глюкоза. Получается безотходное производство — последнее вещество направляется для изготовления этанола. Амилоза же служит как средство профилактики ожирения.

В результате реакции целлюлоза остаётся в твердом состоянии, оседая на дно сосуда. Остальные составляющие удаляются при помощи магнитных наночастиц либо растворяются и отводятся с жидкостью.

Типы вещества в продаже

Поставщики предлагают целлюлозу разного качества по приемлемым ценам. Перечислим основные типы материала:

  • Целлюлоза сульфатная белого цвета, произведенная из двух видов дерева: хвойных и лиственных пород. Имеется небеленый материал, используемый в упаковочном материале, бумаге низкого качества для изоляционных материалов и других целей.
  • Имеется в продаже сульфитная также белого цвета, изготовленная из хвойных деревьев.
  • Порошковый материал белого цвета подходит для производства веществ медицинского назначения.
  • Целлюлоза премиум-сортов изготавливается методом отбеливания без участия хлора. В качестве сырья берутся хвойные породы. Древесная масса состоит из сочетания щепы ели и сосны в соотношении 20/80%. Чистота получаемого материала наивысшая. Он подходит для изготовления стерильных материалов, применяемых в медицине.

Для выбора подходящей целлюлозы используют стандартные критерии: чистота материала, прочность на разрыв, длина волокон, индекс сопротивления раздиранию. Также количественно указывается химическое состояние или агрессивность среды водной вытяжки и влажность. Для целлюлозы, поставляемой в виде беленой массы, применимы другие показатели: удельный объем, яркость, величина помола, прочность на растяжение, степень чистоты.

Немаловажным для массы целлюлозы является показатель — индекс сопротивления раздиранию. От него зависит назначение производимых материалов. Учитывают используемой в качестве сырья, и влажность. Также важен уровень смол и жиров. Однородность порошка важна для определенных технологических процессов. Для аналогичных целей оценивают вязкость и сопротивление продавливанию материала в виде листов.

Для чего нужна целлюлоза?

Целлюлоза – это главный материал для строительства, который используется в растительном мире . Она образует клеточные стенки высших растений, например таких, как деревья. Она делает растение гибким. Целлюлоза вырабатывается растениями для их потребностей. Ее состав идентичен составу сахара – целлюлоза состоит из углерода, кислорода и водорода. Все эти элементы есть также в воде и воздухе. Еще со школы всем известно, что под действием солнца на листьях образуется сахар. Это явление называется фотосинтезом. Сахар растворяется в соке растения и распространяется во все его части. В основном сахар используется растением для его роста и восстановления в случае каких-то неполадок, но есть некая доля сахара, которая превращается в целлюлозу.

Целлюлоза – натуральный продукт, и его можно получить только естественным способом , искусственно он не синтезируется. Самая чистая форма целлюлозы – это волоски семян хлопчатника. Сейчас целлюлозу получают только из двух видов природного сырья – из хлопка и из древесной массы. Хлопок не нуждается в сложном процессе обработки для того, чтобы изготовить из него впоследствии искусственные волокна и неволокнистый пластик. Процесс получения целлюлозы из хлопка представляет собой следующий процесс: от хлопкового семени сначала отделяются длинные волокна, которые, собственно, и используются для того, чтобы изготовить хлопчатобумажные ткани. После этого остается «линт» или хлопковый пух, который представляет собой короткие волоски длиной не более 15 мм. Линт, будучи отделенным от хлопкового семени, нагревают под давлением от двух до шести часов. При этом еще используется 3%-й раствор гидроксида натрия. После этого полученный материал промывают и отбеливают с помощью хлора, потом снова промывают и высушивают. В итоге получается целлюлоза, чистота которой 99%. Это наиболее чистая целлюлоза.

Из древесной массы получается целлюлоза более «грязная» - в ней не более 97% чистой целлюлозы. Древесная масса изготавливается из хвойных деревьев. Древесную щепу варят под давлением, добавляя диоксид серы и бисульфит кальция. Лигнины и углеводороды, из которых древесная масса состоит примерно наполовину, при этом выделяются в раствор. В итоге, после того, как полученный материал промыли, отбелили и очистили, получается что-то похожее на рыхлую бумагу. Этот материал содержит в себе от 80 до 97% целлюлозы. Полученная таким образом целлюлоза может быть использована для того, чтобы получить из нее вискозное волокно и целлофан. Кроме этого, из нее получаются также сложные и простые эфиры.

Человек использует целлюлозу в разных отраслях промышленности.. Например, из хлопка шьют одежду, а ведь хлопок состоит на 99,8% из натуральной целлюлозы. А для того, чтобы получить взрывчатое вещество пироксилин, нужно всего лишь провести химическую реакцию – нанести на хлопок азотную и серную кислоту.

Целлюлозу человек использует и для питания. Она входит в состав многих съедобных растений – салат, сельдерей. Отруби содержат большое количество необходимой организму человека целлюлозы. Несмотря на то, что целлюлоза не может быть переработана человеческой пищеварительной системой, она представляет что-то вроде «грубых кормов». Кроме этого, после обработки из целлюлозы можно получить и такие изделия, как основу для фотопленки, добавку для лаков, различные пластические материалы..

Ставшие привычными для нас обыденные предметы, которые повсеместно встречаются в нашей повседневной жизни, невозможно было бы представить без использования продуктов органической химии. Задолго до Ансельма Пайя, в результате которых он смог обнаружит и описать в 1838 году полисахарид, получивший "целлюлоза" (производная французского cellulose и латинского cellula, что означает «клетка, клетушка»), свойство этого вещества активно использовалось в производстве самых незаменимых вещей.

Расширение знаний о целлюлозе привело к появлению самых разнообразных вещей, изготовленных на её основе. Бумага различных сортов, картон, детали из пластмассы и из искусственных вискозных, медно-аммиачных), полимерные плёнки, эмали и лаки, моющие средства, пищевые добавки (E460) и даже бездымный порох являются продуктами производства и переработки целлюлозы.

В чистом виде целлюлоза представляет собой белое твердое вещество с довольно привлекательными свойствами, проявляет высокую устойчивость к различным химическим и физическим воздействиям.

Природа избрала целлюлозу (клетчатку) своим главным строительным материалом. В растительном мире она составляет основу для деревьев и прочих высших растений. В самом чистом виде в природе целлюлоза находится в волосках семян хлопчатника.

Уникальные свойства этого вещества определяются его оригинальным строением. Формула целлюлозы имеет общую запись (C6 H10 O5)n из чего мы видим ярко выраженное полимерное строение. Повторяющийся огромное количество раз остаток β-глюкозы, имеющий более развернутый вид как -[С6 Н7 О2 (OH)3]-, соединяется в длинную линейную молекулу.

Молекулярная формула целлюлозы определяет её уникальные химические свойства противостоять воздействию агрессивных сред. Также целлюлоза обладает высокой стойкостью к нагреванию, даже при 200 градусах по Цельсию вещество сохраняет свою структуру и не разрушается. Самовоспламенение происходит при температуре в 420°С.

Не менее привлекательна целлюлоза своими физическими свойствами. целлюлозы в виде длинных нитей, содержащих от 300 до 10 000 глюкозных остатков, не имеющих боковых ответвлений, во многом определяет высокую устойчивость этого вещества. Формула глюкозы показывает, как множество предают целлюлозным волокнам не только большую механическую прочность, но и высокую эластичность. Результатом аналитической обработки множества химических опытов и исследований стало создание модели макромолекулы целлюлозы. Она представляет собой жесткую спираль с шагом в 2-3 элементарных звена, которая стабилизирована за счёт внутримолекулярных водородных связей.

Не формула целлюлозы, а степень её полимеризации является основной характеристикой для многих веществ. Так в необработанном хлопке число глюкозидных остатков достигает 2500-3000, в очищенном хлопке - от 900 до 1000, очищенная древесная масса обладает показателем 800-1000, в регенеративной целлюлозе их количество сокращается до 200-400, а в промышленном ацетате целлюлозы он составляет от 150 до 270 «звеньев» в молекуле.

Продуктом для получения целлюлозы служит главным образом это древесина. Основной технологический процесс производства предполагает варку щепы с различными химическими реагентами с последующей очисткой, сушкой и резкой готового продукта.

Последующая обработка целлюлозы дает возможность получать множество материалов с заданными физическими и химическими свойствами, позволяющими производить самые различные продукты, без которых жизнь современного человека трудно представить. Уникальная формула целлюлозы, скорректированная химической и физической обработкой, стала основой для получения материалов, не имеющих аналогов в природе, что позволило их широко применять в химической промышленности, медицине и других отраслях человеческой деятельности.

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины