Электрокардиографические отведения. Треугольник и закон Эйнтховена. Стандартные отведения от конечностей - I, II, III Треугольник эйнтховена с обозначением отведений

Электрокардиографические отведения. Треугольник и закон Эйнтховена. Стандартные отведения от конечностей - I, II, III Треугольник эйнтховена с обозначением отведений

29.06.2020

Благодаря использованию очень лёгкой и тонкой нити и возможности изменять её напряжение для регулирования чувствительности прибора струнный гальванометр позволил получить более точные выходные данные, чем капиллярный электрометр. Первую статью о записывании электрокардиограммы человека на струнном гальванометре Эйнтховен опубликовал в 1903 году. Существует мнение, что Эйнтховену удалось достичь точности, превосходящей многие современные электрокардиографы.

В 1906 году Эйнтховен опубликовал статью «Телекардиограмма» (фр. Le tlcardiogramme), в которой описал метод записи электрокардиограммы на расстоянии и впервые показал, что электрокардиограммы различных форм сердечных заболеваний имеют характерные различия. Он привёл примеры кардиограмм, снятых у пациентов с гипертрофией правого желудочка при митральной недостаточности, гипертрофией левого желудочка при аортальной недостаточности, гипертрофией левого ушка предсердия при митральном стенозе, ослабленной сердечной мышцей, с различными степенями блокады сердца при экстрасистоле.

Вскоре после опубликования первой статьи о применении электрокардиографа Эйнтховена посетил инженер из Мюнхена Макс Эдельманн с предложением наладить производство электрокардиографов и выплачивать Эйнтховену отчисления примерно по 100 марок за каждый проданный аппарат. Первые электрокардиографы, произведённые Эдельманном, были фактически копиями образца, сконструированного Эйнтховеном. Однако изучив чертежи электрокардиографа Эйнтховена, Эдельманн понял, что его можно усовершенствовать. Он увеличил мощность и уменьшил размеры магнита, а также устранил необходимость его водяного охлаждения. В результате Эдельманн сконструировал аппарат, сильно отличающийся по параметрам и дизайну от первоисточника, к тому же он узнал об аппарате Адера и использовал это как довод к тому, чтобы больше не выплачивать дивиденды от продаж. Разочаровавшись, Эйнтховен принял решение в дальнейшем не сотрудничать с Эдельманном и обратился с предложением заключить соглашение о производстве к директору компании CSIC Хорэсу Дарвину.

Представителю компании, посетившему лабораторию Эйнтховена, не приглянулись возможности аппарата в силу его громоздкости и требовательности к людским ресурсам: он занимал несколько столов, весил приблизительно 270 килограммов и требовал для полноценного обслуживания до пяти человек. Однако в своей статье «Дополнительно об электрокардиограмме» (нем. Weiteres ber das Elektrokardiogramm, 1908) Эйнтховен показал диагностическое значение электрокардиографии. Это послужило серьёзным аргументом, и в 1908 году CSIC начала работы по усовершенствованию аппарата; в том же году был произведён и продан британскому физиологу Эдварду Шарпей-Шеферу первый произведённый компанией электрокардиограф.

К 1911 году была разработана «настольная модель» аппарата, владельцем одной из которых стал кардиолог Томас Льюис. Используя свой аппарат, Льюис изучил и классифицировал различные типы аритмии, ввёл новые термины: пейсмейкер, экстрасистола, мерцательная аритмия и опубликовал несколько статей и книг об электрофизиологии сердца. Устройство и управление аппаратом всё же оставалось затруднительным, о чём косвенно свидетельствует прилагавшаяся к нему десятистраничная инструкция. В период с 1911 по 1914 годы было продано 35 электрокардиографов, десять из которых было отправлено в США. После войны было налажено производство аппаратов, которые можно было бы подкатить непосредственно к больничной койке. К 1935 году удалось снизить вес аппарата до примерно 11 килограммов, что открыло широкие возможности к его использованию в медицинской практике.

Треугольник Эйнтховена

В 1913 году Виллем Эйнтховен в сотрудничестве с коллегами опубликовал статью, в которой предложил к использованию три стандартных отведения: от правой руки к левой, от правой руки к ноге и от ноги к левой руке с разностями потенциалов: V1,V2 и V3 соответственно. Такая комбинация отведений составляет электродинамически равносторонний треугольник с центром в источнике тока в сердце. Эта работа положила начало векторкардиографии, получившей развитие в 1920-х годах ещё при жизни Эйнтховена.

Закон Эйнтховена

Закон Эйтховена является следствием закона Кирхгофа и утверждает, что разности потенциалов трёх стандартных отведений подчиняются соотношению V1 + V3 = V2. Закон имеет применение, когда вследствие дефектов записи не удаётся идентифицировать зубцы P, Q, R, S, T и U для одного из отведений; в таких случаях можно вычислить значение разности потенциалов, при условии, если для других отведений получены нормальные данные.

Поздние годы и признание

В 1924 году Эйнтховен прибыл в США, где помимо посещения различных медицинских заведений прочитал лекцию из цикла Лекций Харви (англ. Harvey Lecture Series), положил начало циклу Лекций Данхема (англ. Dunham Lecture Series) и узнал о присуждении ему Нобелевской премии. Примечательно, что когда Эйнтховен в первый раз прочитал эту новость в Boston Globe, он подумал, что это либо шутка, либо опечатка. Однако его сомнения развеялись, когда он ознакомился с сообщением от Reuters. В том же году он получил премию с формулировкой «За открытие техники электрокардиограммы». За свою карьеру Эйнтховен написал 127 научных статей. Последняя его работа была опубликована посмертно, в 1928 году, и посвящалась токам действия сердца. Исследования Виллема Эйнтховена порой причисляются к десяти величайшим открытиям в области кардиологии в XX веке. В 1979 году был основан Фонд Эйнтховена, целью которого является организация конгрессов и семинаров по кардиологии и кардиохирургии.

Эйнтховен долгие годы страдал от артериальной гипертензии. Однако причиной его смерти 29 сентября 1927 года стал рак желудка. Эйнтховен был похоронен на церковном кладбище в городе Угстгест.

Сегодня почти каждый человек старше 50 лет страдает теми или иными сердечно-сосудистыми заболеваниями. Однако существует тенденция омоложения этих болезней. То есть все чаще встречаются молодые люди до 35 лет с инфарктом миокарда или сердечной недостаточностью. На фоне этого знание врачами электрокардиографии особенно актуально.

Треугольник Эйнтховена - основа ЭКГ. Без понимания его сути правильно поставить электроды и расшифровать качественно электрокардиограмму не получится. Статья расскажет о том, что это такое, зачем нужно знать о нем, как построить. В начале необходимо разобраться, что такое ЭКГ.

Электрокардиограмма

ЭКГ - это запись электрической активности сердца. Определение дано наиболее простое. Если же зреть в корень, то специальный прибор записывает суммарную электрическую активность мышечных клеток сердца, возникающую при их возбуждении.

Электрокардиограмма играет главенствующую роль в диагностике заболеваний. В первую очередь, конечно, ее назначают при подозрении на сердечные болезни. Кроме того, ЭКГ необходима всем, кто поступает в стационар. И неважно, это экстренная госпитализация или плановая. Кардиограмму назначают каждому при диспансеризации, плановом обследовании организма в условиях поликлиники.

Первые упоминания об электрических импульсах появились в 1862 году в трудах ученого И. М. Сеченова. Однако возможность записывать их появилась только с изобретением электромера в 1867 году. Огромный вклад в развитие метода электрокардиографии внес Виллиам Эйнтховен.

Кто такой Эйнтховен?

Виллиам Эйнтховен - голландский ученый, который в 25 лет стал профессором, заведующим кафедрой физиологии Лейденского университета. Интересно, что изначально он занимался офтальмологией, проводил исследования, написал докторскую диссертацию по данному направлению. Затем изучал дыхательную систему.

В 1889 году он посетил международный конгресс по физиологии, где впервые ознакомился с процедурой проведения электрокардиографии. После этого мероприятия Эйнтховен решил вплотную заняться улучшением функциональности прибора, записывающего электрическую активность сердца, а также качества самой записи.

Важнейшие открытия

В ходе изучения электрокардиографии Виллиам Эйнтховен ввел немало терминов, которыми все медицинское сообщество пользуется по сей день.

Ученый стал первым, кто ввел понятие зубцов P, Q, R, S, T. Сейчас сложно представить бланк ЭКГ без точного описания каждого из зубцов: амплитуды, полярности, ширины. Определение их значений, соотношений между собой играет важнейшую роль в диагностике заболеваний сердца.

В 1906 году в статье медицинского журнала Эйнтховен описал метод записи ЭКГ на расстоянии. Кроме того, он выявил существование прямой связи изменений на электрокардиограмме и определенных заболеваний сердца. То есть для каждого заболевания определяются характерные изменения на ЭКГ. В качестве примеров были использованы ЭКГ больных с при недостаточности митрального клапана, гипертрофия левого желудочка при недостаточности аортального клапана, различными степенями блокады проведения импульсов в сердце.

Перед построением треугольника Эйнтховена необходимо правильно поставить электроды. Красный электрод подсоединяют к правой руке, желтый прикрепляют к левой, а зеленый - к левой ноге. На правую нижнюю конечность накладывают черный, заземляющий, электрод.

Линии, условно соединяющие электроды, называются осями отведений. На чертеже они представляют собой стороны :

  • I отведение - соединений обеих рук;
  • II отведение связывает правую руку и левую ногу;
  • III отведение - левую руку и ногу.

Отведения регистрируют разницу напряжений между электродами. Каждая ось отведений имеет положительный и отрицательный полюс. Перпендикуляр, опущенный из центра треугольника на ось отведения, делит сторону треугольника на 2 равные части: положительную и отрицательную. Таким образом, если результирующий вектор сердца отклоняется в сторону положительного полюса, то на ЭКГ линия регистрируется над изолинией - зубцы P, R, T. Если в сторону отрицательного полюса, то регистрируется отклонение ниже изолинии - зубцы Q, S.

Построение треугольника

Для построения треугольника Эйнтховена с обозначением отведений на листе бумаги рисуем геометрическую фигуру с равными сторонами и вершиной, направленной вниз. В центре ставим точку - это сердце.

Отмечаем стандартные отведения. Верхняя сторона - это I отведение, справа - III, слева - II. Обозначаем полярности каждого отведения. Они стандартны. Их необходимо выучить.

Треугольник Эйнтховена готов. Осталось только использовать его по назначению - определить и угол ее отклонения.

Следующий шаг - определение центра каждой стороны. Для этого нужно опустить перпендикуляры из точки в центре треугольника на его стороны.

Задача - определить с помощью треугольника Эйнтховена по ЭКГ.

Необходимо взять комплекс QRS I и III отведения, определить алгебраическую сумму зубцов в каждом отведении путем подсчета количества маленьких клеточек каждого зубца, учитывая их полярность. В I отведении это R+Q+S = 13 + (-1) + 0 = 12. В III это R + Q + S = 3 + 0 + (-11) = -8.

Затем на соответствующих сторонах треугольника Эйнтховена откладываем полученные величины. На верхней отсчитываем 12 мм вправо от середины, в сторону положительно заряженного электрода. По правой стороне треугольника отсчитываем -8 выше середины - ближе к отрицательно заряженному электроду.

Затем от полученных точек строим перпендикуляры внутрь треугольника. Отмечаем точку пересечения этих перпендикуляров. Теперь нужно соединить центр треугольника с образовавшейся точкой. Получается результирующий вектор ЭДС сердца.

Для определения электрической оси надо провести горизонтальную линию через центр треугольника. Угол, полученный между вектором и прочерченной горизонтальной линией, называется углом альфа. Он определяет отклонение оси сердца. Вычислить его можно с помощью обычного транспортира. В данном случае угол равен -11°, что соответствует умеренному отклонению оси сердца влево.

Определение ЭОС позволяет вовремя заподозрить проблему, возникшую в сердце. Особенно это актуально при сравнении с предыдущими пленками. Порой резкое изменение оси в ту или иную сторону является единственным явным признаком катастрофы, который позволяет назначить другие методы обследования для выявления причины этих изменений.

Таким образом, знание о треугольнике Эйнтховена, о принципах его построения позволяет правильно наложить и подключить электроды, провести своевременную диагностику, выявить изменения на ЭКГ в максимально быстрые сроки. Знание основ ЭКГ поможет спасти множество жизней.

В 2002 г. опубликовал редакционную статью «10 величайших открытий в кардиологии XX века». Среди них были и ангиопластика, и открытая операция на сердце. Однако, бесспорно, первым методом в этом списке стоит электрокардиография, а рядом - фамилия голландца Виллема Эйнтховена, создателя первого распространенного метода инструментальной неинвазивной диагностики, с которым сталкивался каждый из нас. Нобелевский комитет по достоинству оценил изобретение и с формулировкой «за открытие техники электрокардиографии» вручил Эйнтховену премию.

Рисунок 1. Огастес Дезире Уоллер и его собака Джимми.

Если быть совсем точными, то, конечно, первую в истории электрокардиограмму (ЭКГ) снял не Эйнтховен. Но рейтинг Texas Heart Institute Journal всё же справедлив - по ней было абсолютно ничего не понятно. И «голландцем» нашего героя назвать можно, но можно и по-другому. Однако все по порядку.

Если рассуждать по принципу «государство N - родина слонов», Резерфорд , к примеру, окажется первым новозеландским нобелевским лауреатом, а Виллем Эйнтховен - первым нобелиатом Индонезии. Потому что родился он на острове Ява, в городе Семаранг, ныне - пятом по величине городе Индонезии. Тогда это была Голландская Ост-Индия , о государстве Индонезия никто не слышал, ведь до признания ее независимости оставалось более 80 лет.

С происхождением у Эйнтховена тоже все замысловато: он потомок изгнанных из Испании евреев. Фамилия появилась при Наполеоне, который в своем Кодексе указал, чтобы все граждане его империи, куда входила Голландия, имели фамилии. Двоюродный дед Эйнтховена выбрал немного искаженное название города, где он жил (надеюсь, не нужно упоминать, какого).

Отцом будущего нобелиата был военный врач, Якоб Эйнтховен, который, к сожалению, не смог обеспечить собственное здоровье. В 1866 г. он умер от инсульта, и через четыре года (Виллему тогда было уже 10) его семья перебралась в Утрехт. Разумеется, большого достатка в семье не было - его мать осталась одна с тремя детьми. Виллем решил пойти по стопам отца - отчасти по призванию (медицина), отчасти - по нужде. Дело в том, что заключив военный контракт, он смог обучаться на медицинском факультете Утрехтского университета бесплатно.

В студенческие годы Виллем был очень спортивным человеком, регулярно заявлял, что и в учебе нужно «не дать погибнуть телу», был прекрасным фехтовальщиком и гребцом (последнее - опять же вынужденно, поскольку сломал запястье и занялся греблей для восстановления функциональности кисти). Да и первая работа Эйнтховена по медицине была посвящена механизму работы локтевого сустава, одинаково важного как гребцу, так и фехтовальщику. В этой работе, пожалуй, уже проявилась двойственность таланта Эйнтховена: прекрасное знание анатомии и физиологии и интерес к физическим принципам работы человеческого организма. В данном случае - механике. А ведь дальше были работы и по оптике, и, разумеется, по электричеству.

Рисунок 2. Капиллярный электрометр Липпманна.

Дальше нашему герою очень повезло. Правда, при этом не повезло профессору физиологии Лейденского университета Адриану Хейнсиусу: он умер. А юному Эйнтховену, четверти века от роду, вместо службы в медицинском корпусе досталось профессорское место в не самом последнем европейском университете. Это случилось в 1886 г., и с тех пор более 41 года Эйнтховен работал в Лейдене - до самой своей смерти в 1927 г.

Активно занимался Эйнтховен и офтальмологией - его докторская диссертация называлась «Стереоскопия посредством дифференцировки цветов». Позже вышли очень интересные работы «Простое физиологическое объяснение различных геометрико-оптических иллюзий», «Аккомодация человеческого глаза» и другие. Впрочем, больше всего времени молодой исследователь занимался физиологией дыхания. В том числе и работой нервных импульсов в механизме контроля дыхания.

Но тут подоспел Первый Международный конгресс по физиологии - важнейшее событие в мировой медицине (Базель, 1889 г.). Там и произошла эпохальная встреча с Огастесом Уоллером (рис. 1), который первым в мире показал, что можно снять запись электрических импульсов сердца, не вскрывая тело живого организма (1887 г.) . То, что само тело человека может производить электричество, было очень новой мыслью в физиологии.

В Базеле Уоллер показывал свою работу при помощи собственного пса Джимми. Именно Уоллера нужно называть (и называют) первооткрывателем ЭКГ.

Правда, надо сказать, что кардиограммы у Уоллера были ужасные. Он регистрировал импульсы при помощи капиллярного электрометра (кстати, разработанного нобелевским лауреатом по физике 1908 года и одним из изобретателей цветной фотографии Габриэлем Липпманном) (рис. 2).

Рисунок 3. Струнный гальванометр Эйнтховена.

Рисунок 5. Треугольник Эйнтховена.

В этом приборе электрические импульсы от сердца попадали на капилляр с ртутью, уровень которой менялся в зависимости от силы тока. Но сама по себе ртуть меняла положение не мгновенно, а обладала некоей инерцией (ртуть ведь очень тяжелая жидкость). В результате получалась каша. Более того, записать импульсы сердца - это интересная задача, но тут любой ученый должен уметь отвечать на самый главный вопрос - «и что?»

Пять лет (с 1890 по 1895 гг.) Эйнтховен занимался усовершенствованием технологии капиллярной электрометрии и попутно создал нормальный математический аппарат обработки «каши». Что-то начало получаться, но все равно прибор был ненадежным, неточным и громоздким. Однако нельзя сказать, что эти годы прошли зря: в 1893 г. на заседании Нидерландской медицинской ассоциации из уст Эйнтховена впервые официально прозвучал термин «электрокардиограмма» .

Однако нормальной кардиограммы получить капиллярным методом не удалось. И в 1901 году Виллем Эйнтховен сделал собственный прибор - струнный гальванометр , а первую статью о том, что на нем записана кардиограмма, он опубликовал в 1903 г. (издание датировано 1902 г. ).

Его главной частью была кварцевая струна - ниточка из кварца толщиной в 7 микрон (рис. 3). Она делалась весьма оригинальным способом: стрела, к которой было прикреплено кварцевое разогретое волокно, выстреливалась из лука (от себя добавим, что таким же способом 20 лет спустя в свежесозданном ленинградском Физтехе молодые исследователи Николай Семенов и Петр Капица получали сверхтонкие капилляры). Эта нить при попадании на нее электрических импульсов отклонялась в постоянном магнитном поле. Чтобы фиксировать отклонение нити, параллельно ей во время измерений двигалась фотобумага, на которую при помощи системы линз проецировалась тень от нити (рис. 4).

Рисунок 6. Зубцы и интервалы кардиограммы.

Интересно, как на первые кардиограммы наносилась временная координатная сетка (сейчас бумага для кардиограмм сразу содержит сетку, но у Эйнтховена-то была фотобумага!). Сетка наносилась при помощи теней от спиц велосипедного колеса, вращавшегося с постоянной скоростью.

Голландец недолго прожил в лауреатах - через два года после своей нобелевской лекции он умер от рака желудка. Печальнее всего, что, несмотря на открытость своей лаборатории (в ней часто бывали гости), ни учеников, ни научной школы после Эйнтховена не осталось. А вот лаборатория Эйнтховена есть: его именем названа лаборатория экспериментальной сосудистой медицины в его родном Лейдене (Лейденский университетский медицинский центр, LUMC).

И еще одно любопытное наблюдение. Статья про Эйнтховена в русскоязычной Википедии гораздо подробнее и длиннее, чем статья в англоязычной , и более того, входит в число «хороших» статей (свидетельствую - хороша!). Удивительный факт, но у открывателя кардиограммы есть свои русскоязычные поклонники. Впрочем, теперь их стало минимум на одного больше.

Литература

  1. Mehta N.J., Khan I.A. (2002). Cardiology’s 10 greatest discoveries of the 20th century. Tex. Heart Inst. J. 29 , 164–71 ;
  2. Waller A. D. (1887). A demonstration on man of electromotive changes accompanying the heart’s beat . J. Physiol . 8 , 229–234 ;
  3. Einthoven W. (1901). Un nouveau galvanomètre. Archives néerlandaises des sciences exactes et naturelles. ». Сайт политехнического музея..

Размещение электродов для регистрации отведений I, II, III, образует так называемый треугольник Эйнтховена. Каждая сторона этого равностороннего треугольника между двумя электродами соответствует одному из стандартных отведений.

Сердце расположено в центре генерируемого им электрического поля и рассматривается как центр этого равностороннего треугольника. Из треугольника получается фигура с трехосевой системой координат для стандартных отведений.

Сумма электрических потенциалов, регистрируемый в любой момент в отведениях I и III, равна электрическому потенциалу, регистрируемому в отведении II. Этот закон может быть использован для обнаружения ошибок, допущенных при наложении электродов, выяснения причин регистрации необычных сигналов их трех стандартных отведений и для оценки серийных ЭКГ.

Полярность электродов при их фиксации на конечностях и поверхности грудной клетки

Стандартные отведения. Эти отведения называются двухполюсными, потому что каждое имеет два электрода, которые обеспечивают одновременную запись электрических токов сердца, идущих по направлению к двум конечностям. Двухполюсные отведения позволяют измерять потенциал между двумя положительным (+) и отрицательным (-) электродами.

Электрод на правом предплечье всегда рассматривается в качестве отрицательного полюса, на левой голени – всегда в качестве положительного. Электрод на левом предплечье может быть либо положительным, либо отрицательным в зависимости от отведения: в отведении I он положительный, а в отведении III – отрицательный.

Когда ток направлен к положительному полюсу, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный). Когда ток идет к отрицательному полюсу, зубец ЭКГ инвертирован (отрицательный). В отведении II ток распространяется от отрицательного к положительному полюсу, поэтому зубцы на обычной ЭКГ направлены вверх.

Электроды регистрации ЭДС с прекардиальной области располагаются в следующих точках:



V-1 - в четвертом межреберье по правому краю грудины;

V-2 - в четвертом межреберье по левому краю грудины;

V-3 - посредине лини, соединяющей точки V-2 и V-4;

V-4 - в пятом межреберье по левой срединно-ключичной линии;

V-5 - в пятом межреберье по левой передней подмышечной линии;

V-6 - в пятом межреберье по левой средней подмышечной линии.

Сигналы каких отделов сердца регистрируются

В шести отведениях (стандартных и усиленных от конечностей) сердце рассматривается во фронтальной плоскости. Отведение I отражает боковую стенку сердца, отведения II и III – нижнюю стенку. Отведения прекардиальной области (V-1-6) позволяют проанализировать ЭДС сердца в горизонтальной.

Измерения на разграфленной ленте. ЭОС – электрическая ось сердца

Наличие на электрокардиографической ленте, нанесенной типографским способом сетки позволяет измерять электрическую активность во время сердечного цикла. Запись ЭКГ происходит за счет перемещения в вертикальном направлении нагреваемого пера по протягиваемой со скоростью 25 мм в секунду термочувствительной ленте со стандартными клеточками. (Скорость движения ленты 50мм в сек, применяется в том случае, если необходимо более детально рассмотреть какие-то изменения ЭКГ).

Горизонтальная ось. Длина того или иного интервала на этой оси соответствует продолжительности конкретно проявления электрической активности сердца. Сторона каждого маленького квадрата соответствует 0,04 с. Пять маленьких квадратов образуют один большой – 0,2 с.

Вертикальная ось. Высота зубцов отражает электрический вольтаж (амплитуду) в милливольтах. Высота каждого малого квадрата соответствует 0,1 мВ, каждого большого 0,5. Амплитуду определяют путем подсчета малых квадратов от изоэлектрической линии до наивысшей точки зубца.

Элементы ЭКГ

Основными компонентами, образующими главные фигуры ЭКГ, являются зубец Р, комплекс QRS и зубец Т. Эти единицы электрической активности могут быть разбиты на следующие сегменты и интервалы: интервал PR, сегмент ST и интервал QT.

Зубец Р. Наличие зубца Р указывает на завершение процесса деполяризации предсердий и на то, что импульс исходит из синоатриального узла, предсердий или ткани атриовентрикулярного соединения. Если форма зубца Р нормальная, это означает, что импульс исходит их СА-узла. Когда Зубец Р предшествует каждому комплексу QRS, импульсы проводятся от предсердий к желудочкам.

Нормальные характеристики:

локализация – предшествует комплексу QRS;

амплитуда – не более 0,25 мВ;

продолжительность – от 0,06 до 0,11 с;

форма – обычно округлый и направлен вверх.

Интервал PR. Отражает период от начала деполяризации предсердий до начала деполяризации желудочков – время, необходимое, чтобы импульс от СА-узла через предсердия и АВ-узел дошел до ножек пучка Гиса. Он дает некоторое представление о месте формирования импульса. Любые варианты изменения этого интервала. Выходящие за рамки нормы, свидетельствуют о замедлении проведения импульса, например при АВ-блокаде.

Номальные характеристики:

локализация – от начала зубца Р до начала комплекса QRS;

амплитуда – не измеряется;

продолжительность – 0,12-0,2 с.

Комплекс QRS. Соответствует деполяризации желудочков сердца. Хотя реполяризация предсердий происходит в то же самое время, на ЭКГ ее признаки неразличимы.

Распознавание и правильная интерпретация комплекса QRS – ключевой момент в оценке деятельности кардиомиоцитов желудочков. Длительность комплекса отражает время внутрижелудочкового прохождения импульса.

Когда зубец Р предшествует каждому комплексу QRS, это означает, что импульс исходит из СА-узла, ткани предсердий или ткани АВ-соединения. Отсутствие зубца Р перед желудочковым комплексом свидетельствует о том, что импульс исходит из желудочков, т.е. имеется желудочковая аритмия.

Нормальные характеристики:

локализация – следует за интервалом PR;

амплитуда – различна во всех 12 отведениях;

продолжительность – 0,06-0,10 с при измерении от начала зубца Q (или зубца R, если зубец Q отсутствует) до начала конца зубца S;

форма – состоит из трех компонентов: зубца Q, являющимся первым отрицательным отклонением пера электрокардиографа, положительного зубца R и зубца S – отрицательного отклонения, возникающего после зубца R. Все три зубца комплекса видны не всегда. Из-за того, что желудочки депеоляризуются быстро, что сопровождается минимальным временем контакта пера электрокардиографа с бумагой, комплекс вычерчен более тонкой линией, чем другие компоненты ЭКГ. При оценке комплекса следует обращать внимание на две его наиболее важных характеристики: продолжительность и форму.

Сегмент ST и зубец T. Соответствует окончанию деполяризации желудочков и началу их реполяризации. Точка, соответствующая концу комплекса концу комплекса QRS и началу сегмента ST, обозначается как точка J.

Изменения сегмента ST может свидетельствовать о повреждении миокарда.

Нормальные характеристики:

локализация – от конца S до начала T;

амплитуда – не измеряется;

форма – не измеряется;

отклонения – обычно ST изоэлектричен, допустимо отклонение не более 0,1 мВ.

Зубец Т. Пик зубца Т соответствует относительному рефрактерному периоду реполяризации желудочков, во время которого клетки особенно ранимы при воздействии дополнительных стимулов.

Нормальные характеристики:

локализация – следует за зубцом S;

амплитуда – 0,5 мВ или меньше в отведениях I, II и III;

продолжительность – не измеряется;

форма – вершина зубца округлая, а сам он относительно пологий.

Интервал QT и зубец U. Интервал отражает время, необходимое для цикла деполяризации и реполяризации желудочков. Изменение его продолжительности может указывать на патологию миокарда.

Нормальные характеристики:

локализация – от начала желудочкового комплекса до конца зубца Т;

амплитуда – не измеряется;

продолжительность – варьирует в зависимости от возраста, пола и частоты сердечных сокращений, обычно между 0,36-0,44 с. общеизвестно, что интервал QT не должен превышать половину расстояния между двумя последовательными зубцами R при правильном ритме;

форма – не измеряется.

При оценке интервала следует обращать внимание на его продолжительность.

Зубец U отражает реполяризацию волокон Гиса-Пуркинье и может отсутствовать на ЭКГ.

Нормальные характеристики:

локализация – следует за зубцом Т;

амплитуда – не измеряется;

продолжительность – не измеряется;

форма – направлен вверх от осевой линии.

При оценке зубца следует обращать внимание на его наиболее важную характеристику – форму.

ИНТЕРПРИТАЦИЯ ЭКГ

Шаг 1: оценка ритма.

Шаг 2: определение частоты сокращений. Определение идентичности интервала Р-Р и R-R и сопряжены ли они друг с другом.

Шаг 3: оценка зубца Р. Необходимо получить ответы на вопросы:

Имеются ли на ЭКГ зубцы Р?

Нормальны ли очертания зубцов Р (обычно они направлены вверх и закруглены)?

Везде ли зубцы Р одинаковы по размерам и форме?

Везде ли зубцы Р обращены в одну и ту же сторону – направлены вверх, вниз или двухфазны?

Везде ли отношение зубцов Р и комплексов QRS одинаково?

Во всех ли случаях одинаково расстояние между зубцами Р и QRS?

Шаг 4: определение длительности интервала Р-R. После того, как определена длительность интервала Р-R (норма 0,12 –0,2 с), выясните, во всех ли циклах они одинаковы?

Шаг 5: определение длительности комплекса QRS. Необходимо получить ответы на вопросы:

Все ли комплексы имеют одинаковые размеры и очертания?

Какова продолжительность комплекса (норма 0,06-0,10 с)?

Во всех ли случаях одинаково расстояние между комплексами и следующими за ними зубцами Т?

Все ли комплексы имеют одинаковую направленность?

Имеются ли на ЭКГ комплексы, отличающиеся от остальных? Если да, измерьте и опишите каждый такой комплекс.

Шаг 6: оценка зубцов Т. ответы на вопросы:

Имеются ли на ЭКГ зубцы Т?

Все ли зубцы Т имеют одинаковую форму и очертания?

Не спрятан ли зубец Р в зубце Т?

В одну ли сторону направлены зубцы Т и комплексы QRS?

Шаг 7: определение длительности интервала QT. Выясните, соответствует длительность интервала норме (0,36-0,44 с или 9-11 малых квадратов).

Шаг 8: оценка любых других компонентов. Выясните, нет ли на ЭКГ каких-либо других компонентов, включающих проявления эктопических и аберративных импульсов и другие аномалии. Проверьте сегмент ST на предмет наличия в нем любых отклонений и обратите внимание на зубец U. Опишите свои находки.

ЛЕКЦИЯ 13 ДИПОЛЬ. ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОГРАФИИ

ЛЕКЦИЯ 13 ДИПОЛЬ. ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОГРАФИИ

1. Электрический диполь и его электрическое поле.

2. Диполь во внешнем электрическом поле.

3. Токовый диполь.

4. Физические основы электрографии.

5. Теория отведений Эйнтховена, три стандартных отведения. Поле диполя сердца, анализ электрокардиограмм.

6. Векторкардиография.

7. Физические факторы, определяющие ЭКГ.

8. Основные понятия и формулы.

9. Задачи.

13.1. Электрический диполь и его электрическое поле

Электрический диполь - система из двух равных по величине, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга.

Расстояние между зарядами называется плечом диполя.

Основной характеристикой диполя является векторная величина, называемая электрическим моментом диполя (P).

Электрическое поле диполя

Диполь является источником электрического поля, силовые линии и эквипотенциальные поверхности которого изображены на рис. 13.1.

Рис. 13.1. Диполь и его электрическое поле

Центральная эквипотенциальная поверхность представляет собой плоскость, проходящую перпендикулярно плечу диполя через его середину. Все ее точки имеют нулевой потенциал = 0). Она делит электрическое поле диполя на две половины, точки которых имеют соответственно положительные > 0) и отрицательные < 0) потенциалы.

Абсолютная величина потенциала зависит от дипольного момента Р, диэлектрической проницаемости среды ε и от положения данной точки поля относительно диполя. Пусть диполь находится в непроводящей бесконечной среде и некоторая точка А удалена от его центра на расстояние r >> λ (рис. 13.2). Обозначим через α угол между вектором Р и направлением на эту точку. Тогда потенциал, создаваемый диполем в точке А, определяется следующей формулой:

Рис. 13.2. Потенциал электрического поля, созданного диполем

Диполь в равностороннем треугольнике

Если диполь поместить в центр равностороннего треугольника, то он будет равноудален ото всех его вершин (на рис. 13.3 диполь изображен вектором дипольного момента - Р).

Рис. 13.3. Диполь в равностороннем треугольнике

Можно показать, что в этом случае разность потенциалов (напряжение) между двумя любыми вершинами прямо пропорциональна проекции дипольного момента на соответствующую сторону (U AB ~ P AB). Поэтому отношение напряжений между вершинами треугольника равно отношению проекций дипольного момента на соответствующие стороны:

Сопоставляя величины проекций, можно судить о величине самого вектора и его расположении внутри треугольника.

13.2. Диполь во внешнем электрическом поле

Диполь не только сам является источником электрического поля, но и взаимодействует с внешним электрическим полем, созданным другими источниками.

Диполь в однородном электрическом поле

В однородном электрическом поле напряженностью E на полюса диполя действуют равные по величине и противоположные по направлению силы (рис. 13.4). Поскольку сумма таких сил равна нулю, поступательного движения они не вызывают. Однако они

Рис. 13.4. Диполь в однородном электрическом поле

создают вращательный момент, величина которого определяется следующей формулой:

Этот момент «стремится» расположить диполь параллельно линиям поля, т.е. перевести его из некоторого положения (а) в положение (б).

Диполь в неоднородном электрическом поле

В неоднородном электрическом поле величины сил, действующих на полюсы диполя (силы F + и F - на рис. 13.5), неодинаковы, и их сумма не равна нулю Поэтому возникает равнодействующая сила, втягивающая диполь в область более сильного поля.

Величина втягивающей силы, действующей на диполь, ориентированный вдоль силовой линии, зависит от градиента напряженности и вычисляется по формуле:

Здесь ось Х - направление силовой линии в том месте, где находится диполь.

Рис. 13.5. Диполь в неоднородном электрическом поле. Р - дипольный момент

13.3. Токовый диполь

Рис. 13.6. Экранирование диполя в проводящей среде

В непроводящей среде электрический диполь может сохраняться сколь угодно долго. Но в проводящей среде под действием электрического поля диполя возникает смещение свободных зарядов, диполь экранируется и перестает существовать (рис. 13.6).

Для сохранения диполя в проводящей среде необходима электродвижущая сила. Пусть в проводящую среду (например, в сосуд с раствором электролита) введены два электрода, подключенные к источнику постоянного напряжения. Тогда на электродах будут поддерживаться постоянные заряды противоположных знаков, а в среде между электродами возникнет электрический ток. Положительный электрод называют истоком тока, а отрицательный - стоком тока.

Двухполюсная система в проводящей среде, состоящая из истока и стока тока, называется дипольным электрическим генератором или токовым диполем.

Расстояние между истоком и стоком тока (L) называется плечом токового диполя.

На рис. 13.7,а сплошными линиями со стрелками изображены линии тока, создаваемого дипольным электрическим генерато-

Рис. 13.7. Токовый диполь и его эквивалентная электрическая схема

ром, а пунктирными линиями - эквипотенциальные поверхности. Рядом (рис. 13.7, б) показана эквивалентная электрическая схема: R - сопротивление проводящей среды, в которой находятся электроды; r - внутреннее сопротивление источника, ε - его э.д.с.; положительный электрод (1) - исток тока; отрицательный электрод (2) - сток тока.

Обозначим сопротивление среды между электродами через R. Тогда сила тока определяется законом Ома:

Если сопротивление среды между электродами значительно меньше, чем внутреннее сопротивление источника, то I = ε/r.

Для того чтобы сделать картину более наглядной, представим себе, что в сосуд с электролитом опущены не два электрода, а обычный элемент питания. Линии электрического тока, возникшего в сосуде в этом случае, показаны на рис. 13.8.

Рис. 13.8. Токовый диполь и созданные им линии тока

Электрической характеристикой токового диполя является векторная величина, называемая дипольным моментом (Р T).

Дипольный момент токового диполя - вектор, направленный от стока (-) к истоку (+) и численно равный произведению силы тока на плечо диполя:

Здесь ρ - удельное сопротивление среды. Геометрические характеристики такие же, как на рис. 13.2.

Таким образом, между токовым диполем и электрическим диполем существует полная аналогия.

Теория токового диполя применяется для модельного объяснения возникновения потенциалов, регистрируемых при снятии электрокардиограмм.

13.4. Физические основы электрографии

Живые ткани являются источником электрических потенциалов. Регистрация биопотенциалов тканей и органов называется электрографией.

В медицинской практике используют следующие диагностические методы:

ЭКГ - электрокардиография - регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении;

ЭРГ - электроретинография - регистрация биопотенциалов сетчатки глаза, возникающих в результате воздействия на глаз;

ЭЭГ - электроэнцефалография - регистрация биоэлектрической активности головного мозга;

ЭМГ - электромиография - регистрация биоэлектрической активности мышц.

Примерная характеристика регистрируемых при этом биопотенциалов указана в табл. 13.1.

Таблица 13.1 Характеристики биопотенциалов

При изучении электрограмм решаются две задачи: 1) прямая - выяснение механизма возникновения электрограммы или расчет потенциала в области измерения по заданным характеристикам электрической модели органа;

2) обратная (диагностическая) - выявление состояния органа по характеру его электрограммы.

Почти во всех существующих моделях электрическую активность органов и тканей сводят к действию определенной совокупности токовых электрических генераторов, находящихся в объемной электропроводящей среде. Для токовых генераторов выполняется правило суперпозиции электрических полей:

Потенциал поля генераторов равен алгебраической сумме потенциалов полей, создаваемых генераторами.

Дальнейшее рассмотрение физических вопросов электрографии показано на примере электрокардиографии.

13.5. Теория отведений Эйнтховена, три стандартных отведения. Поле диполя сердца, анализ электрокардиограмм

Сердце человека - мощная мышца. При синхронном возбуждении множества волокон сердечной мышцы в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов порядка нескольких мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы.

Моделировать электрическую активность сердца можно с использованием дипольного эквивалентного электрического генератора.

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена, согласно которой:

сердце есть токовый диполь с дипольным моментом Р с, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла.

(В биологической литературе вместо термина «дипольный момент сердца» обычно используются термины «вектор электродвижущей силы сердца», «электрический вектор сердца».)

По Эйнтховену, сердце располагается в центре равностороннего треугольника, вершинами которого являются: правая рука - левая рука - левая нога. (Вершины треугольника равноудалены как друг

от друга, так и от центра треугольника.) Поэтому разности потенциалов, снятые между этими точками, суть проекции дипольного момента сердца на стороны этого треугольника. Пары точек, между которыми измеряются разности биопотенциалов, со времен Эйнтховена в физиологии принято называть «отведениями».

Таким образом, теория Эйнтховена устанавливает связь между разностью биопотенциалов сердца и разностями потенциалов, регистрируемых в соответствующих отведениях.

Три стандартных отведения

На рисунке 13.9 представлены три стандартных отведения.

Отведение I (правая рука - левая рука), отведение II (правая рука - левая нога), отведение III (левая рука - левая нога). Им соответствуют разности потенциалов U I , U II , U lII . Направление вектора Р с определяет электрическую ось сердца. Линия электрической оси сердца при пересечении с направлением I-го отведения образует угол α. Величина этого угла определяет направление электрической оси сердца.

Соотношения между разностью потенциалов на сторонах треугольника (отведениях) могут быть получены в соответствии с формулой (13.3) как соотношения проекций вектора Р с на стороны треугольника:

Так как электрический момент диполя - сердца - изменяется со временем, то в отведениях будут получены временные зависимости напряжения, которые и называют электрокардиограммами.

Рис. 13.9. Схематическое изображение трех стандартных отведений ЭКГ

Допущения теории Эйнтховена

Электрическое поле сердца на больших расстояниях от него подобно полю токового диполя; дипольный момент - интегральный электрический вектор сердца (суммарный электрический вектор возбужденных в данный момент клеток).

Все ткани и органы, весь организм - однородная проводящая среда (с одинаковым удельным сопротивлением).

Электрический вектор сердца изменяется по величине и направлению за время сердечного цикла, однако начало вектора остается неподвижным.

Точки стандартных отведений образуют равносторонний треугольник (треугольник Эйнтховена), в центре которого находится сердце - токовый диполь. Проекции дипольного момента сердца - отведения Эйнтховена.

Поле диполя - сердца

В каждый данный момент деятельности сердца его дипольный электрический генератор создает вокруг электрическое поле, которое распространяется по проводящим тканям тела и создает потенциалы в его различных точках. Если представить, что основание сердца заряжено отрицательно (имеет отрицательный потенциал), а верхушка положительно, то распределение эквипотенциальных линий вокруг сердца (и силовых линий поля) при максимальном значении дипольного момента Р с будет таким, как на рис. 13.10.

Потенциалы указаны в некоторых относительных единицах. Вследствие асимметричного положения сердца в грудной клетке его электрическое поле распространяется преимущественно в сторону правой руки и левой ноги, и наиболее высокая разность потенциалов может быть зафиксирована в том случае, если электроды разместить на правой руке и левой ноге.

Рис. 13.10. Распределение силовых (сплошные) и эквипотенциальных (прерывистые) линий на поверхности тела

В таблице 13.2 приведены значения максимального дипольного момента сердца в сопоставлении с массой сердца и тела.

Таблица 13.2. Значения дипольного момента Р с

Анализ электрокардиограмм

Теоретический анализ электрокардиограмм сложен. Развитие кардиографии шло в основном эмпирическим путем. Катц указывал, что расшифровка электрокардиограмм производится на основе опыта, опирающегося лишь на самое элементарное понимание теории возникновения биопотенциалов.

Данные ЭКГ обычно дополняют клиническую картину заболевания.

На рисунке 13.11 представлена нормальная электрокардиограмма человека (обозначения зубцов были даны Эйнтховеном и представляют взятые подряд буквы латинского алфавита).

Она представляет собой график изменения во времени разности потенциалов, снимаемой двумя электродами соответствующего отведения за цикл работы сердца. Горизонтальная ось является не только осью времени, но и осью нулевого потенциала. ЭКГ представляет собой кривую, состоящую из трех характерных зубцов, обозначающихся Р, QRS, T, разделенных интервалом нулевого потенциала. Высоты зубцов в различных отведениях обусловлены направлением электрической оси сердца, т.е. углом α (см. рис. 13.9). Электрокардиограмма, записанная при норме в стандартных отведениях, характеризуется тем, что ее зубцы в разных отведениях будут неодинаковы по амплитуде (рис. 13.12).

Рис. 13.11. Электрокардиограмма здорового человека и ее спектр:

Р - деполяризация предсердия; QRS -деполяризация желудочков; Т - репо-

ляризация; частота пульса 60 ударов в минуту (период сокращения - 1 с)

Рис. 13.12. Нормальная ЭКГ в трех стандартных отведениях

Зубцы ЭКГ будут наиболее высокими во II отведении и наиболее низкими в III отведении (при нормальном положении электрической оси).

Сопоставляя кривые, зарегистрированные в трех отведениях, можно судить о характере изменения Р с за цикл работы сердца, на основании чего и составляется представление о состоянии нервномышечного аппарата сердца.

Для анализа ЭКГ используют также ее гармонический спектр.

13.6. Векторкардиография

Обычные электрокардиограммы являются одномерными. В 1957 г. немецкий врач физиолог Шмитт разработал метод объемных кривых (векторкардиография).

Напряжение от двух взаимно перпендикулярных отведений подают на взаимно перпендикулярные пластины осциллографа. При этом на экране получается изображение, состоящее из двух петель - большой и малой. Малая петля заключена в большой и сдвинута к одному из полюсов.

Вторая аналогичная картина может быть получена на втором осциллографе, где одно из двух уже использованных отведений сопоставляется с третьим. Картины на обоих осциллографах можно рассматривать через стереоскопическую систему линз или фотографировать одновременно, чтобы в дальнейшем построить пространственную (трехмерную) модель.

Для расшифровки электрокардиограмм нужен большой опыт. С появлением ЭВМ стало возможным автоматизировать процесс «чтения» кривых. ЭВМ сравнивает кривую данного больного с образцами, хранящимися в ее памяти, и выдает врачу предположительный диагноз.

Иной подход используется при проведении электрокардиотопографического исследования. При этом на грудную клетку накладывают около 200 электродов, строят картину электрического поля по 200 кривым, которые анализируются одновременно.

13.7. Физические факторы, определяющие особенности ЭКГ

ЭКГ у разных людей и даже у одного и того же человека характеризуются большой вариабельностью. Это связано с индивидуальными анатомическими особенностями проводниковой системы сердца, различиями в соотношении мышечных масс анатомических фрагментов сердца, электропроводностью окружающих сердце тканей, индивидуальной реакцией нервной системы на воздействие внешних и внутренних факторов.

Факторы, определяющие особенности ЭКГ у отдельного человека, следующие: 1) положение сердца в грудной клетке, 2) положение тела, 3) дыхание, 4) действие физических раздражителей, в первую очередь физических нагрузок.

Положение сердца в грудной клетке оказывает существенное влияние на форму ЭКГ. При этом надо знать, что направление электрической оси сердца совпадает с анатомической осью сердца. Если угол α, характеризующий направление электрической оси сердца (рис. 13.9), имеет величину:

а) в пределах от 40 до 70°, то такое положение электрической оси сердца считается нормальным; в этих случаях ЭКГ будет иметь обычные соотношения зубцов в I, II, III стандартных отведениях;

б) близкую к 0°, т.е. электрическая ось сердца параллельна линии первого отведения, то такое положение электрической оси сердца обозначается как горизонтальное, и ЭКГ характеризуется высокими амплитудами зубцов в I отведении;

в) близкую к 90°, положение обозначается как вертикальное, зубцы ЭКГ будут наименьшими в I отведении.

Как правило, положение анатомической и электрической осей сердца совпадают. Но в отдельных случаях может быть расхождение: рентгенограмма свидетельствует о нормальном положении сердца, а ЭКГ показывает отклонение электрической оси в ту или другую сторону. Такие расхождения являются диагностически значимыми (клинически это означает одностороннее поражение миокарда).

Изменение положения тела всегда вызывает некоторые изменения положения сердца в грудной клетке. Это сопровождается изменением

электропроводности окружающих сердце сред. ЭКГ у человека с вертикальным положением сердца будет отличаться от нормальной. Если ЭКГ не изменяет своей формы при перемещении тела, то этот факт тоже имеет диагностическое значение; характеристики зубцов изменяются при любом отклонении электрической оси.

Дыхание. Амплитуда и направленность зубцов ЭКГ изменяются при любом отклонении электрической оси, меняясь при вдохе и выдохе. При вдохе электрическая ось сердца отклоняется примерно на 15°, при глубоком вдохе это отклонение может достичь 30°. Нарушения или изменения дыхания (при тренировках, при реабилитационных упражнениях и гимнастике) могут быть диагностированы по изменению ЭКГ.

В медицине роль физических нагрузок чрезвычайно велика. Физическая нагрузка всегда вызывает существенное изменение в ЭКГ. У здоровых людей эти изменения состоят, главным образом, в учащении ритма, форма зубцов тоже изменяется в определенной закономерности. При функциональных пробах с физической нагрузкой могут иметь место такие изменения, которые явно указывают на патологические изменения в работе сердца (тахикардия, экстрасистолия, мерцательная аритмия и т.д.).

Искажения при записи ЭКГ. При записи ЭКГ всегда нужно иметь в виду, что существуют причины, которые могут исказить ее форму: неисправности в усилителе электрокардиографа; переменный ток городской сети может наводить э.д.с. вследствие электромагнитной индукции в рядом расположенных усилительных цепях и даже биологических объектах, нестабильность блока питания и т.д. Расшифровка искаженной ЭКГ приводит к постановке неправильного диагноза.

Диагностическая значимость метода электрокардиографии, несомненно, велика. Совместно с другими методами оценки деятельности сердца (методы регистрации механических колебаний сердца, рентгеновский метод) он позволяет получать важную клиническую информацию о работе сердца.

В последние годы в современной врачебно-диагностической практике стали использоваться компьютерные электрокардиографы со средствами автоматического анализа ЭКГ.

13.8. Основные понятия и формулы

Окончание таблицы

© 2024 huhu.ru - Глотка, обследование, насморк, заболевания горла, миндалины